CS371N: Natural Language Processing

Lecture 7: Word Embeddings

Greg Durrett

Announcements

Fairness response due today

A2 due in 9 days

Recap

n features

Recap: Neural Networks for Classification

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

$$num_classes$$

$$d \text{ hidden units} \qquad \text{probs}$$

$$V \qquad \mathbf{z} \qquad W \qquad \text{softmax} \qquad \mathbf{x}$$

$$d \times n \text{ matrix} \qquad \text{nonlinearity} \qquad num \quad classes \times d$$

matrix

(tanh, relu, ...)

DANS

Credit: Stephen Roller

Currently we think of words as "one-hot" vectors

$$the = v_{the} = [1, 0, 0, 0, 0, 0, ...]$$
 $good = v_{good} = [0, 0, 0, 1, 0, 0, ...]$
 $great = v_{great} = [0, 0, 0, 0, 0, 1, ...]$

good and great seem as dissimilar as good and the

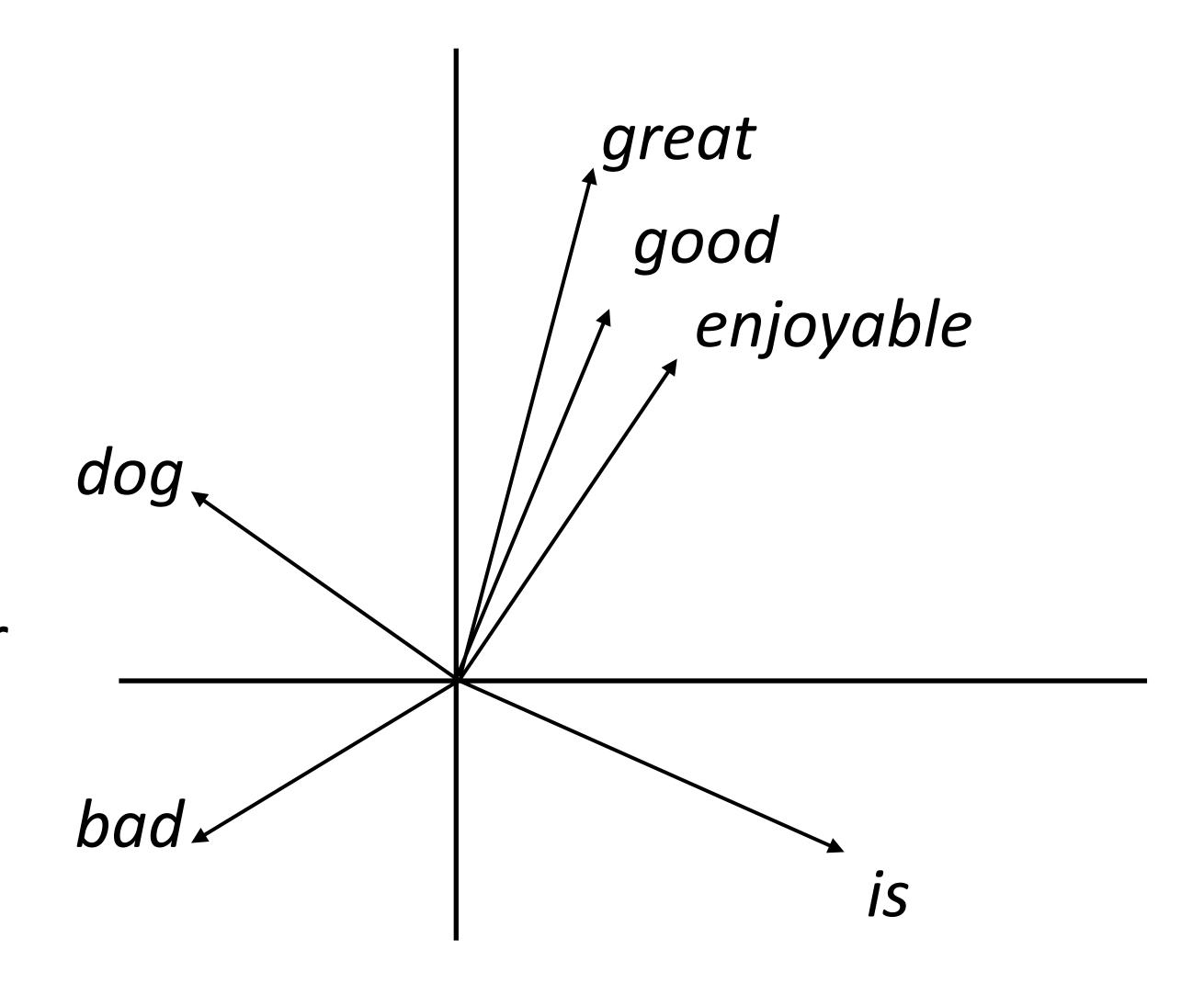
```
the movie was great = v_{the} + v_{movie} + v_{was} + v_{great}
```

 Neural networks are built to learn sophisticated nonlinear functions of continuous inputs; our inputs are discrete and high-dimensional

