CS388: Natural Language Processing

Lecture 21: Efficiency and LLMs

Announcements

- Check-ins due today, will be graded as promptly as we can
- Final presentations start in 2.5 weeks, reports due May 3

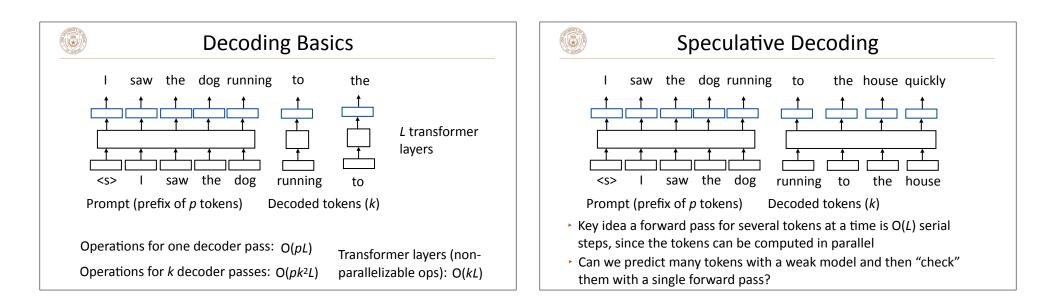
This Lecture

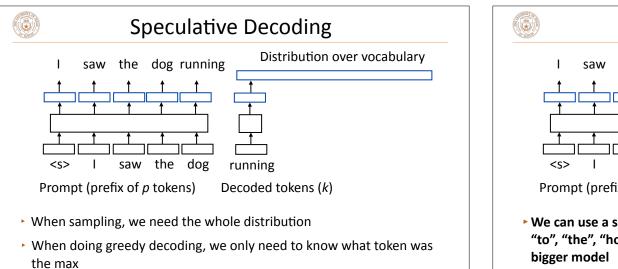
- Decoding optimizations: exact decoding, but faster
 - Speculative decoding
 - Medusa heads
 - Flash attention
- Model pruning

