CS388: Natural Language Processing

Lecture 20: Language and Code

Greg Durrett

credit: Deepmind

Announcements

- Project 3 back
 - Common issues: relatively surface level analysis for part 1, relatively surface level fix for part 2 and little analysis of results, writing clarity issues
- Check-ins due Thursday

This Lecture

- Semantic parsing
 - Logical forms
 - Parsing to lambda calculus
 - Seq2seq semantic parsing
- Language-to-code
- Applications in software engineering

Semantic Parsing

Model Theoretic Semantics

- Key idea: can ground out natural language expressions in settheoretic expressions called *models* of those sentences
- Natural language statement S => interpretation of S that models it
 She likes going to that restaurant
 - Interpretation: defines who *she* and *that restaurant* are, make it able to be concretely evaluated with respect to a *world*
- This is a type of truth-conditional semantics: reduce a sentence to its truth conditions (configuration of the world under which it is true)
- Our modeling language is first-order logic
- Entailment (statement A implies statement B) reduces to: in all worlds where A is true, B is true

First-order Logic

 Powerful logic formalism including things like entities, relations, and quantifications

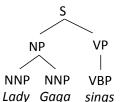
Lady Gaga sings

- sings is a predicate (with one argument), function f: entity → true/false
- sings(Lady Gaga) = true or false, have to execute this against some database (world)
- Quantification: "forall" operator, "there exists" operator

 $\forall x \text{ sings}(x) \lor \text{dances}(x) \rightarrow \text{performs}(x)$

"Everyone who sings or dances performs"

Montague Semantics

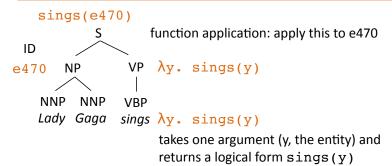


Id Name Alias Birthdate Sings? e470 Stefani Germanotta Lady Gaga 3/28/1986 T e728 Marshall Mathers Eminem 10/17/1972 T

Database containing entities, predicates, etc.

- Richard Montague: operationalized this type of semantics and connected it to syntax
- Denotation: evaluation of some expression against this database

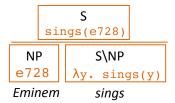
Montague Semantics



 We can use the syntactic parse as a bridge to the lambda-calculus representation, build up a logical form (our model) compositionally

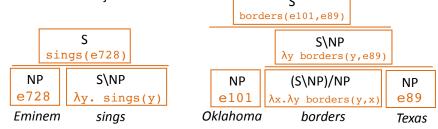
Combinatory Categorial Grammar

- ► Steedman+Szabolcsi (1980s): formalism bridging syntax and semantics
- Parallel derivations of syntactic parse and lambda calculus expression
- Syntactic categories (for this lecture): S, NP, "slash" categories
- S\NP: "if I combine with an NP on my left side, I form a sentence" — verb
- When you apply this, there has to be a parallel instance of function application on the semantics side



Combinatory Categorial Grammar

- Steedman+Szabolcsi (1980s): formalism bridging syntax and semantics
- Syntactic categories (for this lecture): S, NP, "slash" categories
 - ► S\NP: "if I combine with an NP on my left side, I form a sentence" verb
 - (S\NP)/NP: "I need an NP on my right and then on my left" verb with a direct object



CCG Parsing

What	states	border	Texas
$\frac{(S/(S\backslash NP))/N}{\lambda f. \lambda g. \lambda x. f(x) \wedge g(x)}$	$\overline{}$	$\overline{(S\backslash NP)/NP}$	\overline{NP}
$\lambda f.\lambda g.\lambda x.f(x) \wedge g(x)$	$\lambda x.state(x)$	$\lambda x. \lambda y. borders(y,x)$	texas
		$(S \backslash NP)$	>
		$\lambda y.borders(y, text)$	as)

"What" is a very complex type: needs a noun and needs a S\NP to form a sentence. S\NP is basically a verb phrase (border Texas)

Zettlemoyer and Collins (2005)

