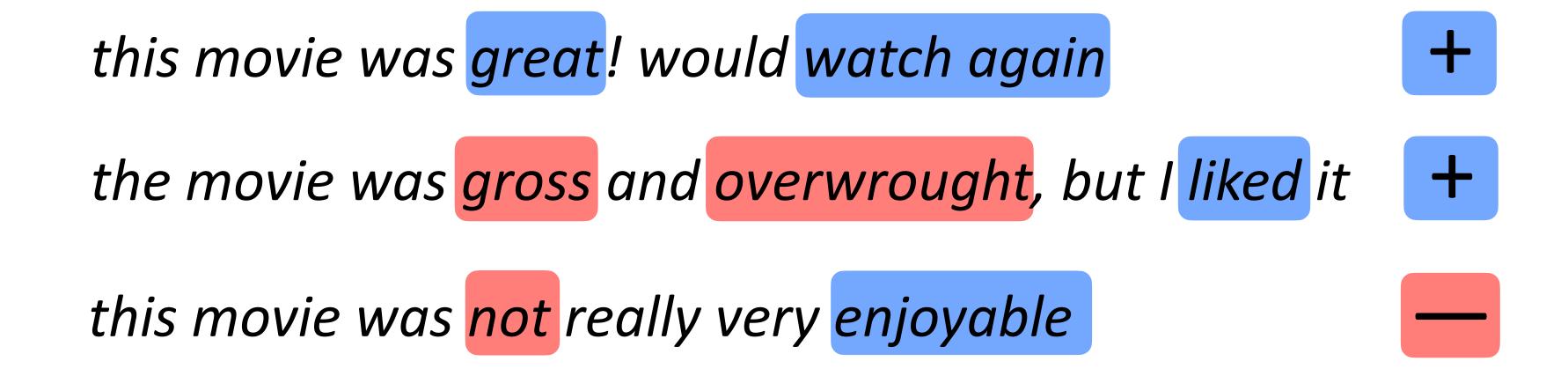
Sentiment Analysis

Sentiment Analysis



- Bag-of-words doesn't seem sufficient (discourse structure, negation)
- There are some ways around this: extract bigram feature for "not X" for all X following the not

Pang et al. (2002)

	Features	# of	frequency or	NB	\mathbf{ME}	SVM
		features	presence?			
(1)	unigrams	16165	freq.	78.7	N/A	72.8
(2)	unigrams	"	pres.	81.0	80.4	82.9
(3)	unigrams+bigrams	32330	pres.	80.6	80.8	82.7
(4)	bigrams	16165	pres.	77.3	77.4	77.1
(5)	unigrams+POS	16695	pres.	81.5	80.4	81.9
(6)	adjectives	2633	pres.	77.0	77.7	75.1
(7)	top 2633 unigrams	2633	pres.	80.3	81.0	81.4
(8)	unigrams+position	22430	pres.	81.0	80.1	81.6

- Simple feature sets can do pretty well!
- Learning alg.doesn't mattertoo much

ME = "Maximum Entropy" = what we call Logistic Regression

Wang and Manning (2012)

10 years later
 revisited
 basic BoW
 classifiers vs.
 other methods

Method	RT-s	MPQA
MNB-uni	77.9	85.3
MNB-bi	79.0	86.3
SVM-uni	76.2	86.1
SVM-bi	77.7	<u>86.7</u>
NBSVM-uni	78.1	85.3
NBSVM-bi	<u>79.4</u>	86.3
RAE	76.8	85.7
RAE-pretrain	77.7	86.4
Voting-w/Rev.	63.1	81.7
Rule	62.9	81.8
BoF-noDic.	75.7	81.8
BoF-w/Rev.	76.4	84.1
Tree-CRF	77.3	86.1

Before neural nets had taken off — results weren't that great

Kim (2014) CNNs

81.5 89.5

Multiclass Examples

"Now! ... That should clear up a tew things around here!"

Entailment

Three-class task over sentence pairs

Not clear how to do this with simple bag-ofwords features

A soccer game with multiple males playing.

ENTAILS

Some men are playing a sport.

A black race car starts up in front of a crowd of people.

CONTRADICTS

A man is driving down a lonely road

A smiling costumed woman is holding an umbrella.

