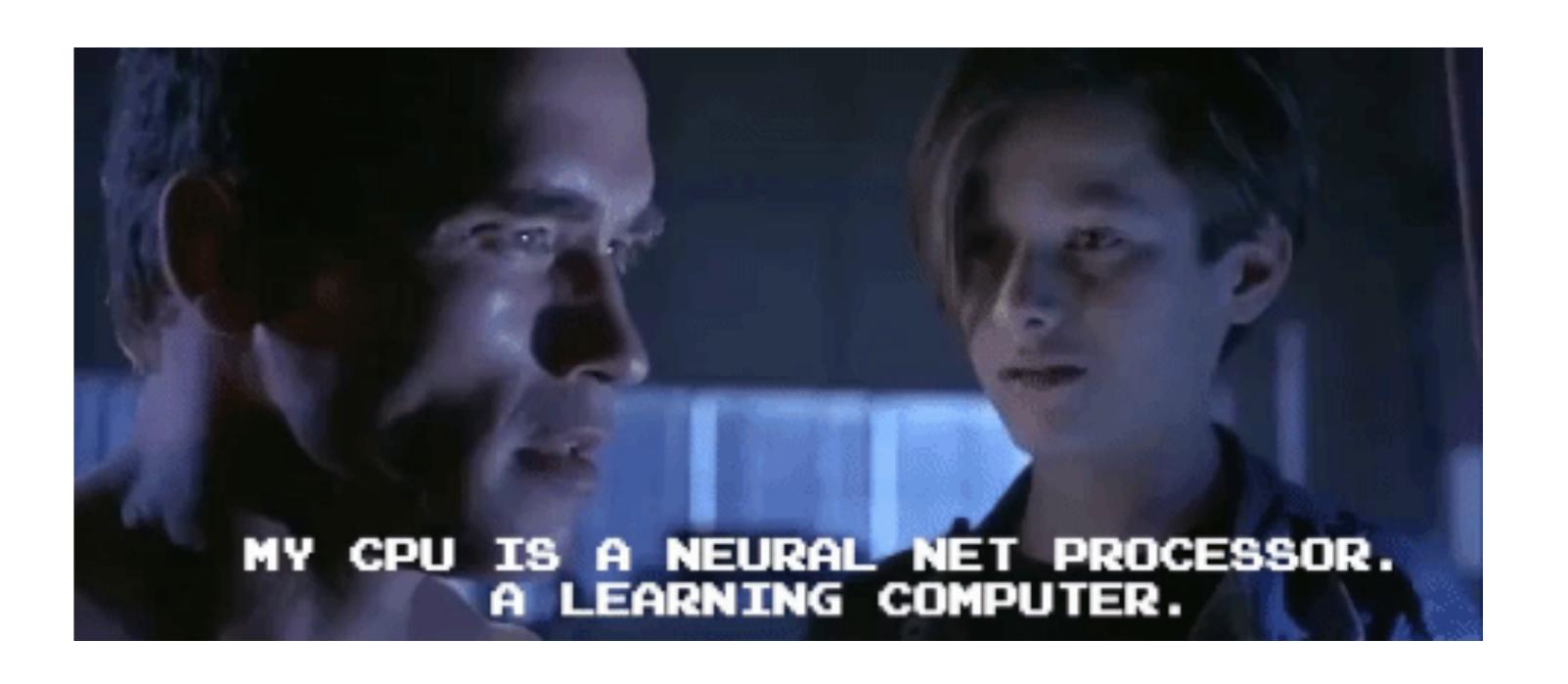
CS388: Natural Language Processing

Lecture 4: Neural

Networks

Greg Durrett



Administrivia

Project 1 due Tuesday, final pieces for Part 2 covered today

Project 2 due date pushed back to Feb 13

► FP check-in due date listed on course website (April 4)