CCG Parsing

What	states	border	Texas	
$\frac{(S/(S\backslash NP))/N}{\lambda f.\lambda g.\lambda x. f(x) \wedge g(x)}$	$\overline{}$	$\frac{(S\backslash NP)/NP}{\lambda x. \lambda y. borders(y, x)}$	\overline{NP}	
$\lambda f.\lambda g.\lambda x. f(x) \wedge g(x)$	$\lambda x.state(x)$	$\lambda x. \lambda y. borders(y,x)$	texas	
$\frac{S/(S\backslash NP)}{\lambda g.\lambda x. state(x) \land g(x)}$		${(S\backslash NP)}$ $\lambda y.borders(y, texas)$		
$\lambda g.\lambda x.state(x) \land g(x)$		$\lambda y.borders(y, texas)$		
\overline{S}				
$\lambda x.state(x) \wedge borders(x, texas)$				

- "What" is a very complex type: needs a noun and needs a S\NP to form a sentence. S\NP is basically a verb phrase (border Texas)
- Why are we talking about this in this lecture? Because this lambda calculus expression is basically executable code. Zettlemoyer and Collins (2005)

CCG Parsing

 These question are compositional: we can build bigger ones out of smaller pieces

What states border Texas?

What states border states bordering Texas?

What states border states bordering states bordering Texas?

Zettlemoyer and Collins (2005)

Training CCG Parsers

Training data looks like pairs of sentences and logical forms

What states border Texas λx .

 λx . state(x) \wedge borders(x, e89)

What borders Texas

 λx . borders(x, e89)

...

- ► Unlike PCFGs, we don't know which words yielded which fragments of CCG
- Very hard to build a conventional parser for this problem

Zettlemoyer and Collins (2005)

Semantic Parsing as Translation

"what states border Texas"

lambda x (state (x) and border (x , e89)))

- Write down a linearized form of the semantic parse, train seq2seq models to directly translate into this representation (similar to code generation like GitHub Copilot)
- ► What are some benefits of this approach compared to grammar-based?
- What might be some concerns about this approach? How do we mitigate them?

Jia and Liang (2016)

Applications

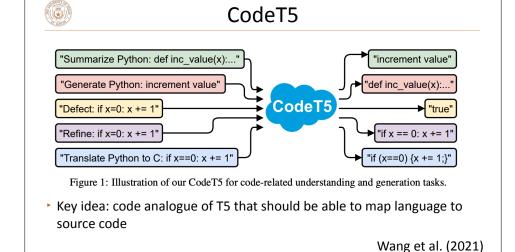
- GeoQuery (Zelle and Mooney, 1996): answering questions about states (~80% accuracy)
- ▶ Jobs: answering questions about job postings (~80% accuracy)
- ATIS: flight search
- Can do well on all of these tasks if you handcraft systems and use plenty of training data: these domains aren't that complex and models these days can produce well-formed outputs

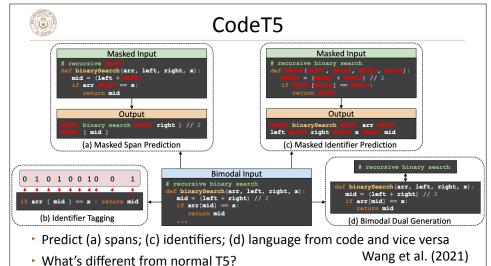
Code Generation

Suppose we are going to generate source code like in Codex/GitHub Copilot. What differs from generating natural language?

In spite of these differences, the "obvious" thing is to do some pretraining and see how far we get!

Generating Code





CodeT5

- Pre-trained on data from several language and NL
- Applied to several generation tasks: code summarization, generation, and translation (between programming languages)

	PLs	W/ NL	W/o NL	Identifier
ಕ (Ruby	49,009	110,551	32.08%
Ž	JavaScript	125,166	1,717,933	19.82%
	Go	319,132	379,103	19.32%
အွို	Python	453,772	657,030	30.02%
CodeSearchNet	Java	457,381	1,070,271	25.76%
٥ (PHP	525,357	398,058	23.44%
Ħι	C	1M	-	24.94%
Ōί	CSharp	228,496	856,375	27.85%
	Total	3,158,313	5,189,321	8,347,634

 Also used for classification like bug detection (can be fine-tuned like BERT-style models)

Wang et al. (2021)

CodeT5

Generation task from CONCODE (Iyer et al., 2018):

```
public class SimpleVector implements Serializable {
   double  vecElements;
   double  weights;

NL Query: Adds a scalar to this vector in place.
   Code to be generated automatically:
   public void add(final double arg0) {
      for (int i = 0; i < vecElements.length; i++){
        vecElements[i] += arg0;
    }
}</pre>
```

What do you think about this evaluation?

