CS388: Natural Language Processing

Lecture 21:
Efficiency and
LLMs

Greg Durrett

Announcements

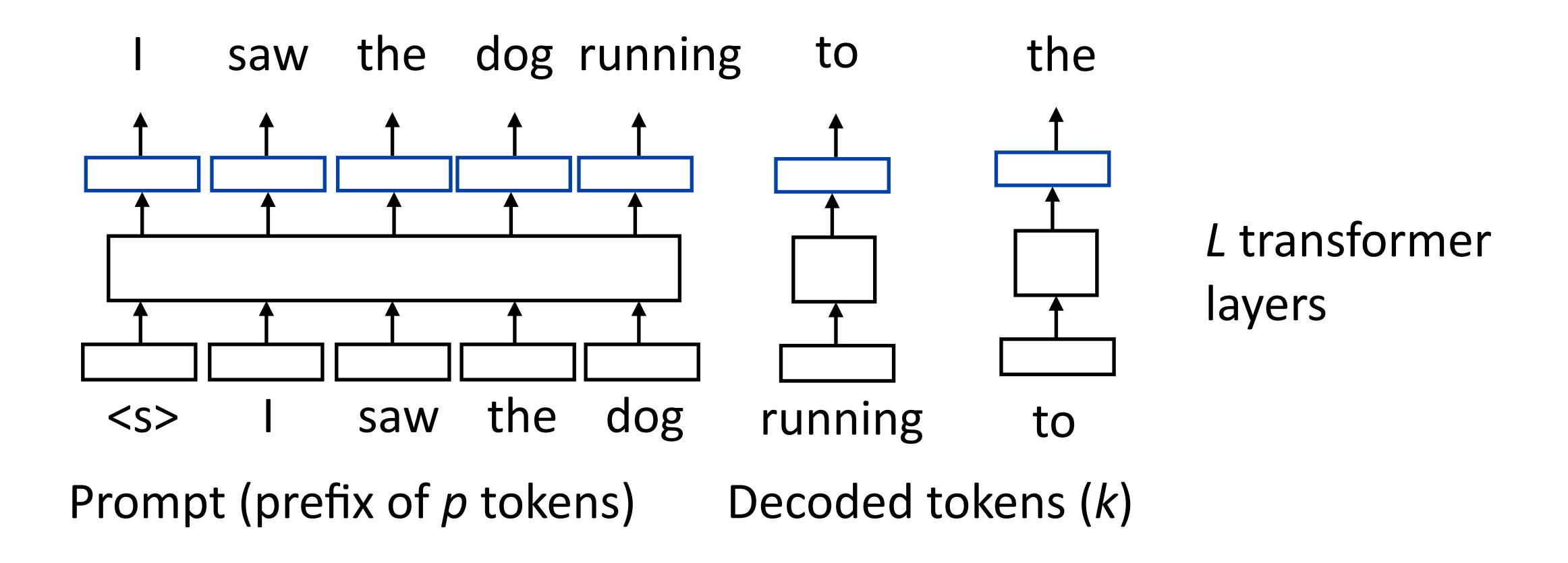
- Check-ins due today, will be graded as promptly as we can
- Final presentations start in 2.5 weeks, reports due May 3

This Lecture

- Decoding optimizations: exact decoding, but faster
 - Speculative decoding
 - Medusa heads
 - Flash attention
- Model pruning
 - Pruning LLMs
 - Distilling LLMs
- Model compression

Decoding Optimizations

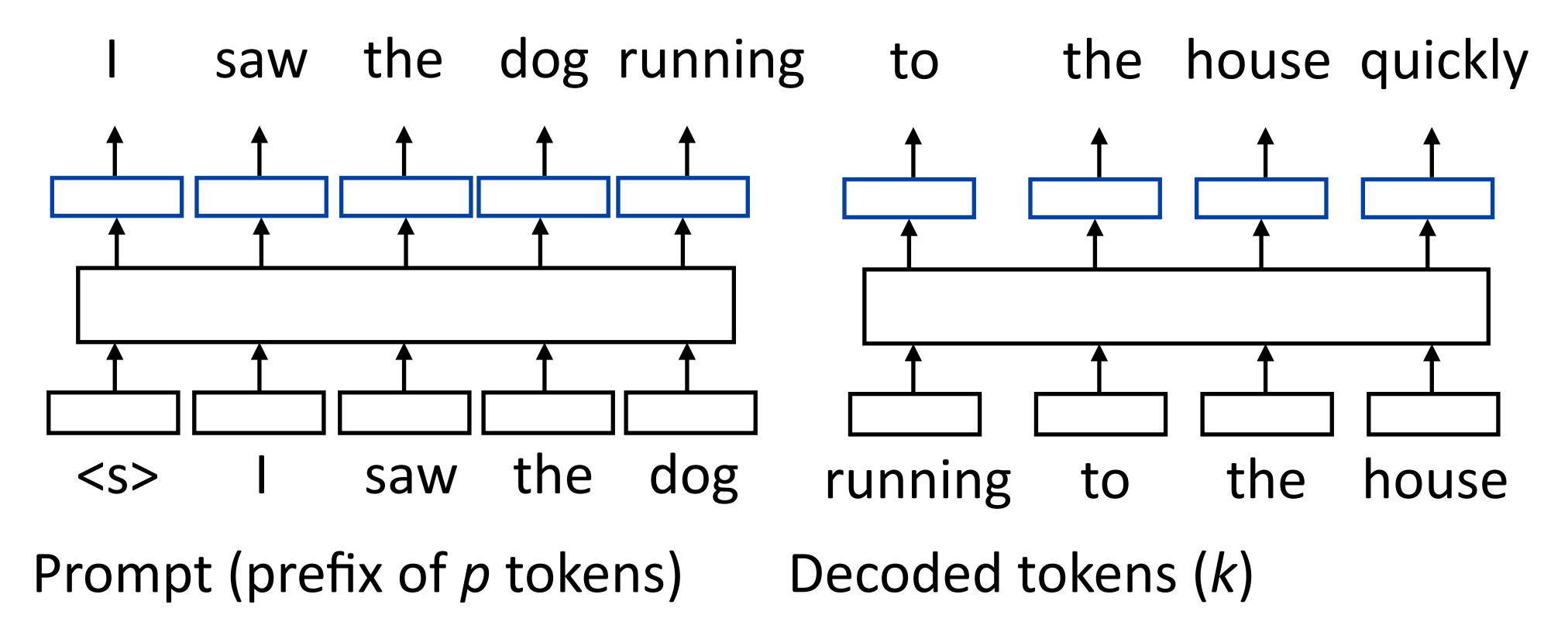
Decoding Basics



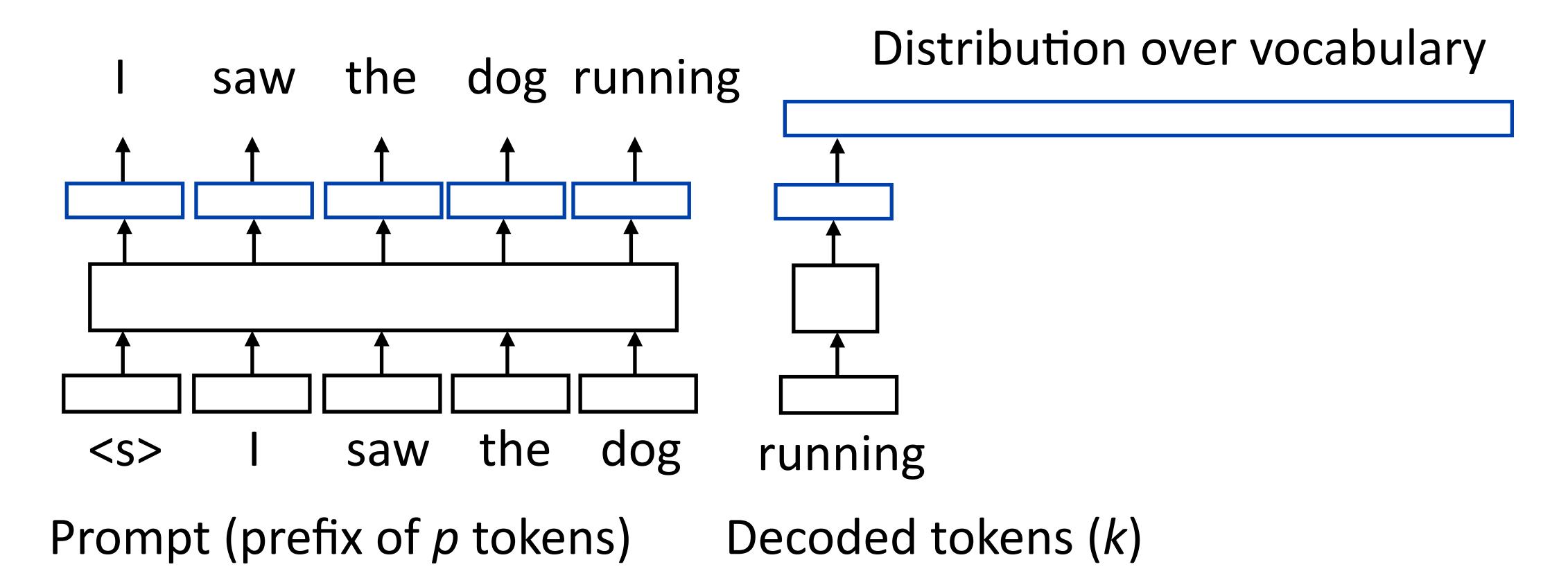
Operations for one decoder pass: O(pL)