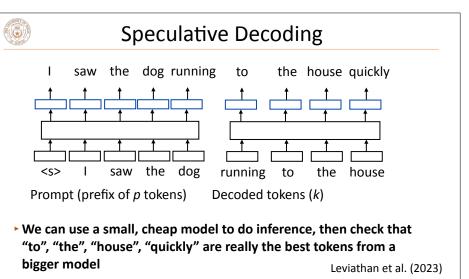
۲

- Pruning LLMs
- Distilling LLMs
- Model compression

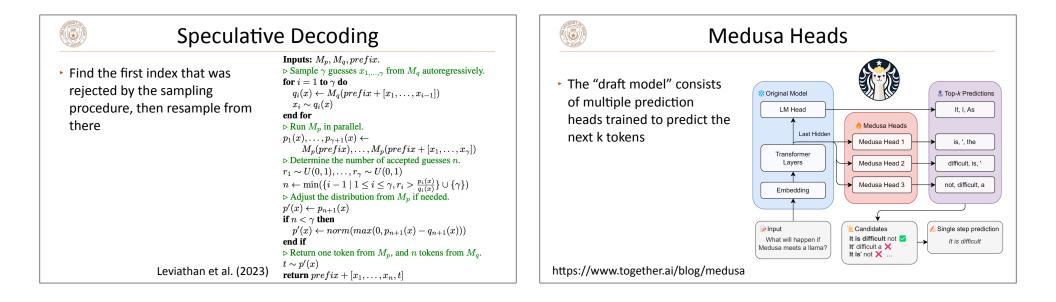
Decoding Optimizations

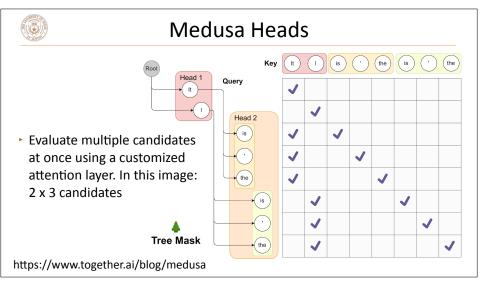


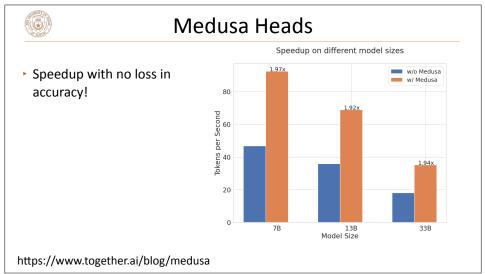




Speculative Decoding: Flow	Speculative Decoding
I saw the dog running to the house quickly t t t t t t t t t t t t t t t t t t t	[START] japan ' s benchmark bond n Leviathan et al. (2023)
 Produce decoded tokens one at a time from a fast draft model I saw the dog running to the house quickly 	[START] japan ' s benchmark nikkei 22 75 [START] japan ' s benchmark nikkei 225 index rose 22 76
† †	[START] japan : s benchmark nikkei 225 index rose 226 : 69 r points [START] japan : s benchmark nikkei 225 index rose 226 : 69 points , or 9 1 [START] japan : s benchmark nikkei 225 index rose 226 : 69 points , or 1 : 5 percent , to 10 , 9859
 <s> I saw the dog running to the house</s> Confirm that the tokens are the max tokens from the slower main model. Any "wrong" token invalidates the rest of the sequence 	 Can also adjust this to use sampling. Treat this as a proposal distribution q(x) and may need to reject + resample (rejection sampling)



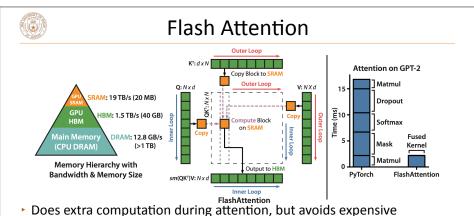




Other Decoding Improvements

- Most other approaches to speeding up require changing the model (making a faster Transformer) or making it smaller (distillation, pruning; discussed next)
- Batching parallelism: improve throughput by decoding many examples in parallel. (Does not help with latency, and it's a little bit harder to do in production if requests are coming in asynchronously)
- Low-level hardware optimizations?

 Easy things like caching (KV cache: keys + values for context tokens are cached across multiple tokens)



- Does extra computation during attention, but avoids expensive reads/writes to GBU "high-bandwidth memory." Recomputation is all in SRAM and is very fast
- Essentially: store a running sum for the softmax, compute values as needed

Flash Attention

Algorithm 0 Standard Attention Implementation

- **Require:** Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM.
- 1: Load \mathbf{Q},\mathbf{K} by blocks from HBM, compute $\mathbf{S}=\mathbf{Q}\mathbf{K}^{\top},$ write \mathbf{S} to HBM.
- 2: Read **S** from HBM, compute $\mathbf{P} = \text{softmax}(\mathbf{S})$, write \mathbf{P} to HBM.
- 3: Load **P** and **V** by blocks from HBM, compute $\mathbf{O} = \mathbf{PV}$, write **O** to HBM. 4: Return **O**.

${\bf Algorithm} \ {\bf 1} \ {\bf FLASHATTENTION}$

Require: Matrices $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{N \times d}$ in HBM, on-chip SRAM of size M.

[dividing stuff into blocks]

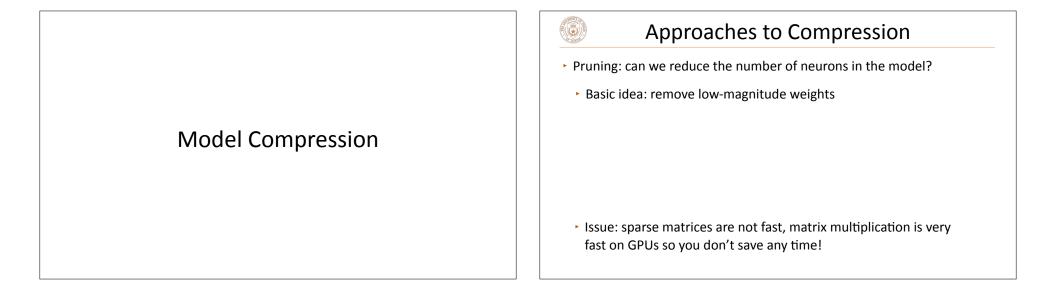
5: for $1 \le j \le T_c$ do

- 6: Load \mathbf{K}_j , \mathbf{V}_j from HBM to on-chip SRAM.
- 7: for $1 \le i \le T_r$ do
- 8: Load $\mathbf{Q}_i, \mathbf{O}_i, \ell_i, m_i$ from HBM to on-chip SRAM. [more computation,
- 9: On chip, compute $\mathbf{S}_{ij} = \mathbf{Q}_i \mathbf{K}_j^T \in \mathbb{R}^{B_r \times B_c}$. writes to HBM]