Recall: Multiclass Classification

- Two views of multiclass classification:
 - Different features: $\operatorname{argmax}_{u \in \mathcal{Y}} w^{\top} f(x, y)$
 - ▶ Different weights: $\operatorname{argmax}_{y \in \mathcal{Y}} w_y^\top f(x)$
- Logistic regression: $P_{\mathbf{w}}(y = \hat{y} \mid \mathbf{x}) = \frac{\exp\left(\mathbf{w}_{\hat{y}}^{\top} \mathbf{f}(\mathbf{x})\right)}{\sum_{y'} \exp\left(\mathbf{w}_{y'}^{\top} \mathbf{f}(\mathbf{x})\right)}$

"increase value for gold weight vector, decrease for other weight vectors"

Gradient of log likelihood:
$$\frac{\partial}{\partial \mathbf{w}_{y^{(i)}}} \mathcal{L}(\mathbf{x}^{(i)}, y^{(i)}) = \mathbf{f}(\mathbf{x}^{(i)}) (P_{\mathbf{w}}(y^{(i)} \mid \mathbf{x}^{(i)}) - 1)$$
 "increase value for gold weight vector, decrease for other weight vectors"
$$\frac{\partial}{\partial \mathbf{w}_{\tilde{y}^{(i)}}} \mathcal{L}(\mathbf{x}^{(i)}, y^{(i)}) = \mathbf{f}(\mathbf{x}^{(i)}) (P_{\mathbf{w}}(y^{(i)} \mid \mathbf{x}^{(i)}) - 1)$$

This Lecture

- Neural network basics
- Feedforward neural networks + backpropagation
- Deep averaging network (Project 1)
- Implementing neural networks, training tips

Neural Net Basics

Neural Networks

- Linear classification: $\operatorname{argmax}_y w^\top f(x,y)$
- Want to learn intermediate conjunctive features of the input

the movie was not all that good

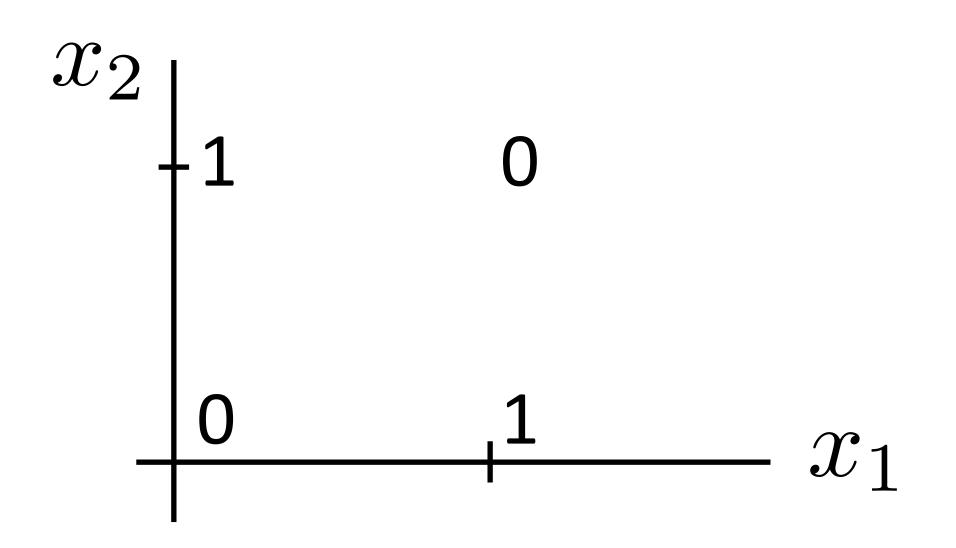
I[contains not & contains good]

