CS388: Natural Language Processing

Lecture 16: Syntax I

Some slides adapted from Dan Klein, UC Berkeley

Project 3 back soon

FP check-ins due April 4

Administrivia

Layer of shallow syntactic analysis

NNS VBZ NNS VBP NN Teacher strikes idle kids

Recap: POS Tagging

NN I record the video I listen to the **record**

• One way to model it: Hidden Markov Models, generative models of P(y, x)from which we compute the posterior P(y | x) (+ use Viterbi to max)

$$(\mathbf{y}, \mathbf{x}) = P(y_1) \prod_{i=2}^{n} P(y_i | y_{i-1}) \prod_{i=1}^{n} P(x_i | y_i)$$

Can also use conditional random fields (discriminative) or even **neural** CRFs — better for tasks like named entity recognition

Recap: Viterbi

 Best (partial) score for a sequence ending in state s

$$\operatorname{score}_{1}(s) = P(s)P(x_{1}|s)$$

$$score_i(s) = \max_{y_{i-1}} P(s|y_{i-1}) P(x_i|s) score_{i-1}(y_{i-1})$$

 Dynamic program allows us to efficiently compute the max-scoring sequence. Efficient because we use the Markov property to abstract away previous decisions via this "best score"

Constituency formalism

- Context-free grammars and the CKY algorithm
- Refining grammars
- Dependency grammar

This Lecture

Constituency

- Study of word order and how words form sentences
- Why do we care about syntax?
 - Multiple interpretations of words (noun or verb?)
 - Recognize verb-argument structures (who is doing what to whom?)
 - Higher level of abstraction beyond words: some languages are SVO, some are VSO, some are SOV, parsing can canonicalize

Syntax

- Tree-structured syntactic analyses of sentences
- Common things: noun phrases, verb phrases, prepositional phrases
- Bottom layer is POS tags
- Examples will be in English. Constituency makes sense for a lot of languages but not all

Constituency Parsing

Challenges

same parse as "the cake with some icing"

What is a plastic cup holder? GD

A plastic cup holder is a device that is designed to hold cups or other drinking containers, such as cans or bottles. It is typically made of plastic and is often found in vehicles, such as cars or boats, as well as in other settings, such as stadiums or movie theaters.

Challenges: NP Internal Structure

- How do we know what the constituents are?
- Constituency tests:
 - Substitution by proform (e.g., pronoun)
 - Clefting (It was with a spoon that...)
 - Answer ellipsis (What did they eat? the cake) (How? with a spoon)

bought food at the store

Constituency

Sometimes constituency is not clear, e.g., coordination: she went to and

Context-Free Grammars, CKY

CFGs and PCFGs

Grammar (CFG)

- 1.0 NP \rightarrow NP PP 0.3 $ROOT \rightarrow S$ 1.0 $NN \rightarrow interest$
- $S \rightarrow NP VP$ 1.0 $VP \rightarrow VBP NP$ 0.7 1.0 NNS \rightarrow raises
- $NP \rightarrow DT NN$ 0.2 $VP \rightarrow VBP NP PP$ 0.3 1.0 $VBP \rightarrow interest$
- 1.0 $NP \rightarrow NN NNS (0.5 PP \rightarrow IN NP$ 1.0 $VBZ \rightarrow raises$
- Context-free grammar: symbols which rewrite as one or more symbols
- Lexicon consists of "preterminals" (POS tags) rewriting as terminals (words)
- CFG is a tuple (N, T, S, R): N = nonterminals, T = terminals, S = start symbol (generally a special ROOT symbol), R = rules
- PCFG: probabilities associated with rewrites, normalize by source symbol

Lexicon

• Tree *T* is a series of rule applications *r*. $P(T) = \prod P(r | parent(r))$ $r \in T$

 $\bullet \bullet \bullet$

Maximum likelihood PCFG for a set of labeled trees: count and normalize! Same as HMMs / Naive Bayes

Estimating PCFGs

$S \rightarrow NP VP$	1.0
$NP \rightarrow PRP$	0.5
$NP \rightarrow DT NN$	0.5

PP

To parse efficiently, we need our PCFGs to be at most binary (not CNF) VP $P(VP \rightarrow VBD NP PP PP) = 0.2$ $P(VP \rightarrow VBZ PP) = 0.1$ **VBD** NP PP PP . . sold the book to her for \$3 Lossless: VP VP Lossy: VP-[NP PP PP] VBD **VBD** VP VP-[PP PP] VP NP NP

PP

- Find argmax $P(T|\mathbf{x}) = \operatorname{argmax} P(T, \mathbf{x})$
- Dynamic programming: chart maintains the best way of building symbol X over span (i, j)
- CKY = Viterbi, there is also an algorithm called insideoutside = forward-backward