Flash Attention

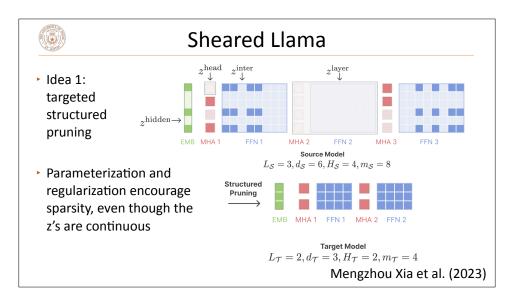
Models	ListOps	Text	Retrieval	Image	Pathfinder	Avg	Speedup
Transformer	36.0	63.6	81.6	42.3	72.7	59.3	-
FLASHATTENTION	37.6	63.9	81.4	43.5	72.7	59.8	2.4×
Block-sparse FLASHATTENTION	37.0	63.0	81.3	43.6	73.3	59.6	2.8 ×
Linformer [84]	35.6	55.9	77.7	37.8	67.6	54.9	2.5×
Linear Attention [50]	38.8	63.2	80.7	42.6	72.5	59.6	2.3×
Performer [12]	36.8	63.6	82.2	42.1	69.9	58.9	1.8×
Local Attention [80]	36.1	60.2	76.7	40.6	66.6	56.0	1.7×
Reformer [51]	36.5	63.8	78.5	39.6	69.4	57.6	1.3×
Smyrf [19]	36.1	64.1	79.0	39.6	70.5	57.9	1.7×

- Gives a speedup for free with no cost in accuracy (modulo numeric instability)
- Outperforms the speedup from many other approximate Transformer methods, which perform substantially worse



Approaches to Compression

- Pruning: can we reduce the number of neurons in the model?
 - Basic idea: remove low-magnitude weights
 - Instead, we want some kind of structured pruning. What does this look like?
- Still a challenge: if different layers have different sizes, your GPU utilization may go down



Sheared Llama

- Train for a while with the z's, then prune the network. Then enter stage 2: continued pre-training on new data
- Idea 2: dynamic batch loading. Update the weights controlling the mix of data you use during pre-training (sample more from domains of data with high loss)

Sheared Llama							
	Continued		LM	World			
Model (#tokens for training)	LogiQA	BoolQ (32)	LAMBADA	NQ (32)	MMLU (5)	Average	
LLaMA2-7B (2T) [†]	30.7	82.1	28.8	73.9	46.6	64.6	
OPT-1.3B (300B) [†]	26.9	57.5	58.0	6.9	24.7	48.2	
Pythia-1.4B (300B) [†]	27.3	57.4	61.6	6.2	25.7	48.9	
Sheared-LLaMA-1.3B (50B)	26.9	64.0	61.0	9.6	25.7	51.0	
OPT-2.7B (300B) [†]	26.0	63.4	63.6	10.1	25.9	51.4	
Pythia-2.8B (300B) [†]	28.0	66.0	64.7	9.0	26.9	52.5	
INCITE-Base-3B (800B)	27.7	65.9	65.3	14.9	27.0	54.7	
Open-LLaMA-3B-v1 (1T)	28.4	70.0	65.4	18.6	27.0	55.1	
Open-LLaMA-3B-v2 (1T) [†]	28.1	69.6	66.5	17.1	26.9	55.7	
Sheared-LLaMA-2.7B (50B)	28.9	73.7	68.4	16.5	26.4	56.7	

 (Slightly) better than models that were "organically" trained at these larger scales

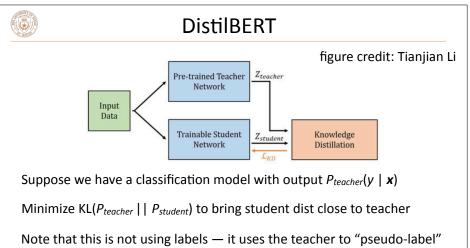
Mengzhou Xia et al. (2023)

Mengzhou Xia et al. (2023)

