CS388: Natural Language Processing

Lecture 11: Understanding In-Context Learning

Administrivia

- Project 3 released today
- Project proposals due today
 - Can be >1 page if needed
 - Most important: have a detailed plan for models, datasets, and experiments, so we can evaluate for feasibility. Include related work!
 - For reproduction: lots of types of papers are okay, just make sure the paper isn't trivial. You can plan for a reproduction with minor extension beyond what was done before

Recap: Dataset Bias

- "Tough" datasets for tasks like QA may feature spurious correlations (e.g., "where" question is always a location and the model can guess a relevant location and do quite well)
- Training strong models such as BERT on these datasets leads to poor generalization

one-hot label vector

One debiasing technique:

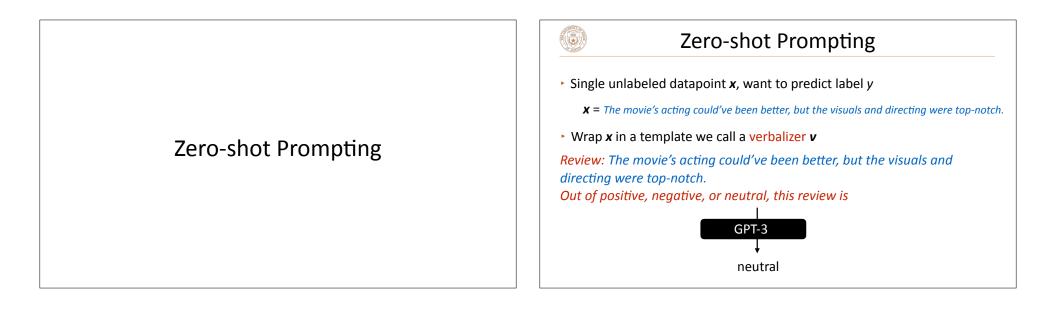
log probability ✓ of each label

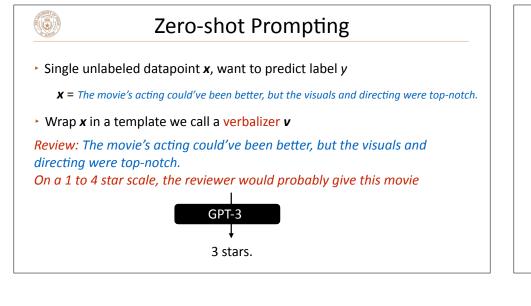
$$\mathcal{L}(heta_d) = -(1 - p_b^{(i,c)}) y^{(i)} \cdot \log p_d$$

probability under a copy of the model trained for a few epochs on a small subset of data (bad model)

This Lecture

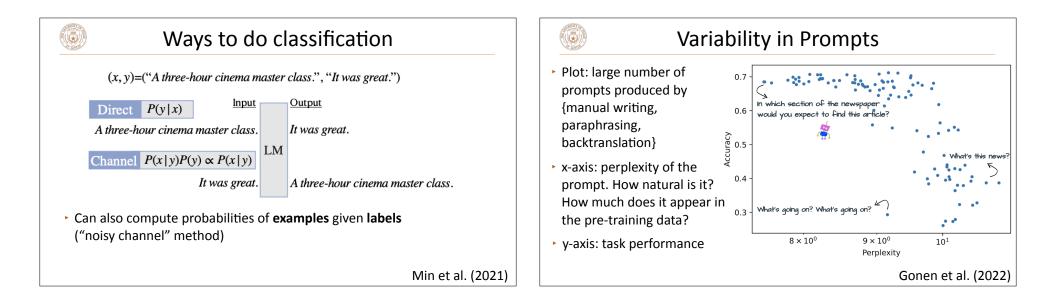
- Prompting: best practices and why it works
 - Zero-shot prompting: role of the prompt
 - Few-shot prompting (in-context learning): characterizing demonstrations
- Understanding in-context learning
 - ICL can learn linear regression
 - Induction heads and mechanistic interpretability