Operations for k decoder passes: $O(pk^2L)$

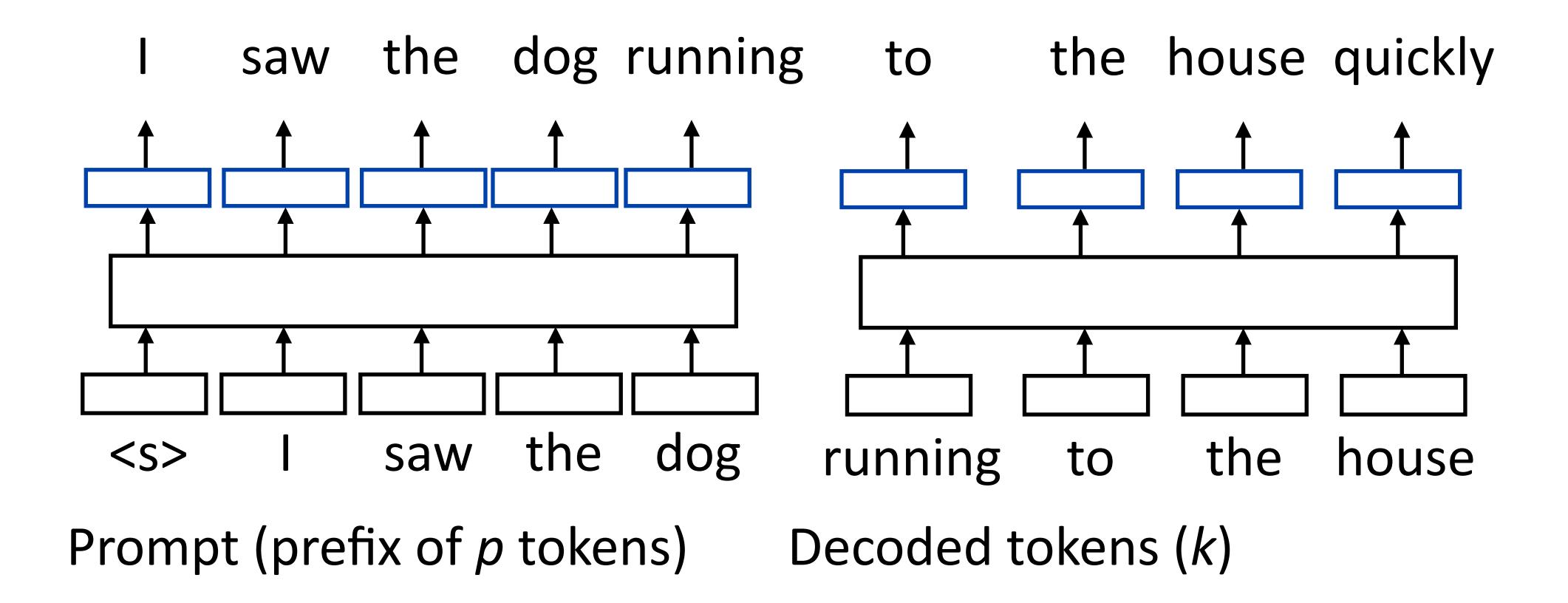
Transformer layers (non-parallelizable ops): O(*kL*)



- right New York New Y
- Can we predict many tokens with a weak model and then "check" them with a single forward pass?

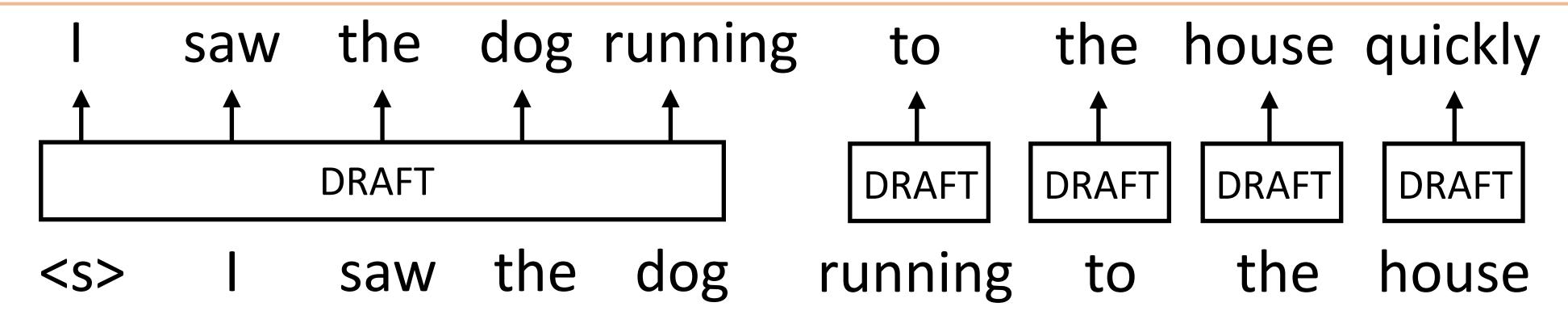


- When sampling, we need the whole distribution
- When doing greedy decoding, we only need to know what token was the max

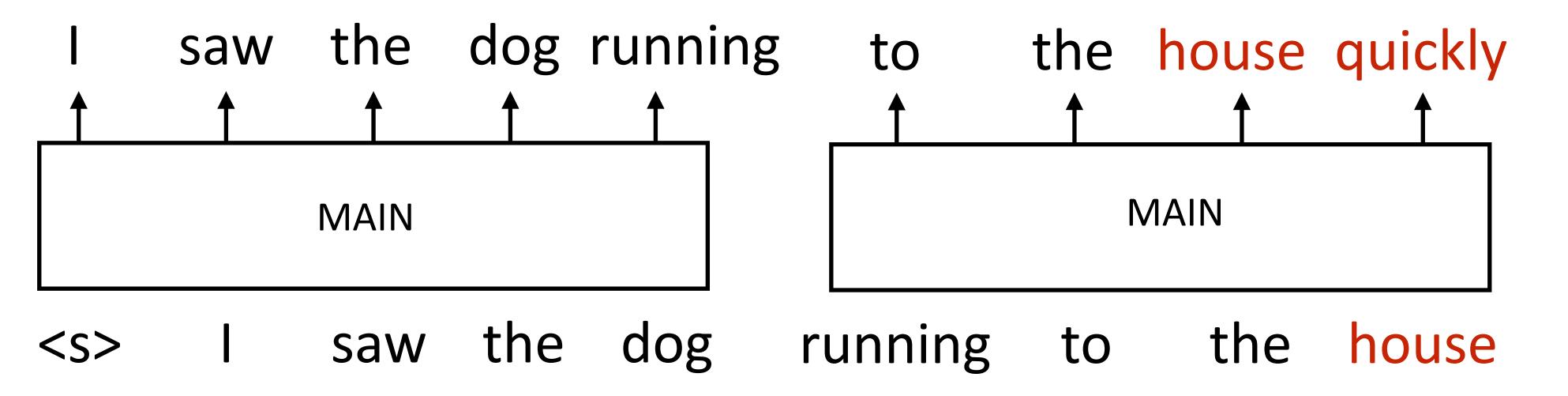


We can use a small, cheap model to do inference, then check that "to", "the", "house", "quickly" are really the best tokens from a bigger model
Leviathan et al. (2023)

Speculative Decoding: Flow



Produce decoded tokens one at a time from a fast draft model...



Confirm that the tokens are the max tokens from the slower main model. Any "wrong" token invalidates the rest of the sequence


```
[START] japan ' s benchmark bond n
```

```
[START] japan ' s benchmark nikkei 22 75
[START] japan ' s benchmark nikkei 225 index rose 22 76
[START] japan ' s benchmark nikkei 225 index rose 226 . 69 7 points
[START] japan ' s benchmark nikkei 225 index rose 226 . 69 points , or 0 1
[START] japan ' s benchmark nikkei 225 index rose 226 . 69 points , or 1 . 5 percent , to 10 , 9859
```

• Can also adjust this to use sampling. Treat this as a proposal distribution q(x) and may need to reject + resample (rejection sampling)