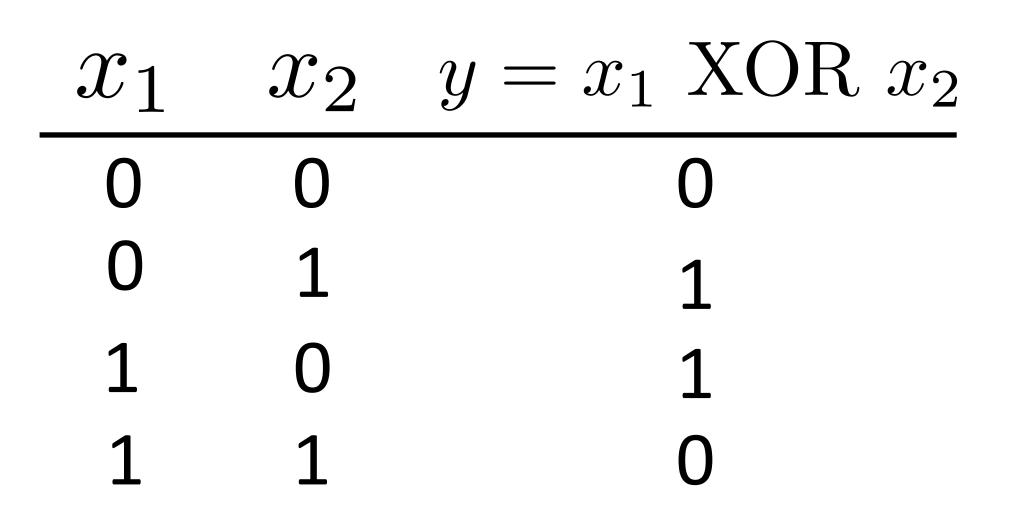
How do we learn this if our feature vector is just the unigram indicators?

I[contains not], I[contains good]

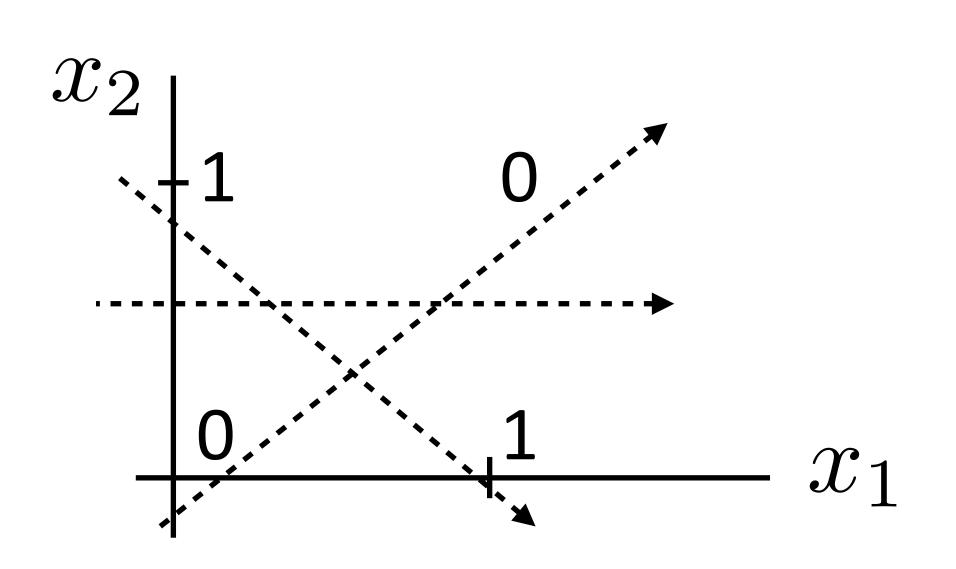
Neural Networks: XOR

- Let's see how we can use neural nets to learn a simple nonlinear function
- Inputs x_1, x_2 $(\text{generally } \mathbf{x} = (x_1, \dots, x_m))$
- Output y(generally $\mathbf{y} = (y_1, \dots, y_n)$)