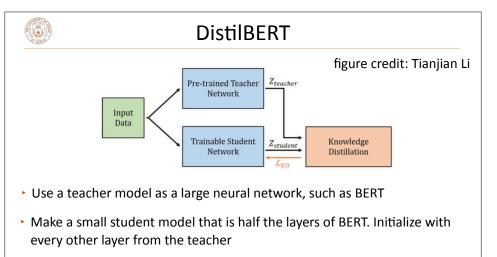
۲

Approaches to Compression

- Pruning: can we reduce the number of neurons in the model?
 - Basic idea: remove low-magnitude weights
 - Instead, we want some kind of structured pruning. What does this look like?
- Knowledge distillation
 - Classic approach from Hinton et al.: train a *student* model to match distribution from *teacher*



data, and we label an entire distribution, not just a top-one label



Sanh et al. (2019)

	DistilBERT									
Model	Score	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	WNLI
ELMo	68.7	44.1	68.6	76.6	71.1	86.2	53.4	91.5	70.4	56.3
BERT-base	79.5	56.3	86.7	88.6	91.8	89.6	69.3	92.7	89.0	53.5
DistilBERT	77.0	51.3	82.2	87.5	89.2	88.5	59.9	91.3	86.9	56.3

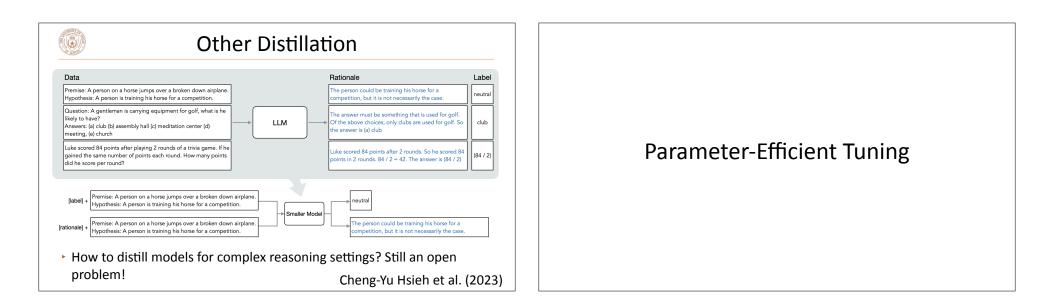
Table 2: **DistilBERT yields to comparable performance on downstream tasks.** Comparison on downstream tasks: IMDb (test accuracy) and SQuAD 1.1 (EM/F1 on dev set). D: with a second step of distillation during fine-tuning.

Model	IMDb (acc.)	SQuAD (EM/F1)
BERT-base	93.46	81.2/88.5
DistilBERT	92.82	77.7/85.8
DistilBERT (D)	-	79.1/86.9

Table 3: **DistilBERT is significantly smaller while being constantly faster.** Inference time of a full pass of GLUE task STS-B (sentiment analysis) on CPU with a batch size of 1.

Model	# param. (Millions)	Inf. time (seconds)
ELMo	180	895
BERT-base	110	668
DistilBERT	66	410

Sanh et al. (2019)



- Rather than train all model parameters at once, can we get away with just training a small number of them?
- What are the advantages of this?

- Typical advantages: lower memory, easier to serve many models for use cases like personalization or multitasking
- Not an advantage: faster (it's not)