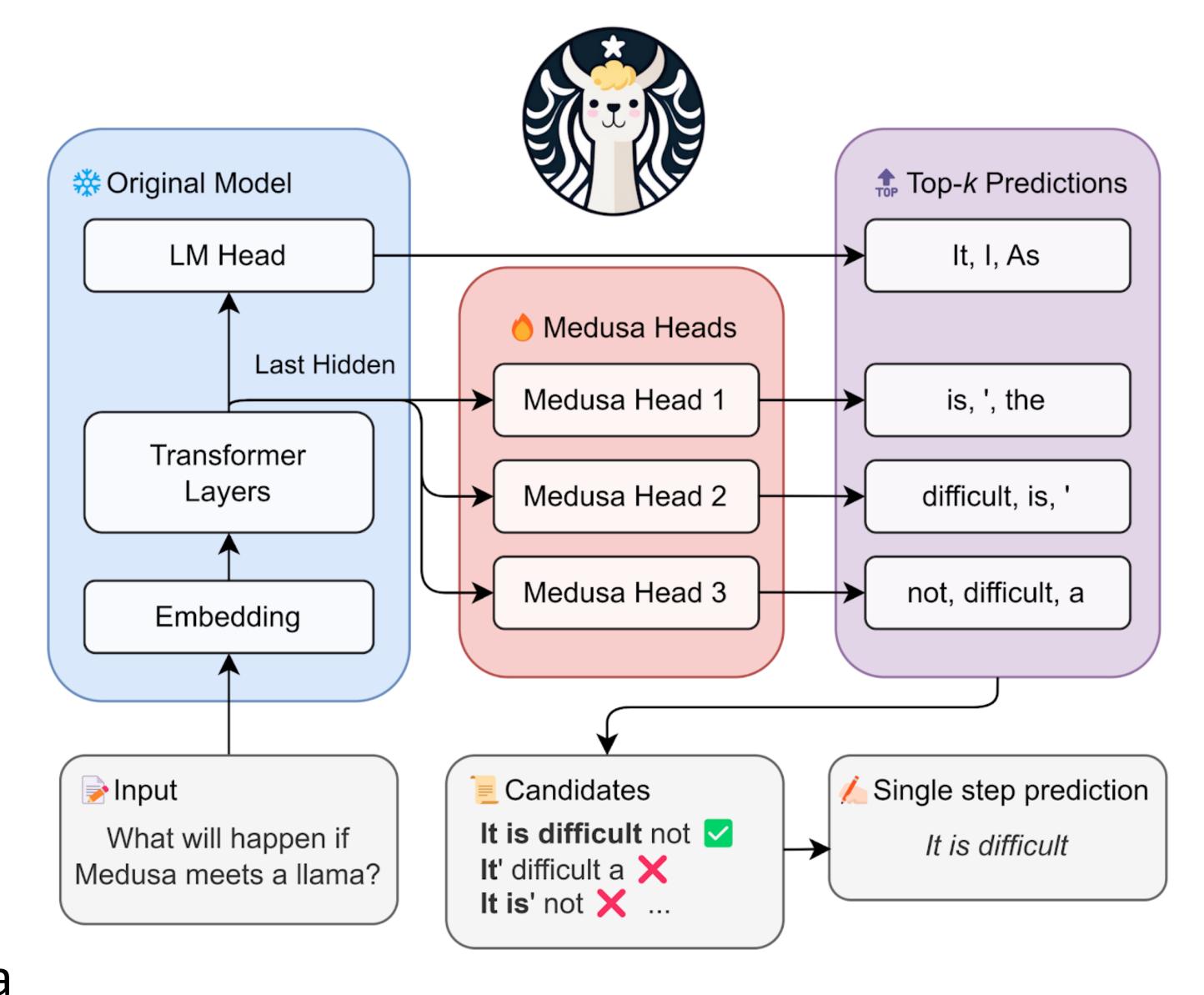
Find the first index that was rejected by the sampling procedure, then resample from there

```
Inputs: M_p, M_q, prefix.
\triangleright Sample \gamma guesses x_{1,...,\gamma} from M_q autoregressively.
for i=1 to \gamma do
   q_i(x) \leftarrow M_q(prefix + [x_1, \dots, x_{i-1}])
   x_i \sim q_i(x)
end for
\triangleright Run M_p in parallel.
p_1(x),\ldots,p_{\gamma+1}(x) \leftarrow
      M_p(prefix), \ldots, M_p(prefix + [x_1, \ldots, x_{\gamma}])
\triangleright Determine the number of accepted guesses n.
r_1 \sim U(0,1), \ldots, r_{\gamma} \sim U(0,1)
n \leftarrow \min(\{i-1 \mid 1 \le i \le \gamma, r_i > \frac{p_i(x)}{q_i(x)}\} \cup \{\gamma\})
\triangleright Adjust the distribution from M_p if needed.
p'(x) \leftarrow p_{n+1}(x)
if n < \gamma then
   p'(x) \leftarrow norm(max(0, p_{n+1}(x) - q_{n+1}(x)))
end if
\triangleright Return one token from M_p, and n tokens from M_q.
t \sim p'(x)
return prefix + [x_1, \dots, x_n, t]
```

Leviathan et al. (2023)

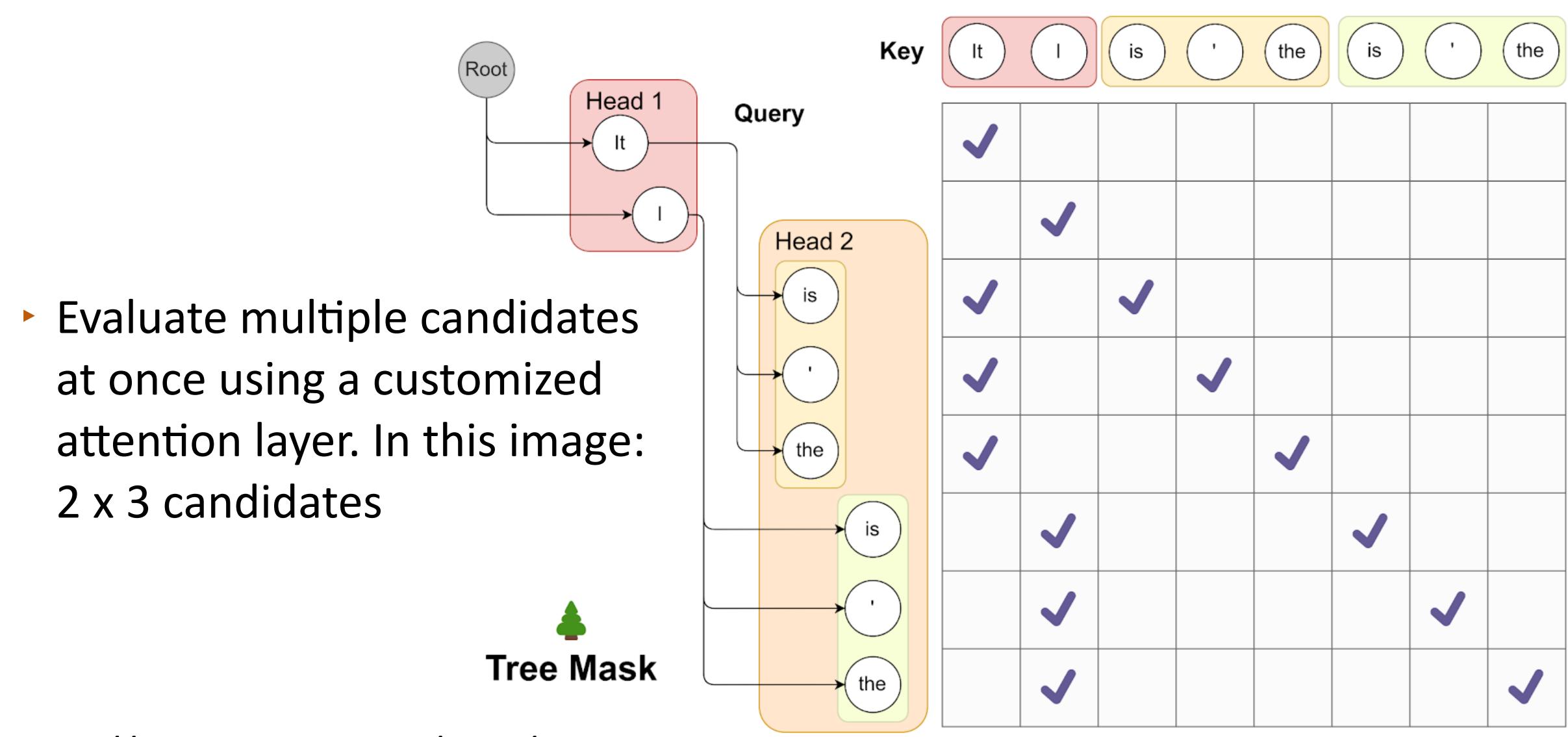
Medusa Heads

The "draft model" consists of multiple prediction heads trained to predict the next k tokens



https://www.together.ai/blog/medusa

Medusa Heads

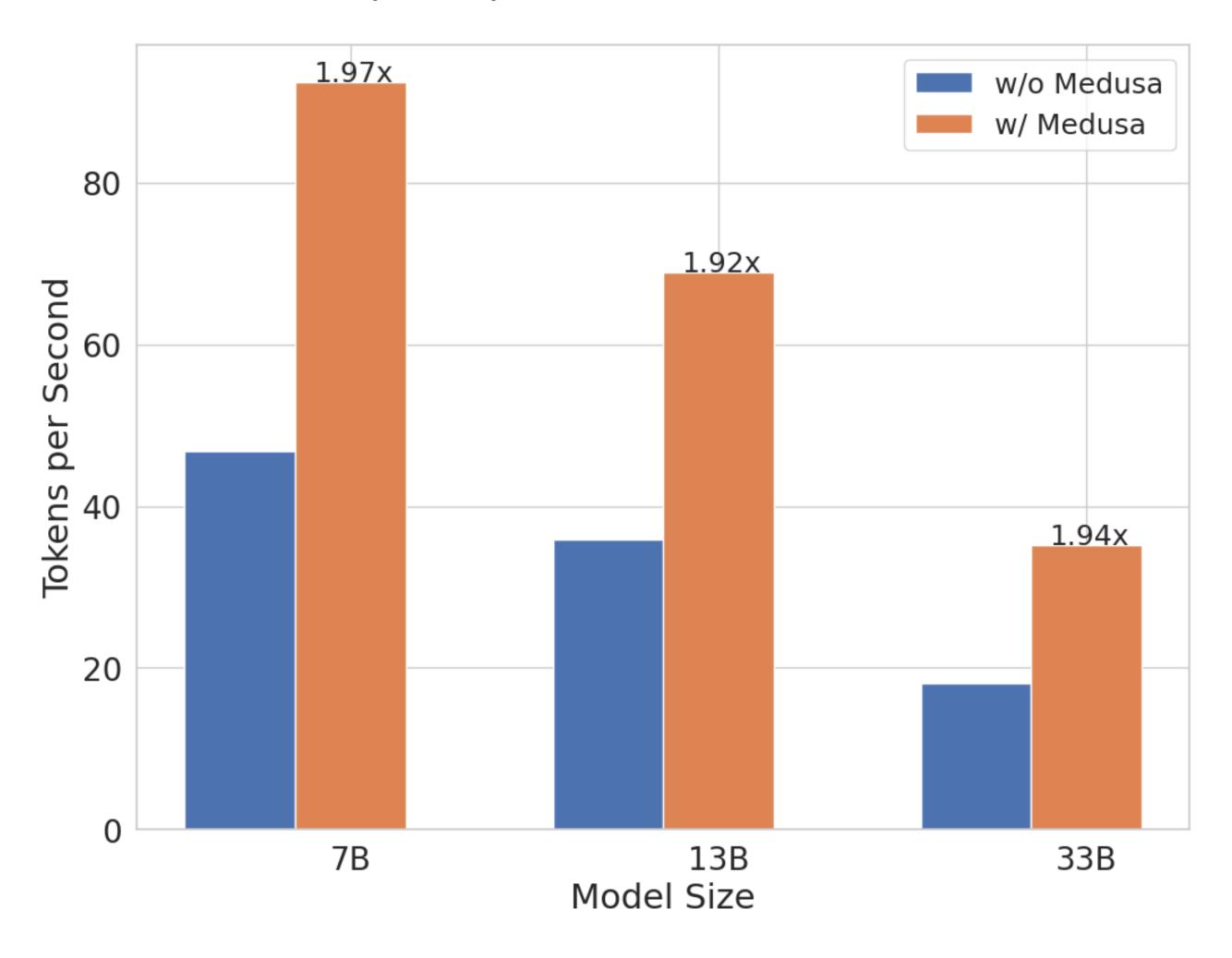


https://www.together.ai/blog/medusa

Medusa Heads

Speedup with no loss in accuracy!