Methods	EM	BLEU	CodeBLEU
GPT-2	17.35	25.37	29.69
CodeGPT-2	18.25	28.69	32.71
CodeGPT-adapted	20.10	32.79	35.98
PLBART	18.75	36.69	38.52
CodeT5-small	21.55	38.13	41.39
+dual-gen	19.95	39.02	42.21
+multi-task	20.15	35.89	38.83
CodeT5-base	22.30	40.73	43.20
+dual-gen	22.70	41.48	44.10
+multi-task	21.15	37.54	40.01

Table 3: Results on the code generation task. EM denotes the exact match.

Wang et al. (2021)

Codex

- GPT-3 additionally fine-tuned on code (although they state that pretraining on NL isn't really helpful)
 - Modified tokenizer to handle whitespace better. Otherwise, no real modifications!
- ▶ Up to 12B parameter models fine-tuned on Python
- ▶ One challenge is evaluation. How to go beyond BLEU/EM?

Mark Chen et al. (2021)

HumanFval

► Generate standalone Python functions from docstrings and execute them!

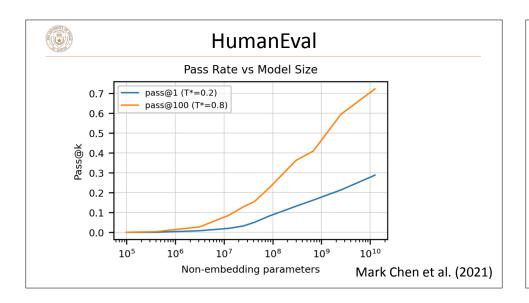
```
def solution(lst):
    """Given a non-empty list of integers, return the sum of all of the odd elements
    that are in even positions.

Examples
    solution([5, 8, 7, 1]) =⇒12
    solution([3, 3, 3, 3, 3]) =⇒9
    solution([30, 13, 24, 321]) =⇒0
    """

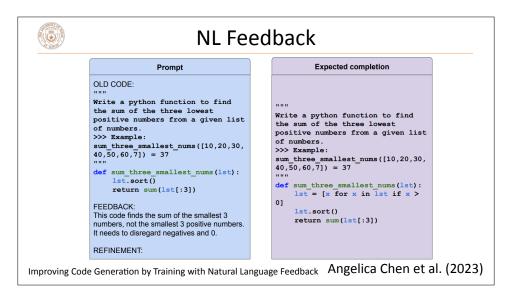
return sum([st[i] for i in range(0,len(lst)) if i % 2 == 0 and lst[i] % 2 == 1)
```

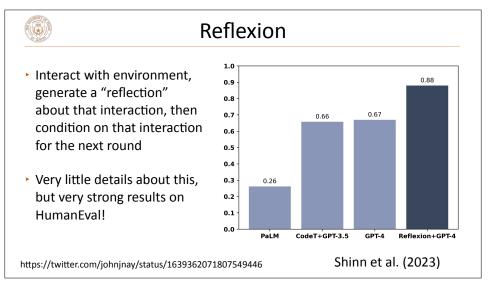
Handwritten benchmarks evaluated for correctness ("pass@k": generate k, see if one of them works)

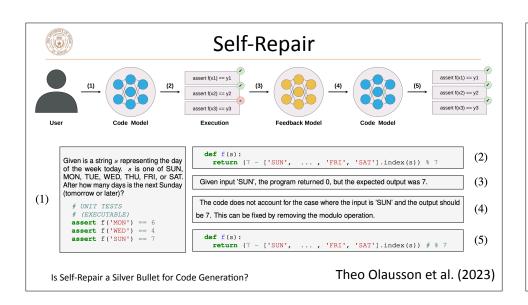
Mark Chen et al. (2021)

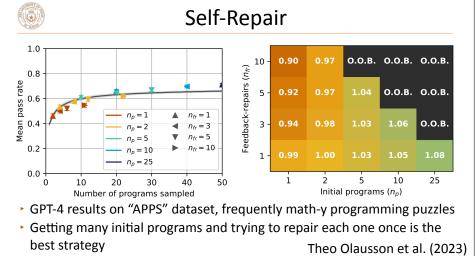












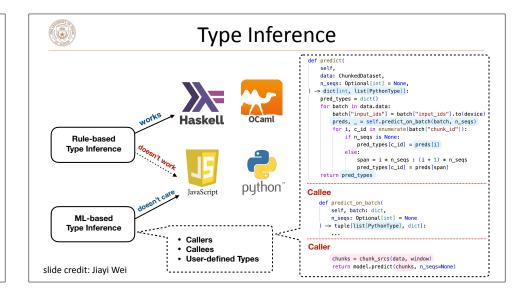
State of LLM Program Generation

- Pre-training big models:
 - CodeLlama (with Python and Instruct variants)
 - OctoCoder (trained on GitHub commit data)
 - Many other efforts and likely more to come
- Loops to improve program generation:
 - ▶ Debugging from failed tests, compiler errors, etc.
 - Fine-tuned models to do these