Ways to do classification

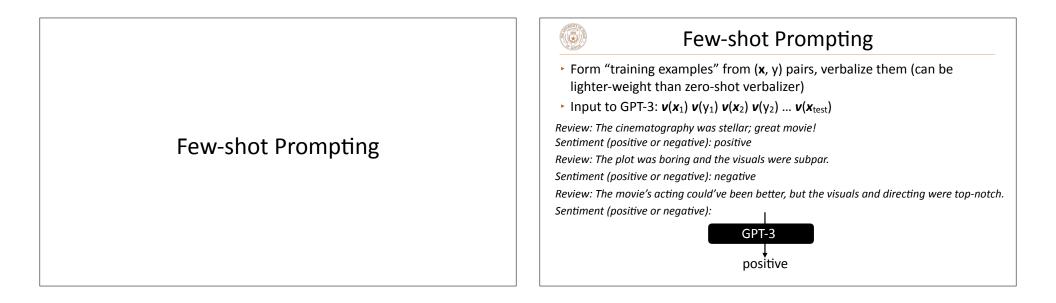
- Generate from the model and read off the generation
 - What if you ask for a star rating and it doesn't give you a number of stars but just says something else?
- Compare probs: "Out of positive, negative, or neutral, this review is _"
 Compare P(positive | context), P(neutral | context), P(negative | context)
 - This constrains the model to only output a valid answer, and you can normalize these probabilities to get a distribution



Variability in Prompts			
 OPT-175B: average of best 50% of prompts is much better than 	Task	Avg Acc	Acc 50%
prompts is much better than average over all prompts	Antonyms	_	_
	GLUE Cola	47.7	57.1
	Newspop	66.4	72.9
	AG News	57.5	68.7
	IMDB	86.2	91.0
	DBpedia	46.7	55.2
	Emotion	16.4	23.0
	Tweet Offensive	51.3	55.8
		Gonen e	t al. (2022

Prompt Optimization

- A number of methods exist for searching over prompts (either using gradients or black-box optimization)
- Most of these do not lead to dramatically better results than doing some manual engineering/hill-climbing (and they may be computationally intensive)
- Nevertheless, the choice of prompt *is* very important for zero-shot settings! We will see more next time.
- In two lectures: models that are trained to do better at prompts (RLHF)



What can go wrong?

positive

Review: The movie was great! Sentiment: positive Review: I thought the movie was alright; I would've seen it again. Sentiment: positive Review: The movie was pretty cool! Sentiment: positive Review: Pretty decent movie! Sentiment: positive

Review: The movie had good enough acting and the visuals were nice.

Sentiment: positive

Review: There wasn't anything the movie could've done better.

Sentiment: positive

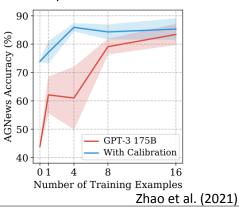
Sentiment:

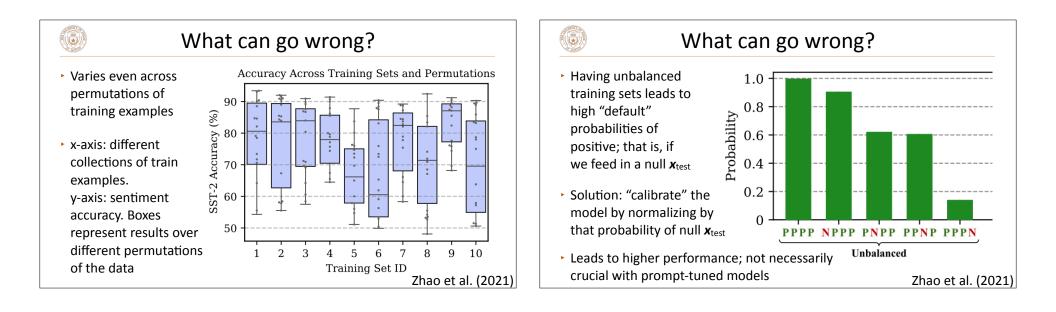
Review: Okay movie but could've been better.

GPT-3

What can go wrong?