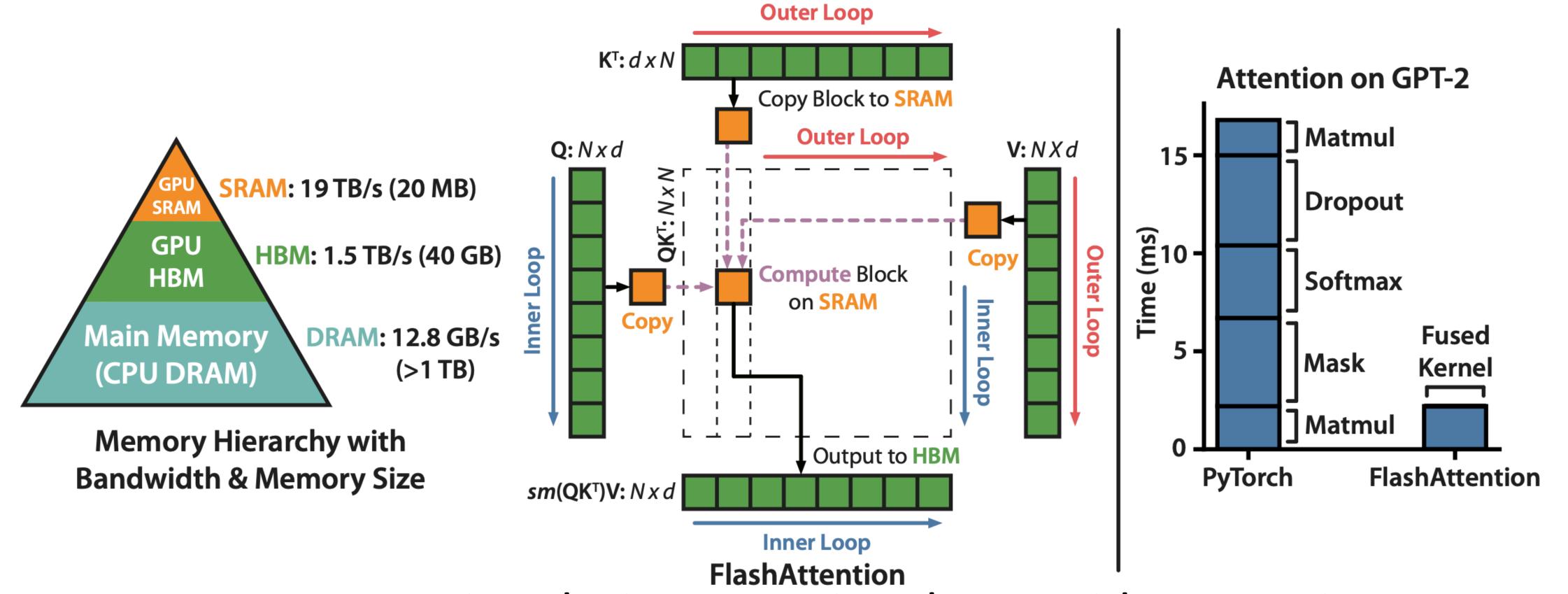
Speedup on different model sizes



Other Decoding Improvements

- Most other approaches to speeding up require changing the model (making a faster Transformer) or making it smaller (distillation, pruning; discussed next)
- Batching parallelism: improve throughput by decoding many examples in parallel. (Does not help with latency, and it's a little bit harder to do in production if requests are coming in asynchronously)
- Low-level hardware optimizations?
 - Easy things like caching (KV cache: keys + values for context tokens are cached across multiple tokens)

Flash Attention



- Does extra computation during attention, but avoids expensive reads/writes to GBU "high-bandwidth memory." Recomputation is all in SRAM and is very fast
- Essentially: store a running sum for the softmax, compute values as needed

Flash Attention

Algorithm 0 Standard Attention Implementation

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM.

- 1: Load **Q**, **K** by blocks from HBM, compute $S = QK^{T}$, write **S** to HBM.
- 2: Read S from HBM, compute P = softmax(S), write P to HBM.
- 3: Load **P** and **V** by blocks from HBM, compute $\mathbf{O} = \mathbf{PV}$, write **O** to HBM.
- 4: Return **O**.

Algorithm 1 FlashAttention

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM, on-chip SRAM of size M.

[dividing stuff into blocks]

- 5: **for** $1 \le j \le T_c$ **do**
- 6: Load \mathbf{K}_i , \mathbf{V}_i from HBM to on-chip SRAM.
- 7: for $1 \le i \le T_r$ do
- 8: Load $\mathbf{Q}_i, \mathbf{O}_i, \ell_i, m_i$ from HBM to on-chip SRAM.
- 9: On chip, compute $\mathbf{S}_{ij} = \mathbf{Q}_i \mathbf{K}_i^T \in \mathbb{R}^{B_r \times B_c}$.

[more computation, writes to HBM]

Flash Attention

Models	ListOps	Text	Retrieval	\mathbf{Image}	Pathfinder	Avg	Speedup
Transformer	36.0	63.6	81.6	42.3	72.7	59.3	_
FLASHATTENTION	37.6	63.9	81.4	43.5	72.7	59.8	$2.4 \times$
Block-sparse FlashAttention	37.0	63.0	81.3	43.6	73.3	59.6	2.8 ×
Linformer [84]	35.6	55.9	77.7	37.8	67.6	54.9	$2.5 \times$
Linear Attention [50]	38.8	63.2	80.7	42.6	72.5	59.6	$2.3 \times$
Performer [12]	36.8	63.6	82.2	42.1	69.9	58.9	1.8×
Local Attention [80]	36.1	60.2	76.7	40.6	66.6	56.0	$1.7 \times$
Reformer [51]	36.5	63.8	78.5	39.6	69.4	57.6	$1.3 \times$
Smyrf [19]	36.1	64.1	79.0	39.6	70.5	57.9	$1.7 \times$

- Gives a speedup for free with no cost in accuracy (modulo numeric instability)
- Outperforms the speedup from many other approximate
 Transformer methods, which perform substantially worse

Model Compression

Approaches to Compression

- Pruning: can we reduce the number of neurons in the model?
 - Basic idea: remove low-magnitude weights

Issue: sparse matrices are not fast, matrix multiplication is very fast on GPUs so you don't save any time!

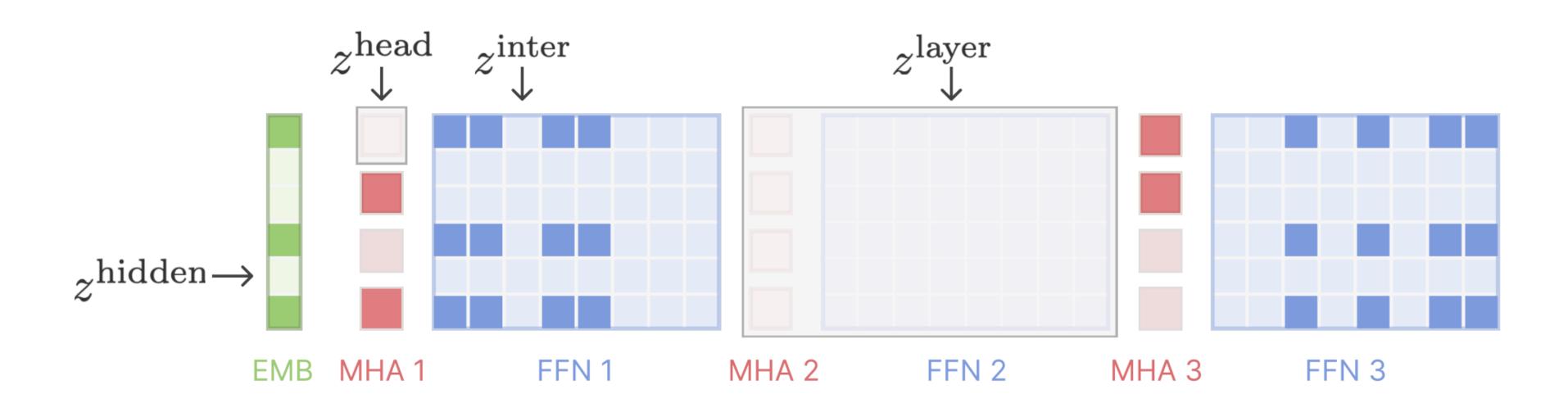
Approaches to Compression

- Pruning: can we reduce the number of neurons in the model?
 - Basic idea: remove low-magnitude weights
 - Instead, we want some kind of structured pruning. What does this look like?