NEUTRAL

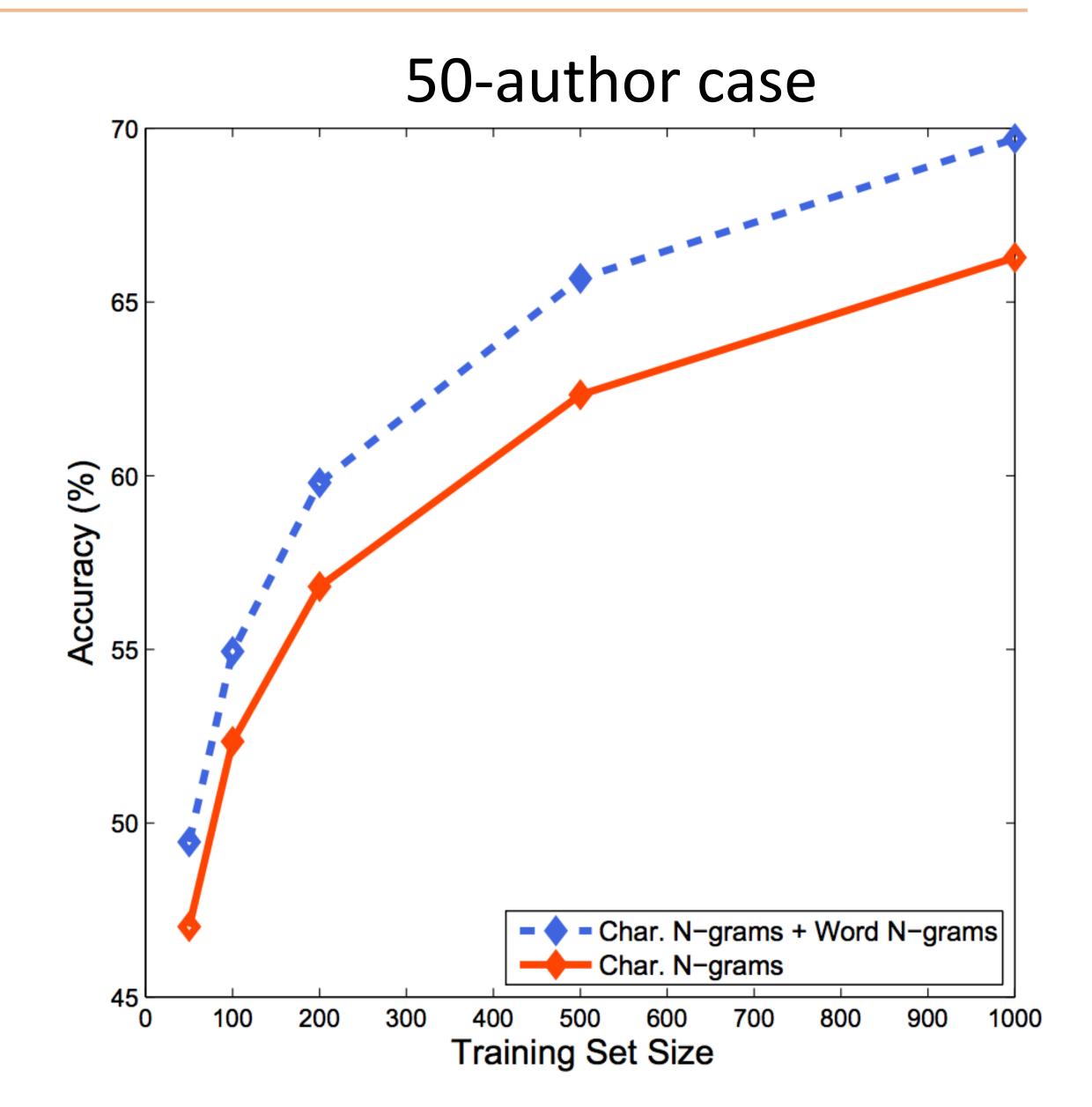
A happy woman in a fairy costume holds an umbrella.

Authorship Attribution

- Statistical methods date back to 1930s and 1940s
 - Based on handcrafted heuristics like stopword frequencies
 - Early work: Shakespeare's plays, Federalist papers (Hamilton v. Madison)
- Twitter: given a bunch of tweets, can we figure out who wrote them?
 - Schwartz et al. EMNLP 2013: 500M tweets, take 1000 users with at least 1000 tweets each
- Task: given a held-out tweet by one of the 1000 authors, who wrote it?

Authorship Attribution

- SVM with character 4-grams, words
 2-grams through 5-grams
- ► 1000 authors, 200 tweets per author => 30% accuracy
- 50 authors, 200 tweets per author=> 71.2% accuracy



Authorship Attribution

► k-signature: n-gram that appears in k% of the authors tweets but not appearing for anyone else — suggests why these are so effective

Signature Type 10%-signature		Examples		
	6 ^ ^? 	REF oh ok ^_^ Glad you found it!		
		Hope everyone is having a good afternoon		
Character n-grams		REF Smirnoff lol keeping the goose in the freezer		
Character ii-grains	'yew'	gurl yew serving me tea nooch		
		REF about wen yew and ronnie see each other		
		REF lol so yew goin to check out tini's tonight huh???		

Fairness

Fairness in Classification

- Classifiers can be used to make real-world decisions:
 - Who gets an interview?
 - Who should we lend money to?
 - Is this online activity suspicious?
 - Is a convicted person likely to re-offend?
- Humans making these decisions are typically subject to anti-discrimination laws; how do we ensure classifiers are fair in the same way?
- Many other factors to consider when deploying classifiers in the real world (e.g., impact of a false positive vs. a false negative) but we'll focus on fairness here

Fairness Response (SUBMIT ON CANVAS)

Consider having each data instance *x* associated with a **protected attribute A** when making a prediction. For example, suppose for sentiment analysis we also had information about the **ethnicity of the director** of the movie being reviewed.