- All one training label model sees extremely skewed distribution
- What if we take random sets of training examples? There is quite a bit of variance on basic classification tasks
- Note: these results are with basic GPT-3 and not Instructtuned versions of the model. This issue has gotten a lot better





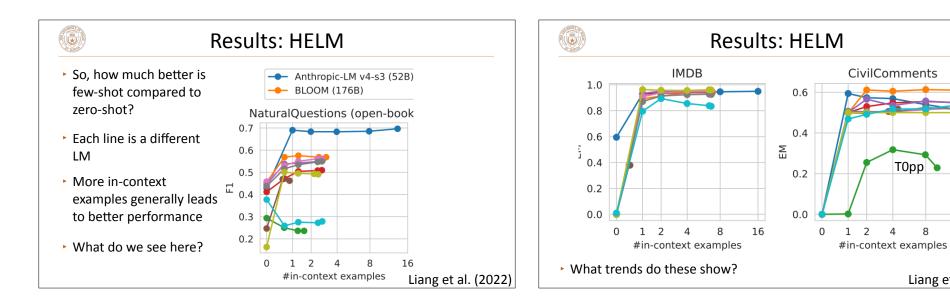
T0pp

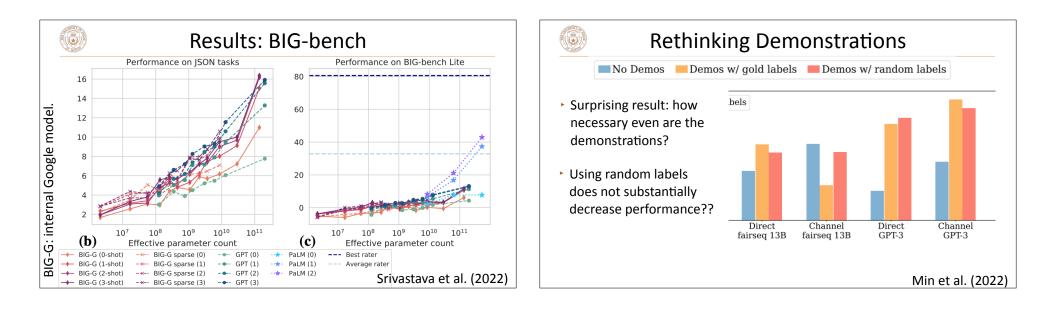
8

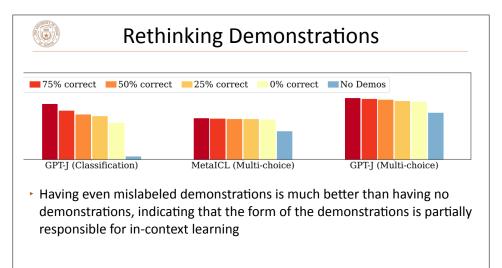
16

Liang et al. (2022)

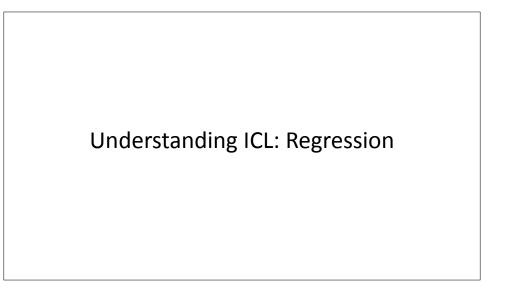
4

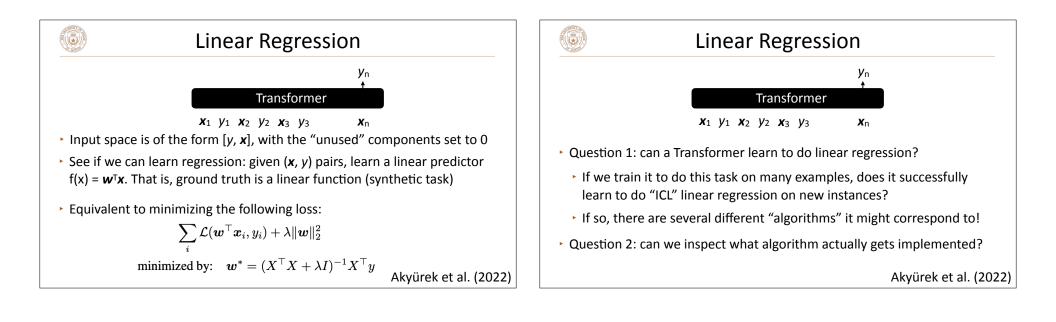






Min et al. (2022)