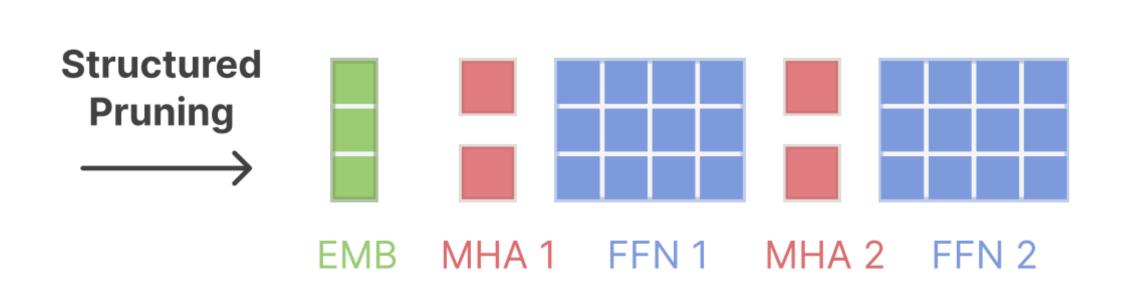
 Still a challenge: if different layers have different sizes, your GPU utilization may go down

Sheared Llama

Idea 1:targetedstructuredpruning



 Parameterization and regularization encourage sparsity, even though the z's are continuous



Source Model

 $L_{\mathcal{S}} = 3, d_{\mathcal{S}} = 6, H_{\mathcal{S}} = 4, m_{\mathcal{S}} = 8$

Target Model
$$L_{\mathcal{T}}=2, d_{\mathcal{T}}=3, H_{\mathcal{T}}=2, m_{\mathcal{T}}=4$$

Mengzhou Xia et al. (2023)

Sheared Llama

- ► Train for a while with the z's, then prune the network. Then enter stage 2: continued pre-training on new data
- Idea 2: dynamic batch loading. Update the weights controlling the mix of data you use during pre-training (sample more from domains of data with high loss)

Sheared Llama

	Continued		LM	World	Knowledge	A	
Model (#tokens for training)	LogiQA	BoolQ (32)	LAMBADA	NQ (32)	MMLU (5)	Average	
LLaMA2-7B (2T) [†]	30.7	82.1	28.8	73.9	46.6	64.6	
OPT-1.3B (300B) [†]	26.9	57.5	58.0	6.9	24.7	48.2	
Pythia-1.4B (300B) [†]	27.3	57.4	61.6	6.2	25.7	48.9	
Sheared-LLaMA-1.3B (50B)	26.9	64.0	61.0	9.6	25.7	51.0	
OPT-2.7B (300B) [†]	26.0	63.4	63.6	10.1	25.9	51.4	
Pythia-2.8B (300B) [†]	28.0	66.0	64.7	9.0	26.9	52.5	
INCITE-Base-3B (800B)	27.7	65.9	65.3	14.9	27.0	54.7	
Open-LLaMA-3B-v1 (1T)	28.4	70.0	65.4	18.6	27.0	55.1	
Open-LLaMA-3B-v2 (1T) [†]	28.1	69.6	66.5	17.1	26.9	55.7	
Sheared-LLaMA-2.7B (50B)	28.9	73.7	68.4	16.5	26.4	56.7	

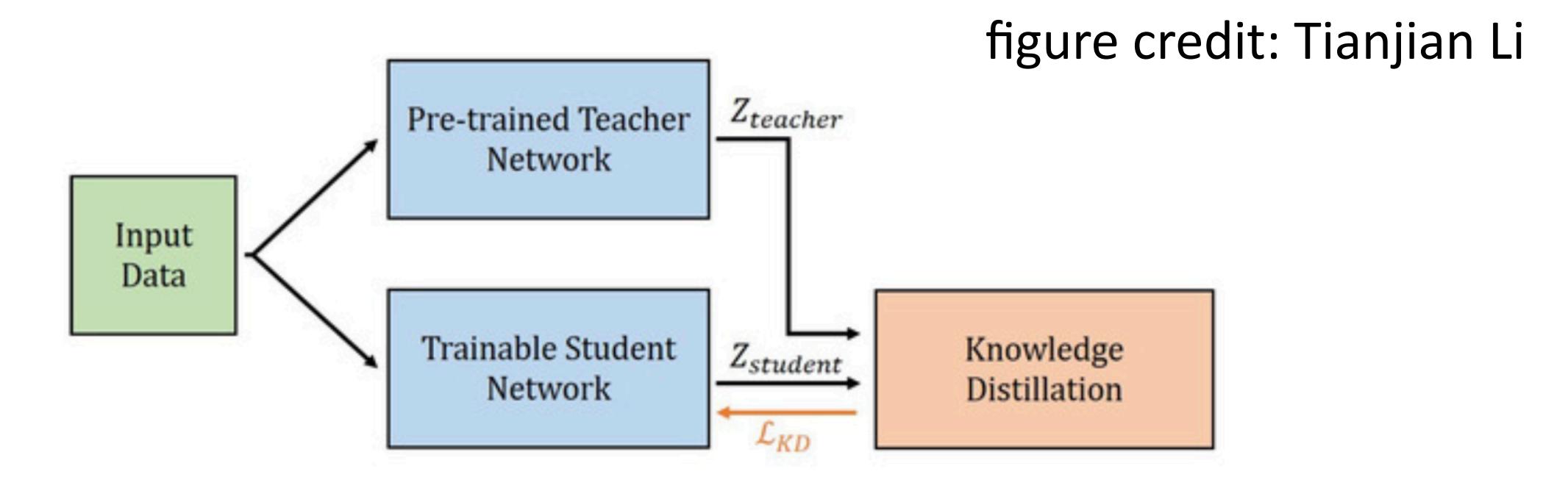
(Slightly) better than models that were "organically" trained at these larger scales

Mengzhou Xia et al. (2023)

Approaches to Compression

- Pruning: can we reduce the number of neurons in the model?
 - Basic idea: remove low-magnitude weights
 - Instead, we want some kind of structured pruning. What does this look like?
- Knowledge distillation
 - Classic approach from Hinton et al.: train a student model to match distribution from teacher

DistilBERT

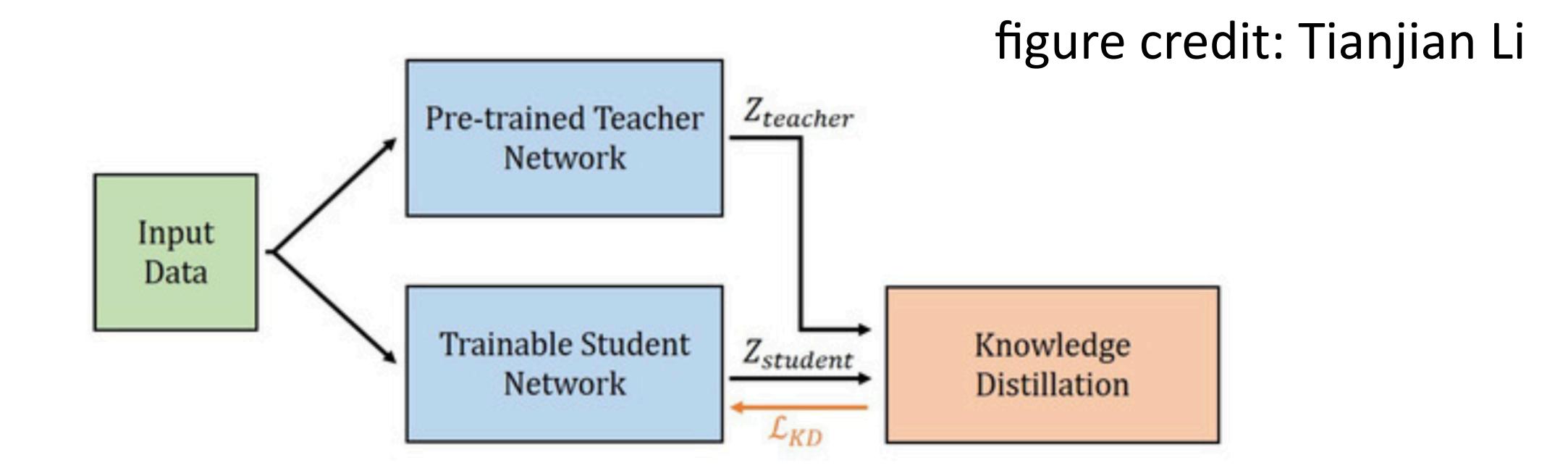


Suppose we have a classification model with output $P_{teacher}(y \mid x)$

Minimize $KL(P_{teacher} \mid \mid P_{student})$ to bring student dist close to teacher

Note that this is not using labels — it uses the teacher to "pseudo-label" data, and we label an entire distribution, not just a top-one label

DistilBERT



- Use a teacher model as a large neural network, such as BERT
- Make a small student model that is half the layers of BERT. Initialize with every other layer from the teacher

Sanh et al. (2019)

DistilBERT

Model	Score	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	WNLI
ELMo BERT-base DistilBERT	68.7 79.5 77.0	44.1 56.3 51.3	68.6 86.7 82.2	76.6 88.6 87.5	71.1 91.8 89.2	89.6	69.3		70.4 89.0 86.9	56.3 53.5 56.3

Table 2: **DistilBERT yields to comparable performance on downstream tasks.** Comparison on downstream tasks: IMDb (test accuracy) and SQuAD 1.1 (EM/F1 on dev set). D: with a second step of distillation during fine-tuning.

