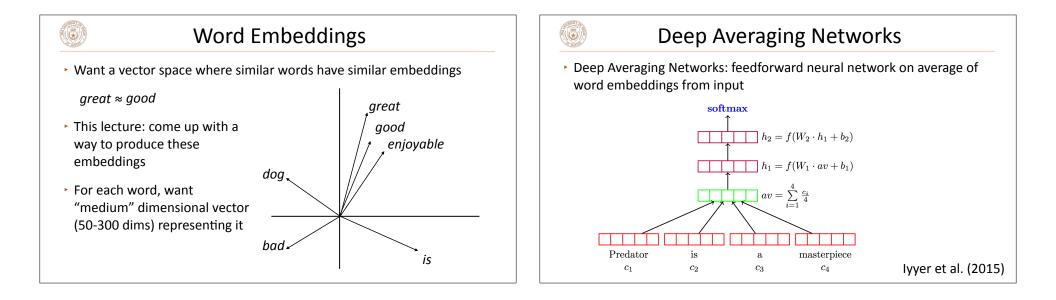


Credit: Stephen Roller

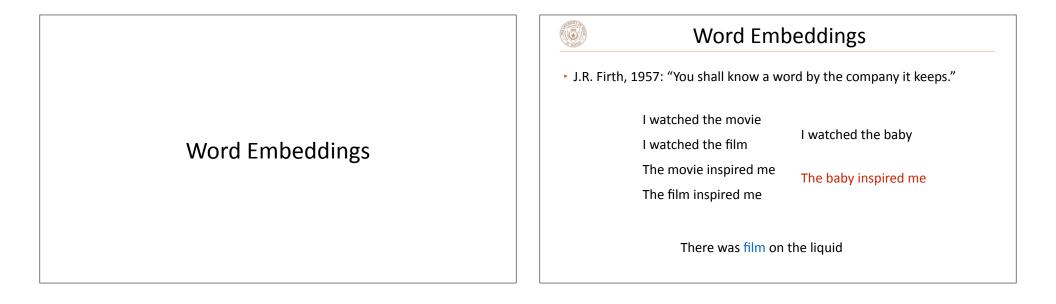
Word Embeddings

Currently we think of words as "one-hot" vectors

the = v_{the} = [1, 0, 0, 0, 0, 0, ...]


 $qood = v_{qood} = [0, 0, 0, 1, 0, 0, ...]$

 $qreat = v_{qreat} = [0, 0, 0, 0, 0, 1, ...]$


• good and great seem as dissimilar as good and the

the movie was great = $v_{the} + v_{movie} + v_{was} + v_{great}$

Neural networks are built to learn sophisticated nonlinear functions of continuous inputs; our inputs are discrete and high-dimensional

	Sentiment Analysis							Word Embeddings in PyTorch
No pretrained embeddings 📉	trained fine bin dings DAN-ROOT 46.9 85.7 DAN-RAND 77.3 45.4 83.2	IMDB	Time (s) 31 136	- -	 torch.nn.Embedding: maps vector of indices to matrix of word vectors Predator is a masterpiece 1820 24 1 2047 			
Bag-of-words	DAN NBOW-RAND NBOW BiNB NBSVM-bi	76.2 79.0 79.4	47.7 42.3 43.6 41.9	80.5 81.4 83.6 83.1 —	89.4 88.9 89.0 91.2	136 91 91 —	_ lyyer et al. (2015) Wang and - Manning (2012) Kim (2014)	 <i>n</i> indices => <i>n</i> x <i>d</i> matrix of <i>d</i>-dimensional word embeddings <i>b</i> x <i>n</i> indices => <i>b</i> x <i>n</i> x <i>d</i> tensor of <i>d</i>-dimensional word embeddings
Tree-structured neural networks	RecNN* RecNTN* DRecNN TreeLSTM DCNN* PVEC* CNN-MC WRRBM*	77.7 — — — 81.1	43.2 45.7 49.8 50.6 48.5 48.7 47.4	82.4 85.4 86.6 86.9 86.9 87.8 88.1		 431 2,452 		