Applications in Software Development

Applications

- Generating complete code is nice, but is very challenging: can't read the user's mind, if generated code has errors they may be timeconsuming to spot
- There are a range of applications in software engineering: bug detection, type inference, etc. — solving these subproblems can still help save developers time
- One such problem: type inference



Type Inference

decoding

(<extra_id_2>) (=)(None)(

tokenization

(<extra_id_2>)

Jiayi Wei, Durrett, Dillig (ICLR 2023)

Type Inference

Typing this code snippet:

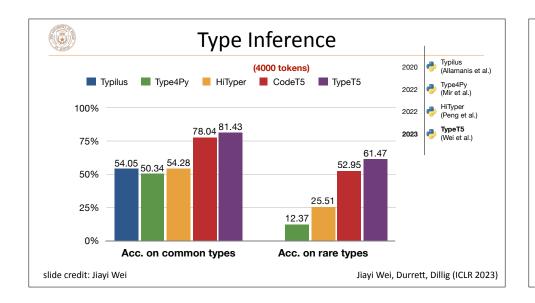
chunks = chunk_srcs(data, window) return model.predict(chunks, n segs=None)

- ...requires looking at this function:
- Changes are non-local: even with GPT-4-length contexts, you usually can't have a whole project in Transformer context

slide credit: Jiayi Wei

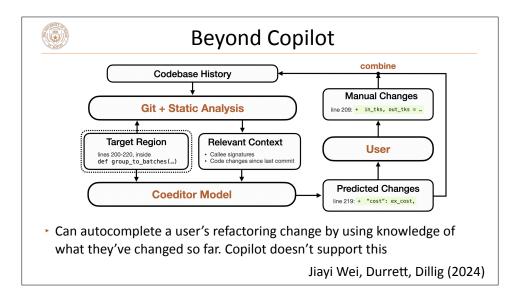
```
def predict(
    self,
    data: ChunkedDataset,
    n_seqs: Optional[int] = None,
  -> dict[int, list[PythonType]]:
    pred_types = dict()
    for batch in data.data:
       batch["input_ids"] = batch["input_ids"].to(device)
       preds, _ = self.predict_on_batch(batch, n_seqs)
        for i, c_id in enumerate(batch["chunk_id"]):
            if n seas is None:
                pred_types[c_id] = preds[i]
                span = i * n_seqs : (i + 1) * n_seqs
                pred_types[c_id] = preds[span]
    return pred_types
```

Can use CodeT5 to predict **Output types** <extra_id_0> ModelWrapper
<extra_id_1> TokenizedSrcSet the types...but what <extra_id_2> Optional[int] context do we feed it? t ... (<extra_id_1>) (Token) (ized) (Src) (Set) Solution: use static analysis to determine relevant parts CodeT5 Decoder of the program CodeT5 Encoder Use the call graph to u ... (window) (_ ... assemble a context for CodeT5 consisting of def eval_on_dataset(Input code model: <extra_id_0>, data: <extra_id_1>, element callers, callees, and window_size: <extra_id_2> = None, skeletons of various files slide credit: Jiayi Wei



Other Applications

- Bug detection: spot bugs in code
- Test generation
- Comments: code-to-comment translation, updating comments when code has changed, and more (see papers by Sheena Panthaplackel)
- Debugging: ask GPT-4 to fix code given an error message (see Greg Brockman's GPT-4 demo)
- Program synthesis: have some specification other than language (e.g., input-output examples, formal spec) and produce code to follow that



Takeaways

- Language was being interpreted into logical forms that looked like code for a long time (including in formal semantics)
- ► Rather than doing this with parsers, now we just use seq2seq models
 - Powerful enough models will almost always generate code that compiles. You don't need special constraints on the output.
- ...and because of pre-training, rather than using customized DSLs, we just use source code because models have seen more of it