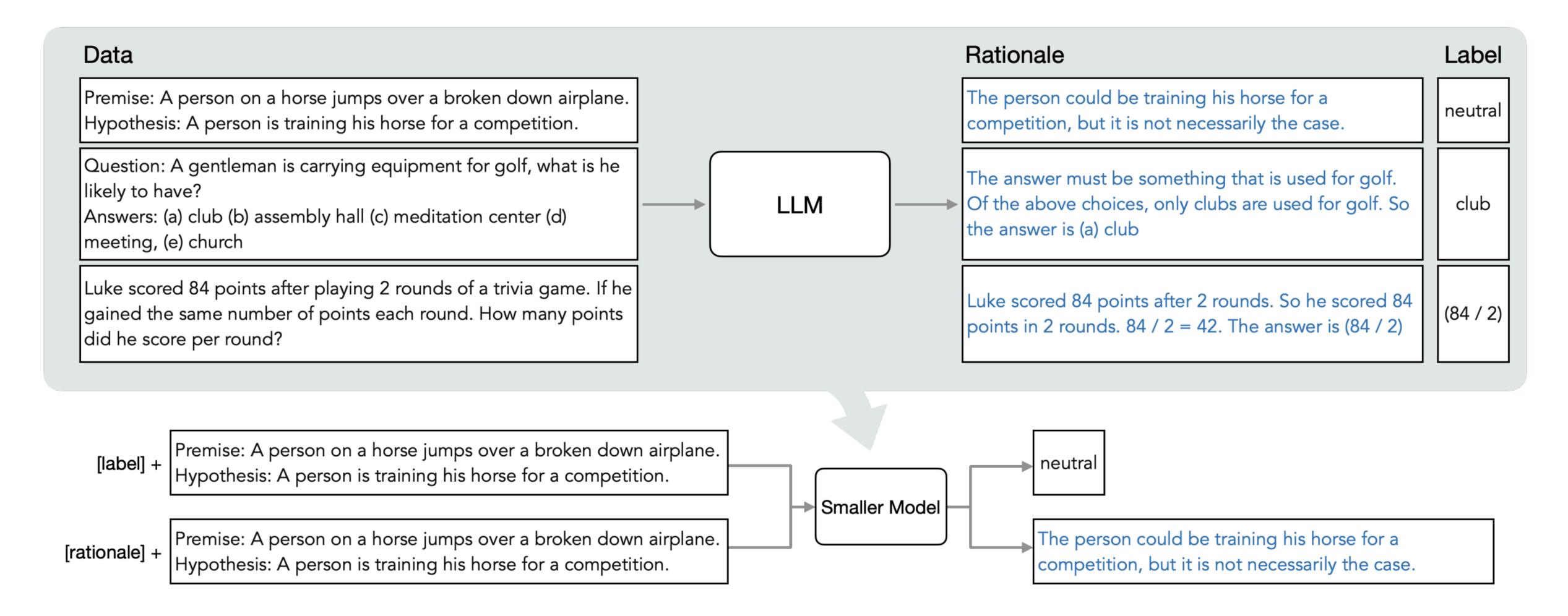
Model	IMDb (acc.)	SQuAD (EM/F1)
BERT-base	93.46	81.2/88.5
DistilBERT	92.82	77.7/85.8
DistilBERT (D)	-	79.1/86.9

Table 3: **DistilBERT** is significantly smaller while being constantly faster. Inference time of a full pass of GLUE task STS-B (sentiment analysis) on CPU with a batch size of 1.

Model	# param. (Millions)	Inf. time (seconds)
ELMo	180	895
BERT-base	110	668
DistilBERT	66	410

Sanh et al. (2019)

Other Distillation



 How to distill models for complex reasoning settings? Still an open problem!
 Cheng-Yu Hsieh et al. (2023)

Parameter-Efficient Tuning

Parameter-Efficient Tuning

- Rather than train all model parameters at once, can we get away with just training a small number of them?
- What are the advantages of this?

- Typical advantages: lower memory, easier to serve many models for use cases like personalization or multitasking
- Not an advantage: faster (it's not)

BitFit

$$\mathbf{Q}^{m,\ell}(\mathbf{x}) = \mathbf{W}_q^{m,\ell}\mathbf{x} + \mathbf{b}_q^{m,\ell}$$
 $\mathbf{K}^{m,\ell}(\mathbf{x}) = \mathbf{W}_k^{m,\ell}\mathbf{x} + \mathbf{b}_k^{m,\ell}$
 $\mathbf{V}^{m,\ell}(\mathbf{x}) = \mathbf{W}_v^{m,\ell}\mathbf{x} + \mathbf{b}_v^{m,\ell}$

$$\mathbf{h}_1^{\ell} = att\big(\mathbf{Q}^{1,\ell}, \mathbf{K}^{1,\ell}, \mathbf{V}^{1,\ell}, ..., \mathbf{Q}^{m,\ell}, \mathbf{K}^{m,\ell}, \mathbf{V}^{m,l}\big)$$

and then fed to an MLP with layer-norm (LN):

$$\mathbf{h}_{2}^{\ell} = \text{Dropout}(\mathbf{W}_{m_{1}}^{\ell} \cdot \mathbf{h}_{1}^{\ell} + \mathbf{b}_{m_{1}}^{\ell}) \tag{1}$$

$$\mathbf{h}_3^{\ell} = \mathbf{g}_{LN_1}^{\ell} \odot \frac{(\mathbf{h}_2^{\ell} + \mathbf{x}) - \mu}{\sigma} + \mathbf{b}_{LN_1}^{\ell} \tag{2}$$

$$\mathbf{h}_4^{\ell} = \operatorname{GELU}(\mathbf{W}_{m_2}^{\ell} \cdot \mathbf{h}_3^{\ell} + \mathbf{b}_{m_2}^{\ell}) \tag{3}$$

$$\mathbf{h}_{5}^{\ell} = \text{Dropout}(\mathbf{W}_{m_3}^{\ell} \cdot \mathbf{h}_{4}^{\ell} + \mathbf{b}_{m_3}^{\ell}) \quad (4)$$

$$\operatorname{out}^{\ell} = \mathbf{g}_{LN_2}^{\ell} \odot \frac{(\mathbf{h}_5^{\ell} + \mathbf{h}_3^{\ell}) - \mu}{\sigma} + \mathbf{b}_{LN_2}^{\ell} \quad (5)$$

Tune only the bias terms of the Transformer architecture, don't fine-tune the weights

How many parameters do you think this is?

Zaken et al. (2022)

BitFit

		% Param	QNLI	SST-2	MNLI _m	MNLI _{mm}		Avg.
	Train size		105k	67k	393k	393k		
(V)	Full-FT†	100%	93.5	94.1	86.5	87.1		84.8
(V)	Full-FT	100%	91.7 ± 0.1	93.4 ± 0.2	85.5 ± 0.4	85.7 ± 0.4		84.1
(V)	Diff-Prune†	0.5%	93.4	94.2	86.4	86.9	_	84.6
(V)	BitFit	0.08%	91.4 ± 2.4	93.2 ± 0.4	84.4 ± 0.2	84.8 ± 0.1	• • •	84.2
(T)	Full-FT‡	100%	91.1	94.9	86.7	85.9		81.8
(T)	Full-FT†	100%	93.4	94.1	86.7	86.0		81.5
(T)	Adapters‡	3.6%	90.7	94.0	84.9	85.1		81.1
(T)	Diff-Prune†	0.5%	93.3	94.1	86.4	86.0		81.5
(T)	BitFit	0.08%	92.0	94.2	84.5	84.8		80.9

Degraded performance, but only train <0.1% of the parameters of the full model!

Zaken et al. (2022)

LoRA

- Alternative: learn weight matrices as (W + BA), where BA is a product of two low-rank matrices.
 - If we have a *d x d* matrix and we use a rank reduction of size *r*, what is the parameter reduction from LoRA?
- Allows adding low-rank matrix on top of existing high-rank model
- Unlike some other methods, LoRA can be "compiled down" into the model (just add BA into W)

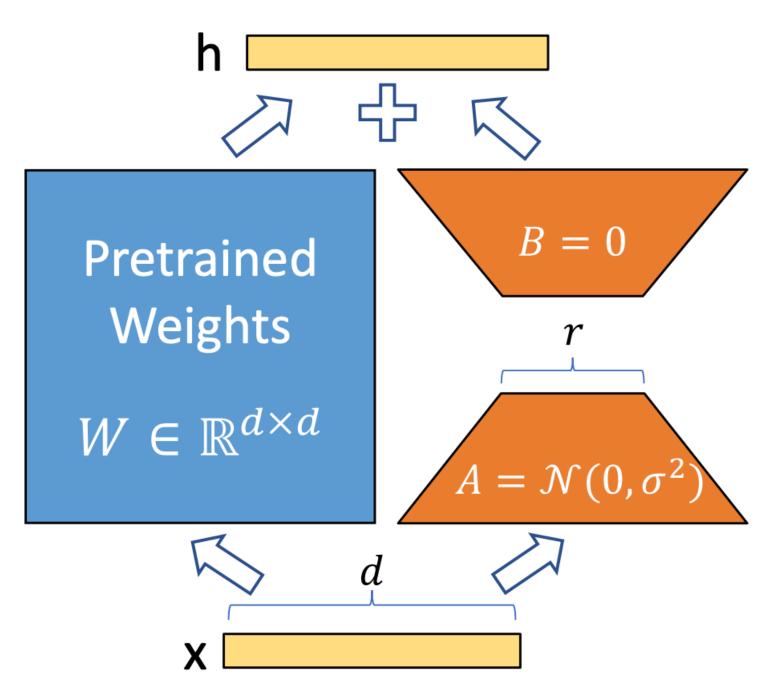


Figure 1: Our reparametrization. We only train A and B.

Hu et al. (2021)