Want a vector space where similar words have similar embeddings

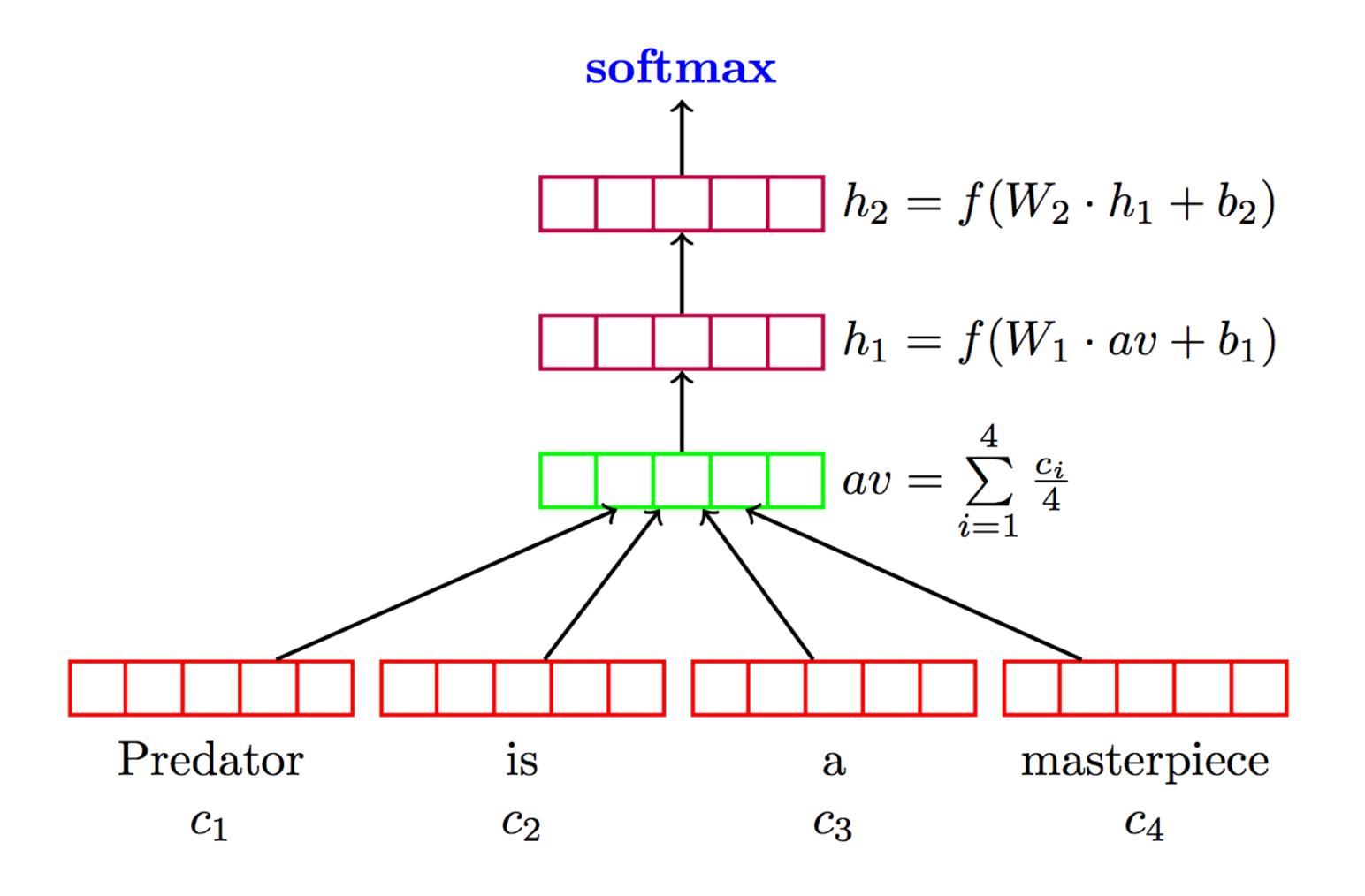
 $great \approx good$

- This lecture: come up with a way to produce these embeddings
- For each word, want
 "medium" dimensional vector
 (50-300 dims) representing it



Deep Averaging Networks

 Deep Averaging Networks: feedforward neural network on average of word embeddings from input



lyyer et al. (2015)

Sentiment Analysis

	N # 1 1	DT	CCT	COTT	TI (IDD		
No pretrained embeddings	Model	RT	SST	SST	IMDB	Time	
			fine	bin		(s)	
	DAN-ROOT		46.9	85.7		31	
	DAN-RAND	77.3	45.4	83.2	88.8	136	
	DAN	80.3	47.7	86.3	89.4	136	lyyer et al. (2015)
Bag-of-words {	NBOW-RAND	76.2	42.3	81.4	88.9	91	
	NBOW	79.0	43.6	83.6	89.0	91	Wang and - Manning (2012)
	BiNB		41.9	83.1			
	NBSVM-bi	79.4			91.2		
Tree-structured neural networks	RecNN*	77.7	43.2	82.4			
	RecNTN*		45.7	85.4			
	DRecNN		49.8	86.6		431	
	TreeLSTM		50.6	86.9			
	$DCNN^*$		48.5	86.9	89.4		
	PVEC*		48.7	87.8	92.6		
	CNN-MC	81.1	47.4	88.1		2,452	Kim (2014)
	WRRBM*				89.2		

Word Embeddings in PyTorch

torch.nn.Embedding: maps vector of indices to matrix of word vectors

- \triangleright *n* indices => *n* x *d* matrix of *d*-dimensional word embeddings
- b x n indices => b x n x d tensor of d-dimensional word embeddings

J.R. Firth, 1957: "You shall know a word by the company it keeps."

I watched the movie

I watched the film

The movie inspired me

The film inspired me

I watched the baby

The baby inspired me

There was film on the liquid