CS371N Lecture 14
Sequence Modeling, POS Tagging
Announcements
-AZ solutions posted
-A3 due today
Recap Language modeling
subword teak
\downarrow
pre-train an $L \mu$ on the web
fine-tune
\downarrow
classify

$$
\underset{\substack{\text { greedy }}}{\substack{\text { generate }}} \xrightarrow[\text { nucleus }]{\text { sampling }}
$$

Today Structured prediction: sequence modeling
POS tugging
Part - of - speech tagging
Input sentence: x_{1}, \ldots, x_{n}
Output: POS tags y_{1}, \ldots, y_{n} for each word

Different than sentiment class. One output per word
What are POS tags (and why?)

Teacher strikes idle kids

N	N	$>v$
N	$D V$	J
noun	verb adjective noon	

Text-to-speech: record N
Pos tags
Open-class: new words with these fags are always emerging
Closed-class: known set

Open-class
(N) Nouns, Proper (Google)
\rightarrow common (cat) plural vs. singular
(V) verbs tense, "person" (inflection)
(T) adjectives idle, yellow
(RB) adverbs swiftly
$\frac{\text { Closed-class }}{\text { (DT) Determiners: } \operatorname{articles}(\text { The, ") }}$ some, many
(CD) Cardinal: numbers

Prepositions: up, on, in, ...
Partic les: made up
Auxiliaries: had Modals: could/ would/
should
(1) What tags are possible for each wound? Fed raises interest rates 0.5 percent
Fed UBD I fed the cat
NNP proper noun
VBN "Fed up"
raises NNS plural
VBZ (3rd person sg present)

VB infinitive "I want NLP
rates NNS
VB
Interps standard
0.5
$C D$
weird weirder
percent $\bigcirc N N$

Two ways to tag

- Using classifiers?
- Using Hidden Markov Models

Classifiers Pos tags Y
Multiclass LR:
$P\left(y_{i}=t \mid \bar{x}\right) \quad \begin{gathered}\text { iterate over the } \\ \text { sequence }\end{gathered}$
letter counting in A3

$$
P(\bar{y} \mid \bar{x})=\prod_{i=1}^{n} P\left(y_{i} \mid \bar{x}\right)
$$

independent classification of each

Why modeling the sequence?

Fed raises interest rates

$$
\begin{aligned}
& P\left(y_{2}=V \mid \bar{x}\right) \text { is high } \Rightarrow V \\
& P\left(y_{3}=V \mid \bar{x}\right) \text { is high } \Rightarrow V \\
& P\left(y_{2}=V, y_{3}=V \mid \bar{x}\right) \text { is low }
\end{aligned}
$$

\downarrow we don't model this
Hidden Markov Models
(t) model the sequence $\left(y_{3} \mid y_{2}\right)$

- simple generative model (CRTs: discriminative HMMs, Transformer $+\mathrm{H} / \mathrm{MM}$)

$$
y_{1} \cdots \underbrace{}_{n} x_{1} \cdots x_{n}
$$

Generative model $P(\bar{y} \mid \bar{x})$ Tags $y_{i} \in \tau$

HMM:

$$
\begin{array}{r}
P(\bar{y}, \bar{x})=P\left(y_{1}\right) P\left(x_{1} \mid y_{1}\right) P\left(y_{2} \mid y_{1}\right) P\left(x_{2} \mid y_{2}\right) \\
P\left(y_{3} \mid y_{2}\right) P\left(x_{3} \mid y_{3}\right) \cdots P\left(\operatorname{STOP} \mid y_{n}\right)
\end{array}
$$

Assumptions:
(1) Each y depends only on the previous y (Marker)
(2) Each x_{i} is indep of all else given y_{i}

Goal: We model $P(\bar{y} / \bar{x})$ conditional but we care about $P(\bar{y} \mid \bar{x})$
(you give me a sentence \bar{x} and I give you tags)

Parameters Three types

$$
P\left(y_{i} \mid y_{i-1}\right)
$$

transition probs $y-1$
 each row is a dist.

store distributions explicitly