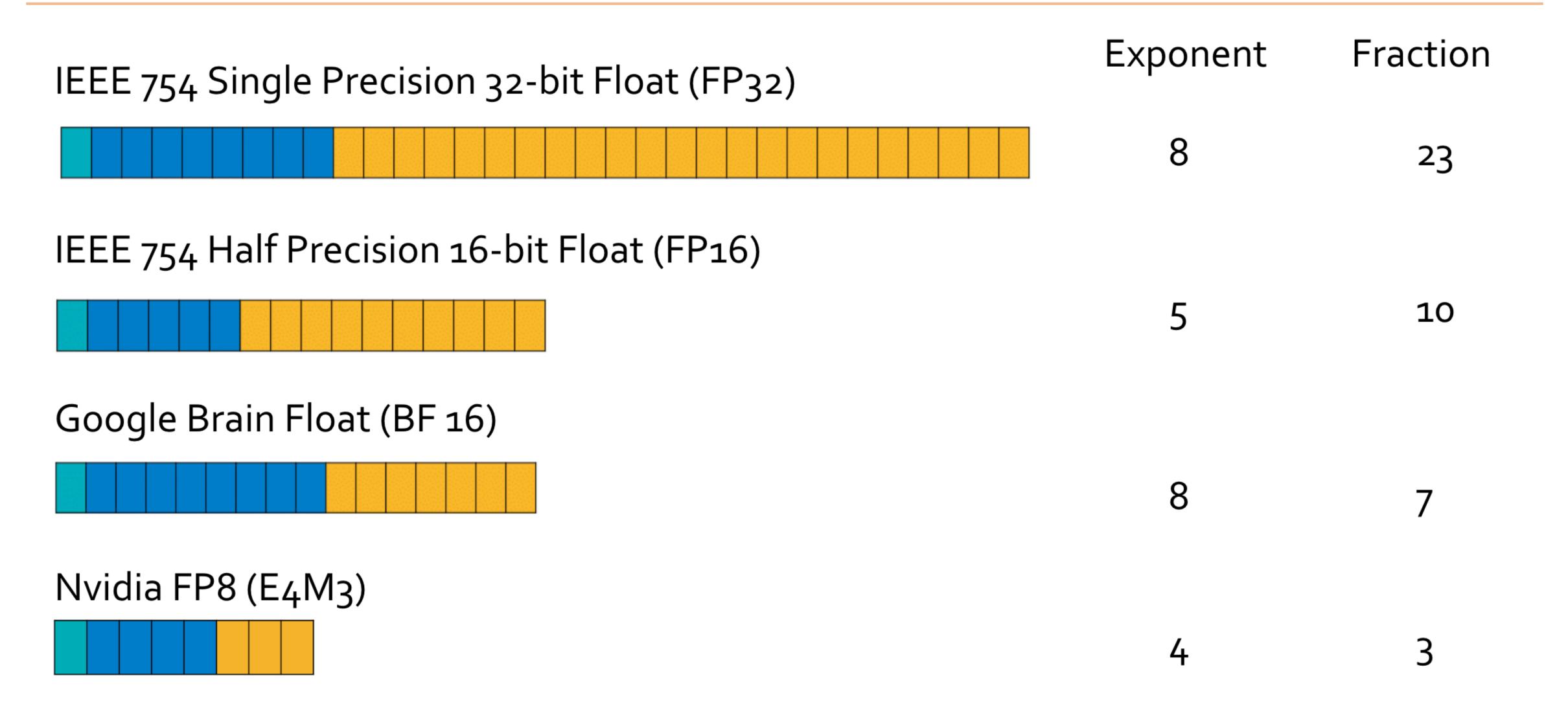
LoRA

Model & Method	# Trainable									
	Parameters	MNLI	SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg.
RoB _{base} (FT)*	125.0M	87.6	94.8	90.2	63.6	92.8	91.9	78.7	91.2	86.4
RoB _{base} (BitFit)*	0.1M	84.7	93.7	92.7	62.0	91.8	84.0	81.5	90.8	85.2
RoB _{base} (Adpt ^D)*	0.3M	$87.1_{\pm .0}$	$94.2_{\pm .1}$	$88.5_{\pm 1.1}$	$60.8 \scriptstyle{\pm.4}$	$93.1_{\pm.1}$	$90.2 \scriptstyle{\pm .0}$	$71.5_{\pm 2.7}$	$89.7_{\pm .3}$	84.4
$RoB_{base} (Adpt^{D})*$	0.9M	$87.3_{\pm .1}$	$94.7_{\pm .3}$	$88.4_{\pm .1}$	$62.6_{\pm .9}$	$93.0_{\pm .2}$	$90.6_{\pm .0}$	$75.9_{\pm 2.2}$	$90.3_{\pm .1}$	85.4
RoB _{base} (LoRA)	0.3M	$87.5_{\pm .3}$	$\textbf{95.1}_{\pm .2}$	$89.7_{\pm.7}$	$63.4_{\pm 1.2}$	$93.3_{\pm .3}$	$90.8_{\pm.1}$	$\textbf{86.6} \scriptstyle{\pm .7}$	$\textbf{91.5}_{\pm .2}$	87.2
RoB _{large} (FT)*	355.0M	90.2	96.4	90.9	68.0	94.7	92.2	86.6	92.4	88.9
RoB _{large} (LoRA)	0.8M	90.6 \pm .2	$96.2_{\pm.5}$	90.9 $_{\pm 1.2}$	68.2 $_{\pm 1.9}$	94.9 $_{\pm .3}$	$91.6 \scriptstyle{\pm .1}$	87.4 ± 2.5	92.6 $_{\pm .2}$	89.0

LoRA is much better than BitFit, even better than vanilla fine-tuning on GLUE!

Hu et al. (2021)

- A significant fraction of LLM training is just storing the weights
 - Normal floating-point precision: 4 bytes per weight, gets large for 10B+ parameter models!
- How much is needed for fine-tuning?
 - The Adam optimizer has to store at least 2 additional values for each parameter (first- and second-moment estimates)
 - Memory gets very large! Can we reduce this?

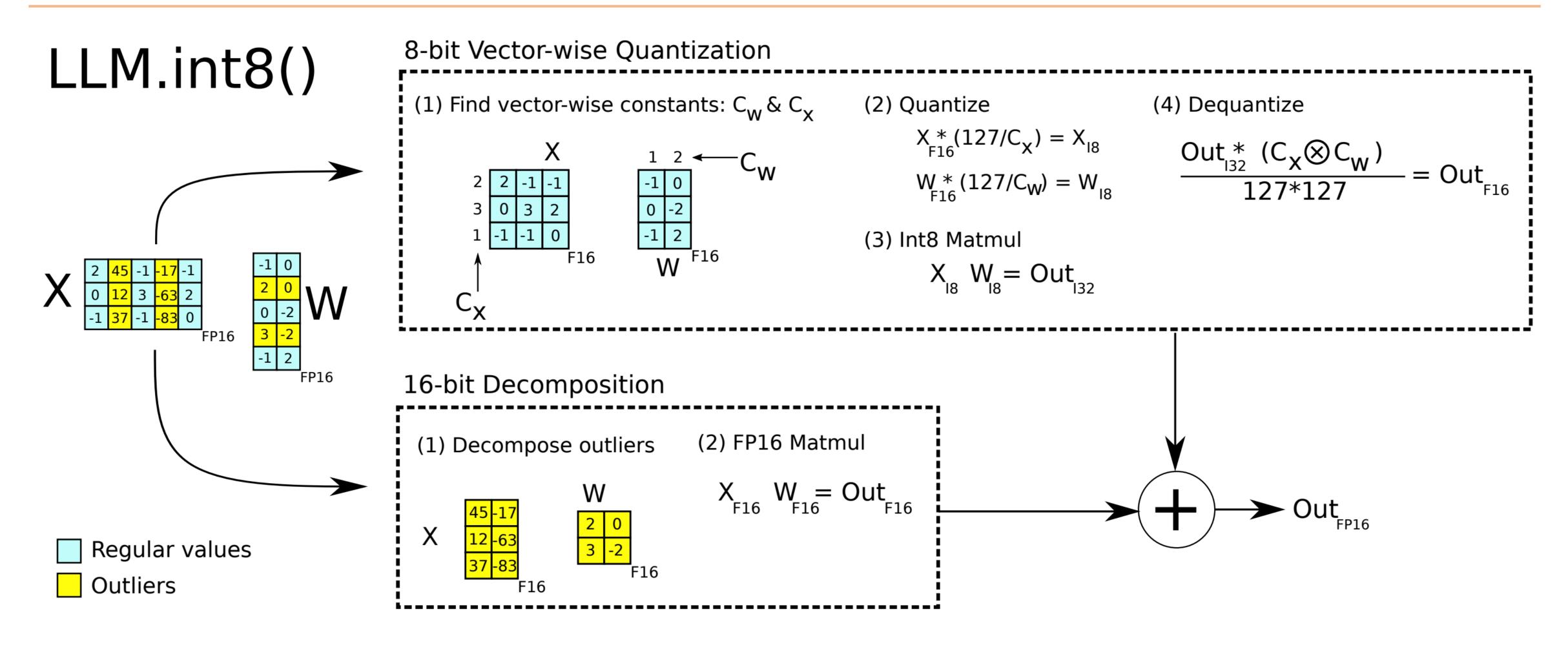


slide credit: Tianjian Li



Outlier weights can make it hard to find a good zero point/scale

slide credit: Tianjian Li



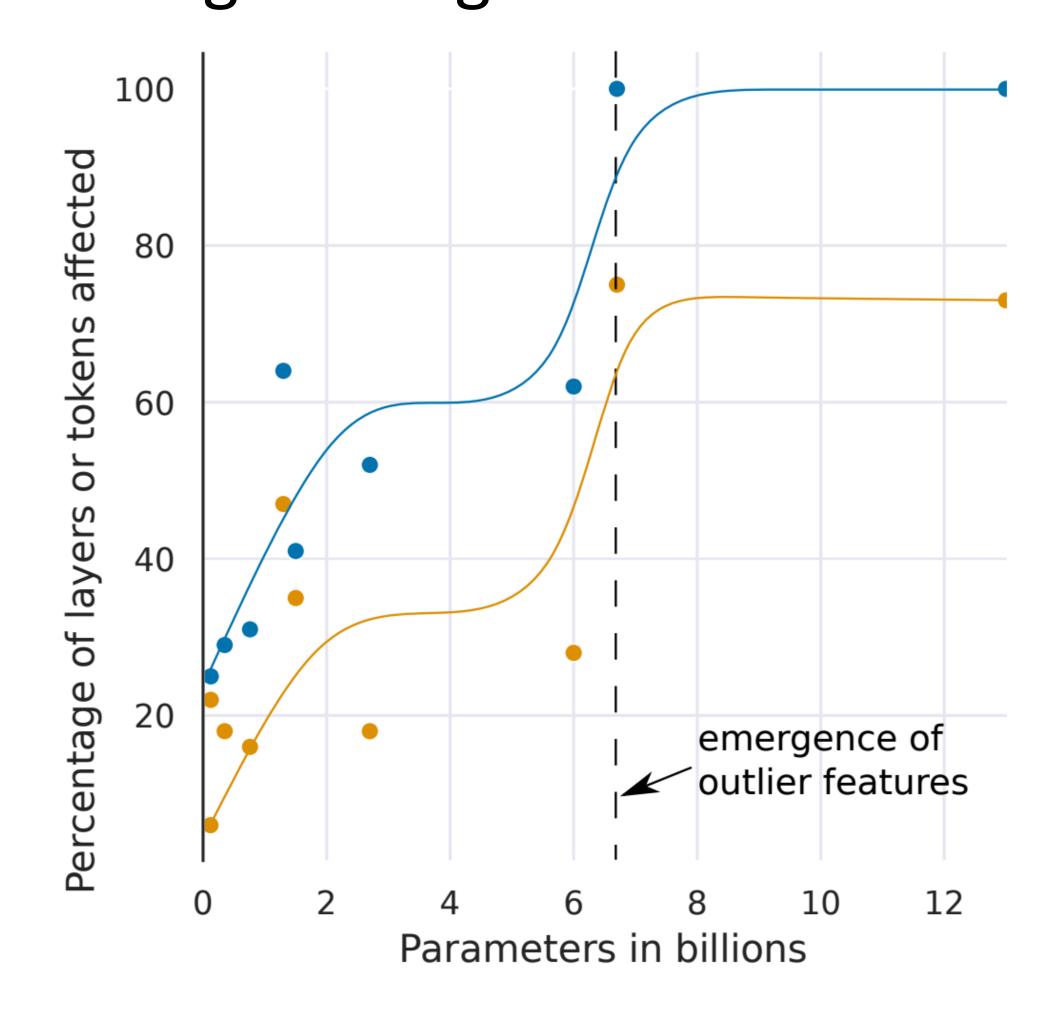
 Solution: combine 8-bit and 16-bit quantization, where most stuff is 8-bit quantized
 Dettmers et al. (2022)