٨	BitFit
$\mathbf{Q}^{m,\ell}(\mathbf{x}) = \mathbf{W}^{m,\ell}_q \mathbf{x} + \mathbf{b}^{m,\ell}_q \qquad \mathbf{h}^\ell_1$	$\mathbf{Q} = attig(\mathbf{Q}^{1,\ell},\mathbf{K}^{1,\ell},\mathbf{V}^{1,\ell},,\mathbf{Q}^{m,\ell},\mathbf{K}^{m,\ell},\mathbf{V}^{m,l}ig)$
$\mathbf{K}^{m,\ell}(\mathbf{x}) = \mathbf{W}^{m,\ell}_k \mathbf{x} + \mathbf{b}^{m,\ell}_k$ and	d then fed to an MLP with layer-norm (LN):
$\mathbf{V}^{m,\ell}(\mathbf{x}) = \mathbf{W}^{m,\ell}_v \mathbf{x} + \mathbf{b}^{m,\ell}_v$	$\mathbf{h}_{2}^{\ell} = \text{Dropout} \left(\mathbf{W}_{m_{1}}^{\ell} \cdot \mathbf{h}_{1}^{\ell} + \mathbf{b}_{m_{1}}^{\ell} \right) (1)$
 Tune only the bias terms of the Transformer architecture, don't fine-tune the weights 	$\mathbf{h}_{3}^{\ell} = \mathbf{g}_{LN_{1}}^{\ell} \odot \frac{(\mathbf{h}_{2}^{\ell} + \mathbf{x}) - \mu}{\sigma} + \mathbf{b}_{LN_{1}}^{\ell} (2)$ $\mathbf{h}_{4}^{\ell} = \operatorname{GELU}(\mathbf{W}_{m_{2}}^{\ell} \cdot \mathbf{h}_{3}^{\ell} + \mathbf{b}_{m_{2}}^{\ell}) (3)$ $\mathbf{h}_{5}^{\ell} = \operatorname{Dropout}(\mathbf{W}_{m_{3}}^{\ell} \cdot \mathbf{h}_{4}^{\ell} + \mathbf{b}_{m_{3}}^{\ell}) (4)$
 How many parameters do you think this is? 	$\operatorname{out}^{\ell} = \mathbf{g}_{LN_2}^{\ell} \odot \frac{(\mathbf{h}_5^{\ell} + \mathbf{h}_3^{\ell}) - \mu}{\sigma} + \mathbf{b}_{LN_2}^{\ell} (5)$
	Zaken et al. (202

		%Param	QNLI	SST-2	MNLIm	MNLI _{mm}	-	Avg.
	Train size		105k	67k	393k	393k		
(V)	Full-FT†	100%	93.5	94.1	86.5	87.1	-	84.8
(V)	Full-FT	100%	$91.7{\pm}0.1$	$93.4{\pm}0.2$	$85.5 {\pm} 0.4$	85.7±0.4		84.1
(V)	Diff-Prune [†]	0.5%	93.4	94.2	86.4	86.9	-	84.6
(V)	BitFit	0.08%	$91.4{\pm}2.4$	$93.2{\pm}0.4$	$84.4{\pm}0.2$	$84.8 {\pm} 0.1$		84.2
(T)	Full-FT [‡]	100%	91.1	94.9	86.7	85.9		81.8
(T)	Full-FT [†]	100%	93.4	94.1	86.7	86.0		81.5
(T)	Adapters‡	3.6%	90.7	94.0	84.9	85.1	-	81.1
(T)	Diff-Prune [†]	0.5%	93.3	94.1	86.4	86.0		81.5
(T)	BitFit	0.08%	92.0	94.2	84.5	84.8		80.9

	LoRA
Avg.	▶ Alternative: learn weight matrices as $(W + BA)$, where <i>BA</i> is a product of two low-rank matrices.
84.8 84.1 84.6 84.2 81.8	► If we have a $d \times d$ matrix and we use a rank reduction of size r , what is the parameter reduction from LoRA? Pretrained Weights $W \in \mathbb{R}^{d \times d}$ $W \in \mathbb{R}^{d \times d}$
81.5 81.1 81.5 80.9	 Allows adding low-rank matrix on top of existing high-rank model
of	 Unlike some other methods, LoRA can be "compiled down" into the model (just add BA into W) Figure 1: Our reparametriza- tion. We only train A and B.
et al. (2022)	Hu et al. (2021)

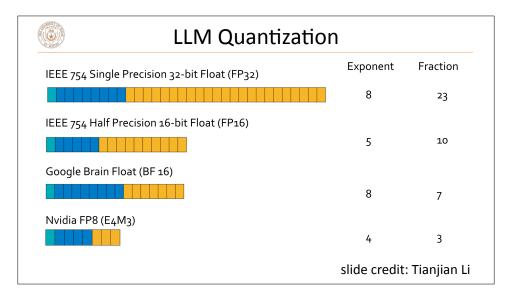
				Lor	4					
Model & Method	# Trainable Parameters		SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg.
RoB _{base} (FT)* RoB _{base} (BitFit)* RoB _{base} (Adpt ^D)* RoB _{base} (Adpt ^D)*		84.7 87.1 _{±.0}	_	$88.5_{\pm1.1}$		$93.1_{\pm.1}$	$90.2_{\pm.0}$	$78.781.571.5_{\pm 2.7}75.9_{\pm 2.2}$		86.4 85.2 84.4 85.4
RoB _{base} (LoRA) RoB _{large} (FT)*		$87.5_{\pm.3}$		$89.7_{\pm.7}$		$93.3_{\pm.3}^{$		86.6 86.6		
 RoB_{large} (LoRA) LoRA is mu on GLUE! 	'							87.4 _{±2.5} ïne-tur		89.0
							I	Hu et a	I. (202	1)