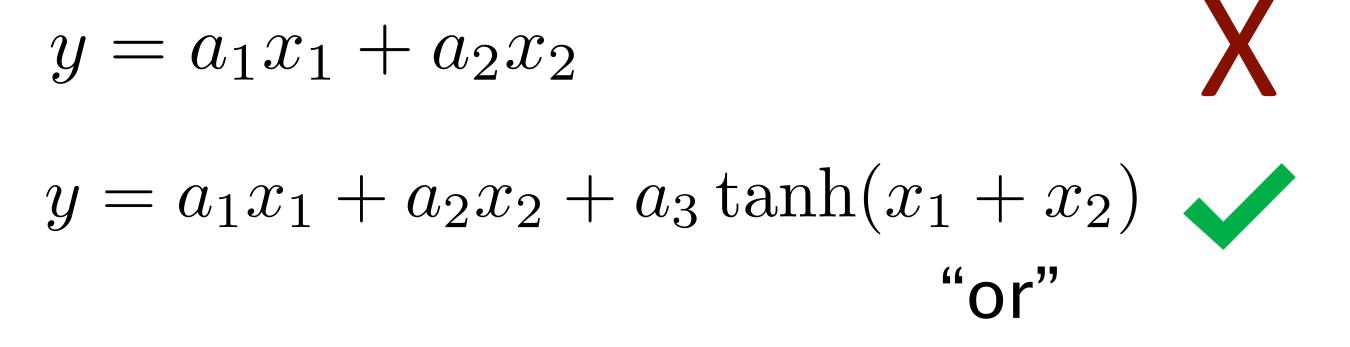




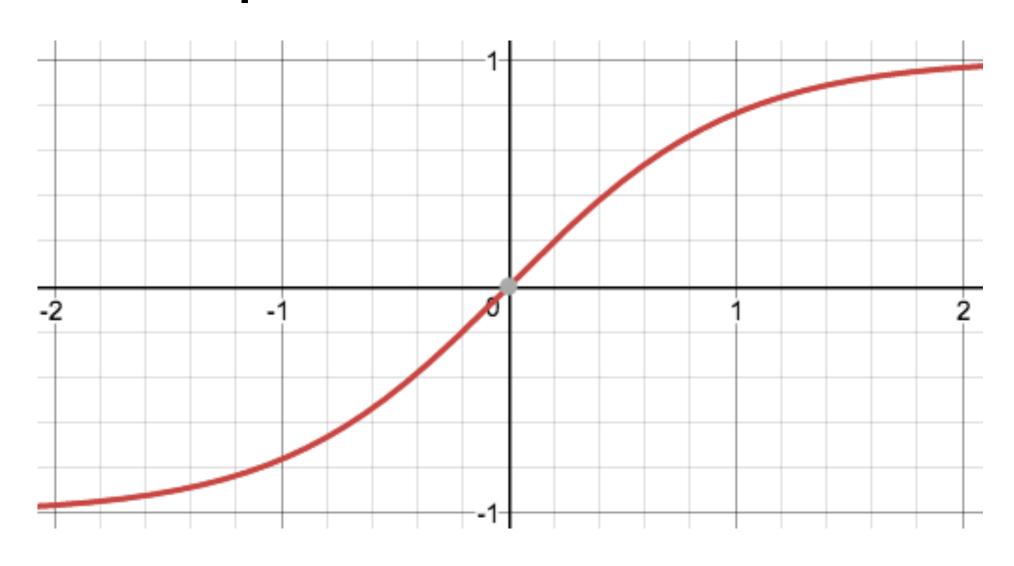
Neural Networks: XOR



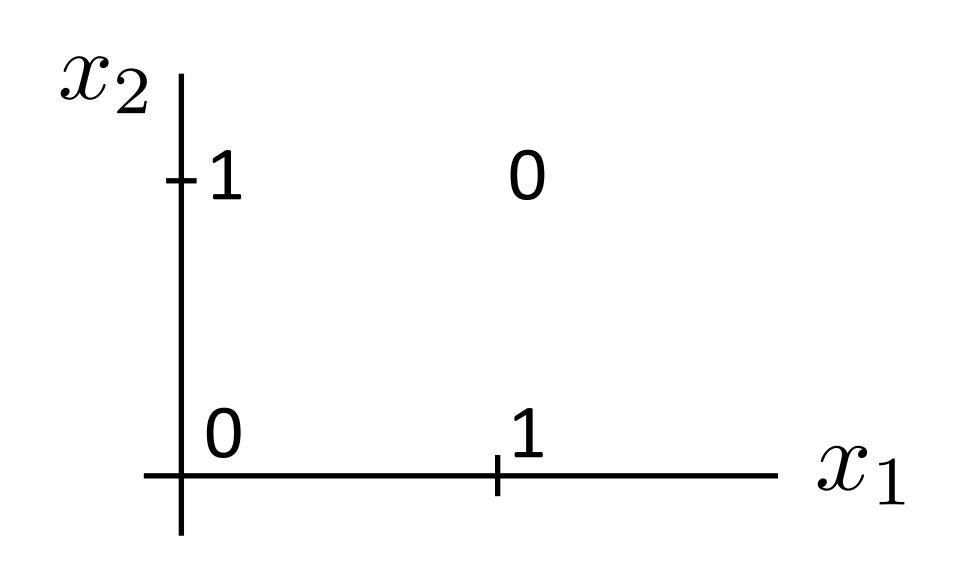
x_1	x_2	$x_1 \text{ XOR } x_2$
0	0	0
0	1	1
1	0	1
1	1	0