CKY

Cocke-Kasami-Younger

- Chart: T[i,j,X] = best score for X over (i, j)
- Base: T[i,i+1,X] = log P(X $\rightarrow w_i$)
- Loop over all split points k, apply rules X -> Y Z to build X in every possible way
- Recurrence: $T[i,j,X] = \max \quad \max \quad T[i,k,X1] + T[k,j,X2] + \log P(X \rightarrow X1 X2)$ $r: X \rightarrow X1 X2$
- Runtime: $O(n^3G)$ G = grammar constant

CKY

S[0,4] => NP[0,2] VP[2,4]

 $DT \rightarrow the 1$ S -> NP VP 1 VBZ -> raises 1 NN -> child 1 NP -> DT NN 1/2 PRP -> it 1 NNS -> raises 1 NP -> NN NNS 1/2 Recurrence: T[i,j,X] = max max $T[i,k,X1] + T[k,j,X2] + \log P(X \rightarrow X1 X2)$ k r: $X \rightarrow X1 X2$

child

the

VP -> VBZ PRP 1

raises

it

- Unary productions in treebank need to be dealt with by parsers
- Binary trees over n words have at most n-1 nodes, but you can have unlimited numbers of nodes with unaries (S \rightarrow SBAR \rightarrow NP \rightarrow S \rightarrow ...)
- In practice: enforce at most one unary over each span, modify CKY accordingly

Unary Rules

NP NNS mice

Parser Evaluation

- Standard dataset for English: Penn Treebank (Marcus et al., 1993)
 - Evaluation: F1 over labeled constituents of the sentence
- Vanilla PCFG: ~75 F1
- Best PCFGs for English: ~90 F1
- SOTA (discriminative models): 95 F1
- Other languages: results vary widely depending on annotation + complexity of the grammar

Results

Klein and Manning (2003)

Refining Generative Grammars

- Can we make the grammar "less context-free"?

PCFG Independence Assumptions

Language is not context-free: NPs in different contexts rewrite differently

Why is this a good idea?

Vertical Markovization

Horizontal Markovization

Annotated Tree

75 F1 with basic PCFG => 86.3 F1 with this highly customized PCFG, complex methods)

including other tweaks (SOTA was 90 F1 at the time, but with more

Klein and Manning (2003)

use the words

Lexicalized Parsers

Even with parent annotation, these trees have the same rules. Need to

- Annotate each grammar symbol with its "head word": most important word of that constituent
- Rules for identifying headwords (e.g., the last word of an NP before a preposition is typically the head)
- Collins and Charniak (late 90s): ~89 F1 with these

Lexicalized Parsers

State-of-the-art Constituency Parsers

- Can "neuralize" this as well like neural CRFs for NER

CRF Parsing

Can learn that we report [PP], which is common due to reporting on things

- Taskar et al. (2004)
- Hall, Durrett, and Klein (2014)
 - Durrett and Klein (2015)

Joint Discrete and Continuous Parsing

Chart remains discrete!

- Discrete feature computation

Run CKY dynamic program Durrett and Klein (ACL 2015)

- Improves the neural CRF by using a transformer layer (self-attentive), character-level modeling, and ELMo
- 95.21 on Penn Treebank dev set much better than past parsers! (~92-93)
- This constituency parser with BERT is one of the strongest today, or use a transition-based version due to Kitaev and Klein (2020)

Pre-trained Models

Kitaev and Klein (2018)

Dependency Syntax

Lexicalized Parsing

- Dependency syntax: syntactic structure is defined by these arcs Head (parent, governor) connected to dependent (child, modifier) Each word has exactly one parent except for the ROOT symbol, dependencies must form a directed acyclic graph

POS tags same as before, usually run a tagger first as preprocessing

Dependency Parsing

Still a notion of hierarchy! Subtrees often align with constituents

Dependency Parsing

- Can label dependencies according to syntactic function
- (labeling separately with a classifier works pretty well)

Dependency Parsing

Major source of ambiguity is in the structure, so we focus on that more

Constituency: several rule productions need to change

Dependency vs. Constituency: PP Attachment

Dependency: one word (with) assigned a different parent

the children ate the cake with a spoon

- More predicate-argument focused view of syntax
- "What's the main verb of the sentence? What is its subject and object?" — easier to answer under dependency parsing

Dependency vs. Constituency: PP Attachment

Constituency: ternary rule NP -> NP CC NP

Dependency vs. Constituency: Coordination

Dependency: first item is the head

- single rule production as in constituency
- Can also choose and to be the head
- In both cases, headword doesn't really represent the phrase constituency representation makes more sense

Dependency vs. Constituency: Coordination

dogs in houses and cats

dogs in [houses and cats]

Coordination is decomposed across a few arcs as opposed to being a

- PCFGs estimated generatively can perform well if sufficiently engineered
- Neural CRFs work well for constituency parsing
- Next time: revisit lexicalized parsing as dependency parsing