Linear Regression

 Most of these proofs (and other papers in this space) rely on Transformers being able to perform several kinds of operations

mov(H; s, t, i, j, i', j'): selects the entries of the s^{th} column of H between rows i and j, and copies them into the t^{th} column $(t \ge s)$ of H between rows i' and j', yielding the matrix:

$$\left[\begin{array}{cc|c} | & H_{:i-1,t} & | \\ H_{:,:t} & H_{i':j',s} & H_{:,t+1:} \\ | & H_{j,t} & | \end{array}\right]$$

 How can this be implemented?
 What does the attention need to do?

Akyürek et al. (2022)

Linear Regression

mov(H; s, t, i, j, i', j'): selects the entries of the sth column of H between rows i and j, and copies them into the tth column $(t \ge s)$ of H between rows i' and j', yielding the matrix:

$$\left| \begin{array}{ccc} H_{:i-1,t} & | \\ H_{:,:t} & H_{i':j',s} & H_{:,t+1:} \\ | & H_{j,t} & | \end{array} \right] \ .$$

 $\operatorname{\mathsf{mul}}(H; a, b, c, (i, j), (i', j'), (i'', j''))$: in *each* column h of H, interprets the entries between i and j as an $a \times b$ matrix A_1 , and the entries between i' and j' as a $b \times c$ matrix A_2 , multiplies these matrices together, and stores the result between rows i'' and j'', yielding a matrix in which each column has the form $[\mathbf{h}_{:i''-1}, A_1A_2, \mathbf{h}_{j'':}]^{\top}$.

Several more operations as well

Akyürek et al. (2022)

Linear Regression

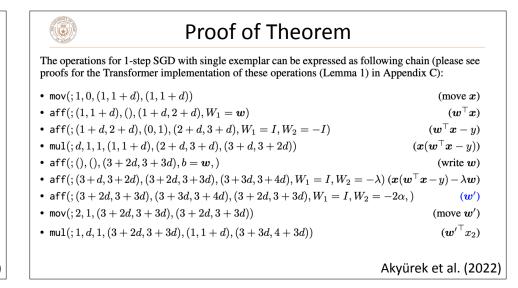
Theorem 1. A transformer can compute Eq. (11) (i.e. the prediction resulting from single step of gradient descent on an in-context example) with constant number of layers and O(d) hidden space, where d is the problem dimension of the input x. Specifically, there exist transformer parameters θ such that, given an input matrix of the form:

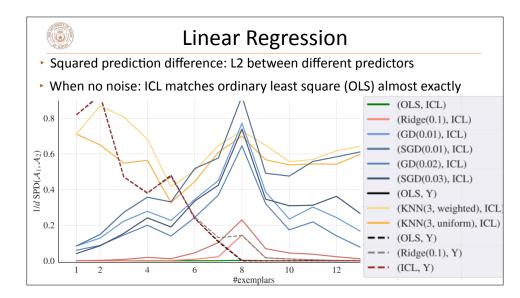
$$H^{(0)} = \begin{bmatrix} \cdots & 0 & y_i & 0 & \cdots \\ \boldsymbol{x}_i & 0 & \boldsymbol{x}_n & \cdots \end{bmatrix} , \qquad (12)$$

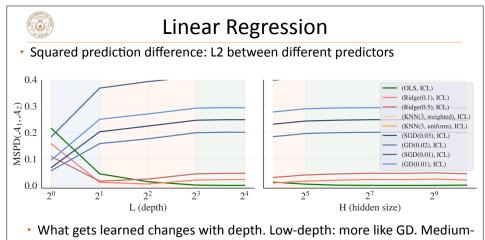
the transformer's output matrix $H^{(L)}$ contains an entry equal to $w'^{\top} x_n$ (Eq. (11)) at the column index where x_n is input.