- What do you think it would mean for a classification model to be discriminatory in this context? Try to be as precise as you can!
- Do you think our unigram bag-of-words model might be discriminatory according to your criterion above? Why or why not?
- Suppose we add A as an additional "word" to each example, so our bag-of-words can use it as part of the input. Do you think the unigram model might be discriminatory according to your criterion? Why or why not?
- Suppose we enforce that the model must predict at least k% positives across every value of A; that is, if you filter to only the data around a particular ethnicity, the model must predict at least k% positives on that data slice. Is this fair? Why/why not?

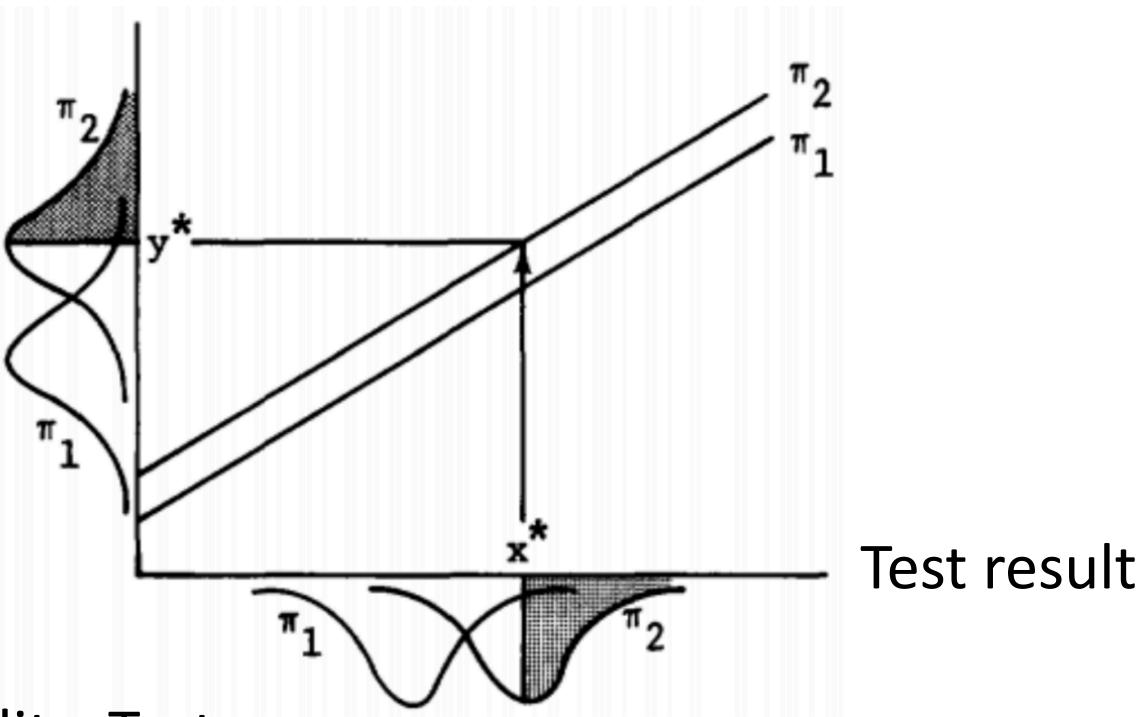
Fairness in Classification

Idea 1: Classifiers need to be evaluated beyond just accuracy

- T. Anne Cleary (1966-1968): a test is biased if prediction on a subgroup makes *consistent* nonzero prediction errors compared to the aggregate
- Individuals of X group could still score lower on average. But the *errors* should not be consistently impacting X

• Member of π_1 has a test result higher than a member of π_2 for the same ground truth ability. Test penalizes π_2

Ground truth



Fairness in Classification

Idea 1: Classifiers need to be evaluated beyond just accuracy

- Thorndike (1971), Petersen and Novik (1976): fairness in classification: ratio of predicted positives to ground truth positives must be approximately the same for each group ("equalized odds")
 - Group 1: 50% positive movie reviews. Group 2: 60% positive movie reviews
 - A classifier classifying 50% positive in both groups is unfair, regardless of accuracy
- Allows for different criteria across groups: imposing different classification thresholds actually can give a fairer result
- ▶ There are many other criteria we could use as well this isn't the only one!

Petersen and Novik (1976) Hutchinson and Mitchell (2018)

Discrimination

Idea 2: It is easy to build classifiers that discriminate even without meaning to

- A feature might correlate with minority group X and penalize that group:
 - Bag-of-words features can identify non-English words, dialects of English like AAVE, or code-switching (using two languages). (Why might this be bad for sentiment?)
 - ZIP code as a feature is correlated with race
- Reuters: "Amazon scraps secret Al recruiting tool that showed bias against women"
 - "Women's X" organization, women's colleges were negative-weight features
 - Accuracy will not catch these problems, very complex to evaluate depending on what humans did in the actual recruiting process

Credit: https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G

Takeaways

- What marginalized groups in the population should I be mindful of? (Review sentiment: movies with female directors, foreign films, ...)
- Can I check one of these fairness criteria?
- Do aspects of my system or features it uses introduce potential correlations with protected classes or minority groups?