Skip-gram
Mikolov et al. 2013 "word Zvec"
Learn 2 vectors for every word word vector
context vector
Try to predict context given word
Inputs: a carpus of text
Output: \bar{v}_{w}, \bar{C}_{w} for each word word context w in Vocab
(for AL: use \bar{V}, or $\bar{V}+\bar{C}$)
Hyperparameters: $d \quad(50 \sim 300)$
window size K

Let $k=1 \quad k=2$ includes $k=1$
The film inspired me Context $\underbrace{\text { word }}_{\text {context context }}$ predict word context

$$
\left.\begin{array}{l}
\text { word } \\
\text { (film, The } \text { The } \\
\text { (film, inspired) } \\
(\text { film, me) }
\end{array}\right\} \begin{aligned}
& \text { Training } \\
& \text { examples }
\end{aligned}
$$

Model (skip-gram)
Model $\overline{V_{x}}$
$P($ context $=y \mid$ word $=x)$

$$
=\frac{e^{\bar{v}_{x} \cdot \bar{c}_{y}}}{\sum_{y^{\prime} \in V} e^{\bar{v}_{x} \cdot \bar{c}_{y^{\prime}}}}
$$

distribution over context words in V
parameters: vectors $\bar{V}|V| x d$
context veers $\bar{C} \mid U \times d$
randomly initialized
Training (x, y) train exs
Minimize $\sum_{(x, y)}-\log P\left(\right.$ context $=y \left\lvert\, \begin{array}{l}\operatorname{wrord} \\ =x)\end{array}\right.$

Ex Corpus $=$ I san $\quad k=1$
vocab $=\{I$, saw $\} \quad d=2$
Assume $\bar{V}_{I}=[1,0] \quad \bar{V}_{\text {saw }}=[0,1]$

(1) Let $\bar{c}_{\text {san }}=[1,0]$

$$
\bar{c}_{I}=[0,1]
$$

What is
$P($ context 1 word $=$ saw $)$
2 outcomes (I, sain)

$$
e^{\bar{v}_{\text {saw }} \cdot \bar{c}_{I}}=e e^{\bar{v}_{\text {saw }} \cdot \bar{c}_{\text {saw }}}=1
$$

$$
\begin{array}{r}
P(I \mid \text { saw })=\frac{e}{e+1} \quad P(\text { saw } \mid \text { sow }) \\
\approx \frac{3}{4}=\frac{1}{e+1} \approx \frac{1}{4}
\end{array}
$$

(2) How to minimize loss further by changing \bar{c} ?

$$
C_{I}=\left[\begin{array}{ll}
0 & 2
\end{array}\right] \Rightarrow C_{I}=\left[\begin{array}{ll}
0 & 10
\end{array}\right]
$$

$$
\frac{e^{10}}{e^{10}+1} \approx 0.999
$$

(3) Why is $\bar{v} \neq \bar{c}$? Why two spaces?
(saw, saw) always be high!
word vector selects for words that are near it
noun \rightarrow verbs
noun fo nous

Problems with skip-gram
If we ran this tracking over 100 M word corpus with $V=30 \mathrm{~K}$ what's going to be hand?

- polysemy: different ward senses - different vector per sense?
- train on a homogeneous corpus
- Context -dependent vectors

$$
(B E R T, G P T)
$$

- Computation: $|V|$, d $50 \sim 300$

$$
P(y \mid x)=O(|V| d)
$$

For training: do that $\times 100 M$

Two fixes
Skip-gram w/ngative Sampling Take (word, context) pairs as "real" data
(word, ~ sumpled.context) as fake data

Learn a classifier

$$
P(\text { real } \mid y, x)=\frac{e^{\bar{v}_{x} \cdot \bar{c}_{y}}}{1+e^{\bar{v}_{x} \cdot c_{y}}}
$$

(film, buy) is this fare?

Glove
Factorizes a matrix of (word, context) counts $(K=1)$

matrix factorization

$$
(|v| \times v) \times(v \times|v|) \approx|v| \times|v|
$$

Same as $S G+S G N S$