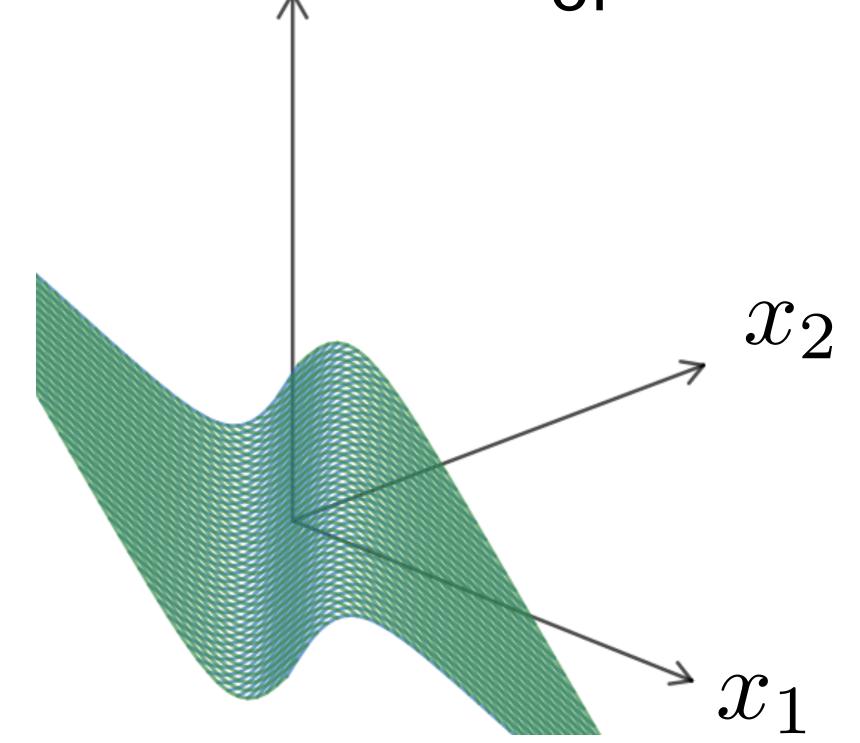
(looks like action potential in neuron)



Neural Networks: XOR



$$y = a_1x_1 + a_2x_2$$
 X
 $y = a_1x_1 + a_2x_2 + a_3 \tanh(x_1 + x_2)$ $y = -x_1 - x_2 + 2 \tanh(x_1 + x_2)$ "or"