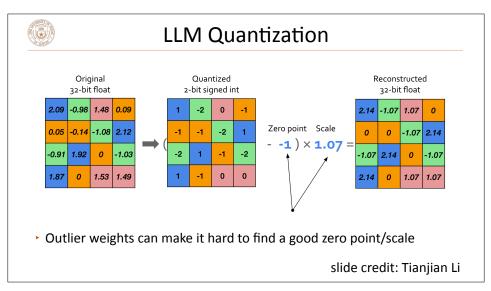
LLM Quantization

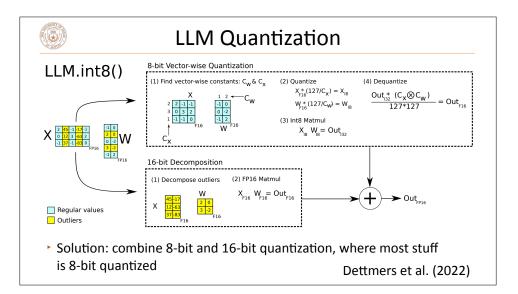
- A significant fraction of LLM training is just storing the weights
 - Normal floating-point precision: 4 bytes per weight, gets large for 10B+ parameter models!
- How much is needed for fine-tuning?

۲

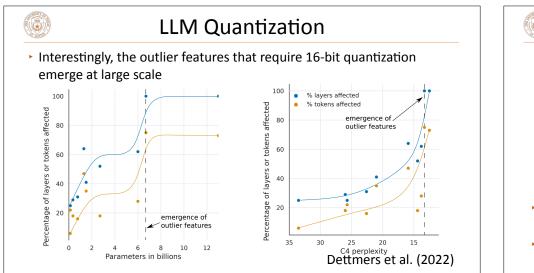
- The Adam optimizer has to store at least 2 additional values for each parameter (first- and second-moment estimates)
- Memory gets very large! Can we reduce this?

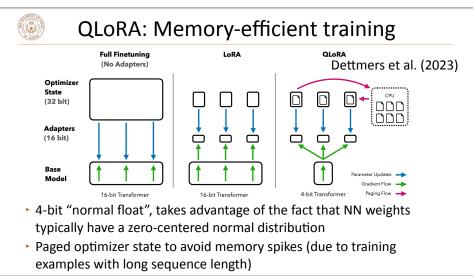






Parameters	125M	1.3B	2.7B	6.7B	13 B
32-bit Float	25.65	15.91	14.43	13.30	12.45
Int8 absmax	87.76	16.55	15.11	14.59	19.08
Int8 zeropoint	56.66	16.24	14.76	13.49	13.94
Int8 absmax row-wise	30.93	17.08	15.24	14.13	16.49
Int8 absmax vector-wise	35.84	16.82	14.98	14.13	16.48
Int8 zeropoint vector-wise	25.72	15.94	14.36	13.38	13.47
Int8 absmax row-wise + decomposition	30.76	16.19	14.65	13.25	12.46
Absmax LLM.int8() (vector-wise + decomp)	25.83	15.93	14.44	13.24	12.45
Zeropoint LLM.int8() (vector-wise + decomp)	25.69	15.92	14.43	13.24	12.45





Where is this going?

- Better GPU programming: as GPU performance starts to saturate, we'll probably see more algorithms tailored very specifically to the affordances of the hardware
- Small models, either distilled or trained from scratch: as LLMs gets better, we can do with ~7B scale what used to be only doable with ChatGPT (GPT-3.5)
- Continued focus on faster inference: faster inference can be highly impactful across all LLM applications

Takeaways

- Decoding optimizations: speculative decoding gives a fast way to exactly sample from a smaller model. Also techniques like Flash Attention
- Model optimizations to make models smaller: pruning, distillation
- Model compression and quantization: standard compression techniques, but adapted to work really well for GPUs