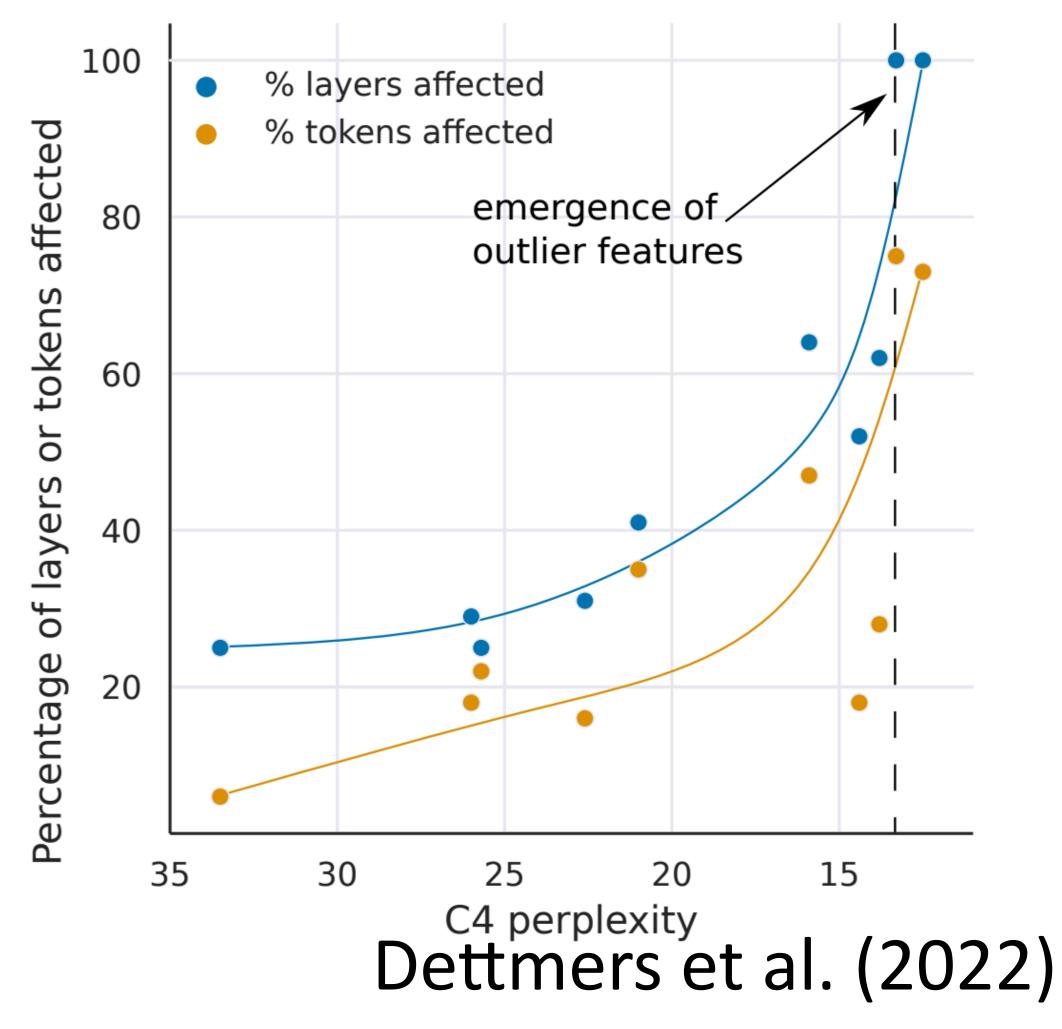
Parameters	125M	1.3B	2.7B	6.7B	13B
32-bit Float	25.65	15.91	14.43	13.30	12.45
Int8 absmax Int8 zeropoint	87.76	16.55	15.11	14.59	19.08
	56.66	16.24	14.76	13.49	13.94
Int8 absmax row-wise Int8 absmax vector-wise Int8 zeropoint vector-wise	30.93	17.08	15.24	14.13	16.49
	35.84	16.82	14.98	14.13	16.48
	25.72	15.94	14.36	13.38	13.47
Int8 absmax row-wise + decomposition	30.76	16.19	14.65		12.46
Absmax LLM.int8() (vector-wise + decomp)	25.83	15.93	14.44		12.45
Zeropoint LLM.int8() (vector-wise + decomp)	25.69	15.92	14.43		12.45

 Validation perplexity on language modeling. Prior Int8 techniques degrade, the decomposition maintains performance

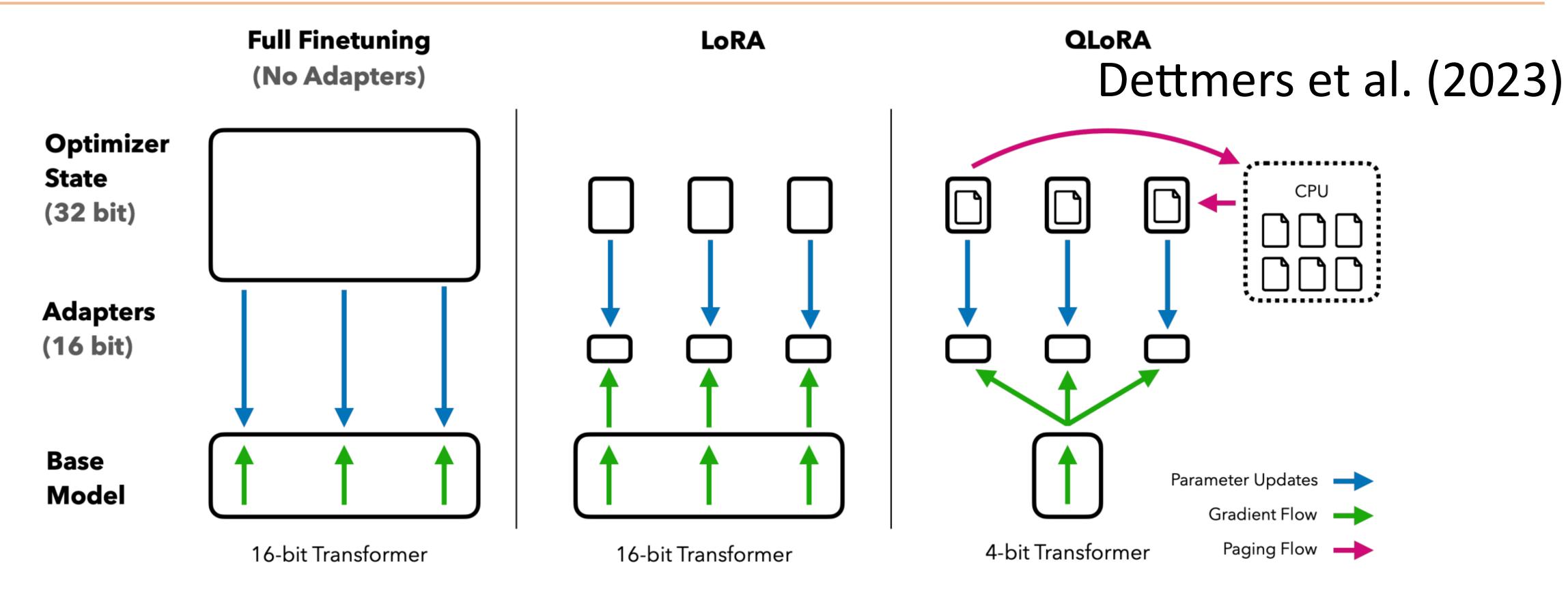
Dettmers et al. (2022)

 Interestingly, the outlier features that require 16-bit quantization emerge at large scale





QLoRA: Memory-efficient training



- 4-bit "normal float", takes advantage of the fact that NN weights typically have a zero-centered normal distribution
- Paged optimizer state to avoid memory spikes (due to training examples with long sequence length)

Where is this going?

- Better GPU programming: as GPU performance starts to saturate, we'll probably see more algorithms tailored very specifically to the affordances of the hardware
- ► Small models, either distilled or trained from scratch: as LLMs gets better, we can do with ~7B scale what used to be only doable with ChatGPT (GPT-3.5)
- Continued focus on faster inference: faster inference can be highly impactful across all LLM applications

Takeaways

 Decoding optimizations: speculative decoding gives a fast way to exactly sample from a smaller model. Also techniques like Flash Attention

Model optimizations to make models smaller: pruning, distillation

 Model compression and quantization: standard compression techniques, but adapted to work really well for GPUs