 Also another update possible based on rank-one updates (Sherman-Morrison)

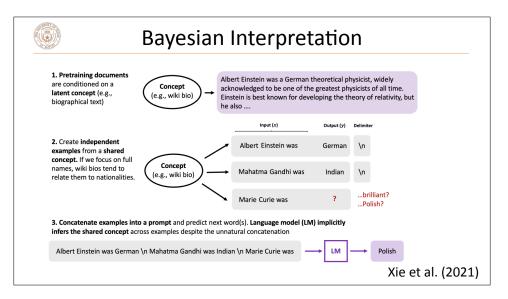
Akyürek et al. (2022)

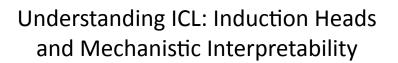






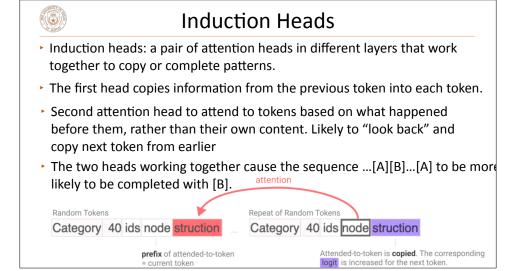
depth: more like ridge. High-depth: OLS



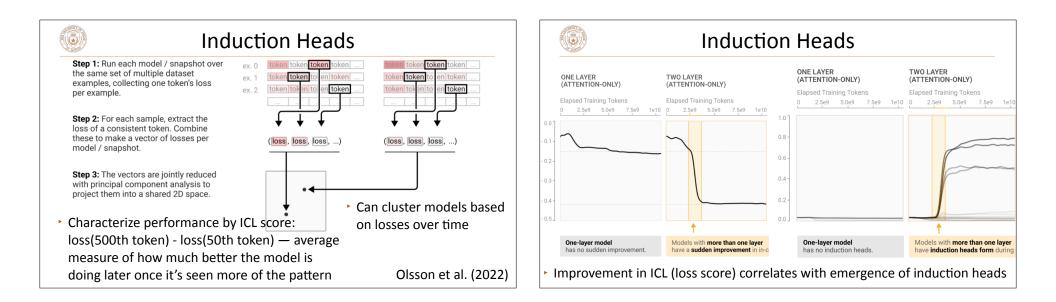


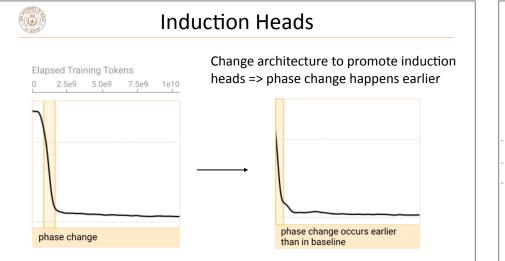
Background: Transformer Circuits

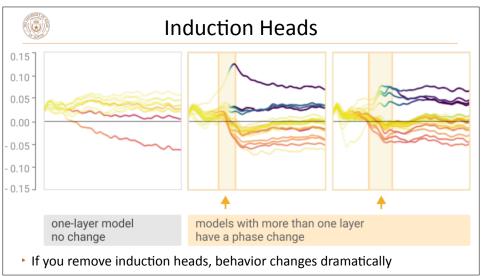
- There are mechanisms in Transformers to do "fuzzy" or "nearest neighbor" versions of pattern completion, completing [A*][B*] ... [A] →
 [B], where A* ≈ A and B* ≈ B are similar in some space
- Olsson et al. want to establish that these mechanisms are responsible for good ICL capabilities
- We can find these heads and see that performance improves; can we causally link these?



Olsson et al. (2022)







Interpretability

- Lots of explanations for why ICL works but these haven't led to many changes in how Transformers are built or scaled
- Several avenues of inquiry: theoretical results (capability of these models), mechanistic interpretability, fully empirical (more like that next time)
- Many of these comparisons focus on GPT-3 and may not always generalize to other models

۲

Takeaways

- Zero- and few-shot prompting are very powerful ways of specifying new tasks at inference time
- For zero-shot: form of the prompt matters, we'll see more example next times when we look at chain-of-thought
- For few-shot: number and order of the examples matters, prompt matters a bit less
- Several analyses of why it works: it can learn to do regression and we know a bit about mechanisms that may be responsible for it