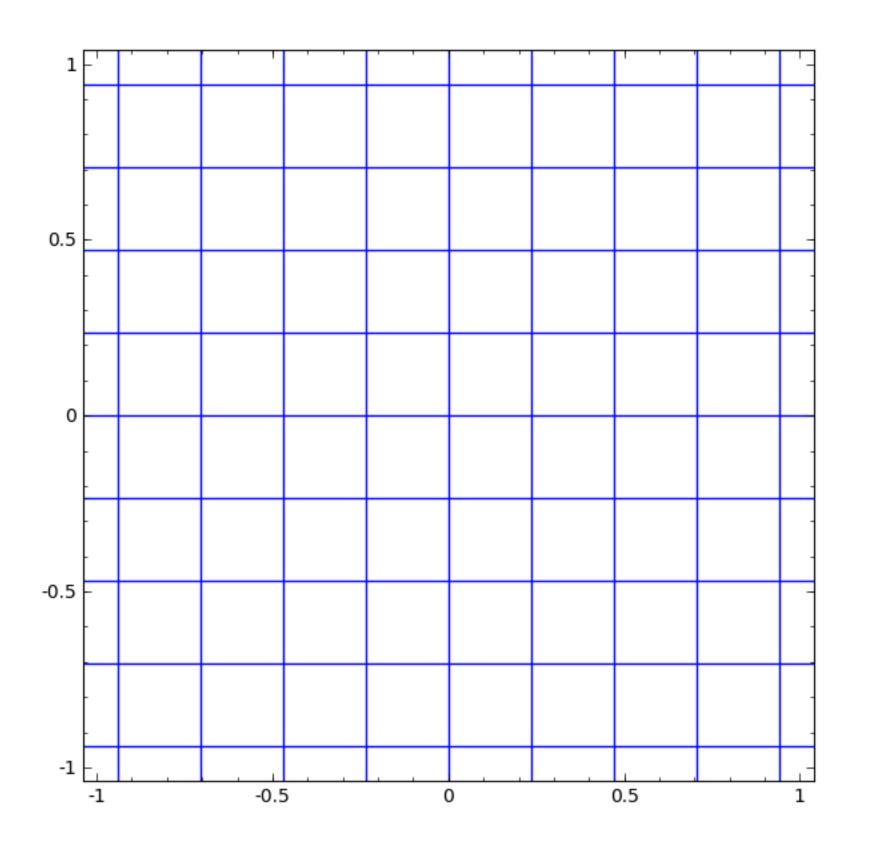
Neural Networks

Linear model: $y = \mathbf{w} \cdot \mathbf{x} + b$

$$y = g(\mathbf{w} \cdot \mathbf{x} + b)$$

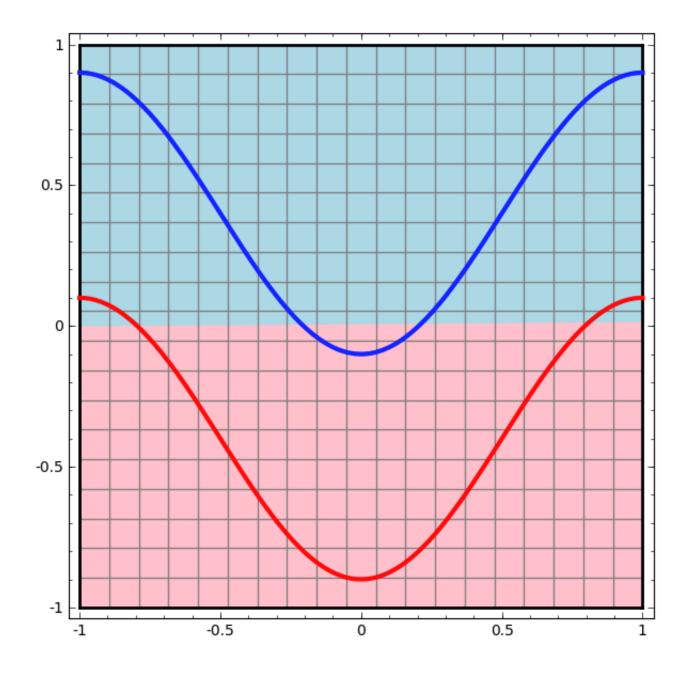
$$\mathbf{y} = g(\mathbf{W}\mathbf{x} + \mathbf{b})$$

Nonlinear Warp Shift transformation space

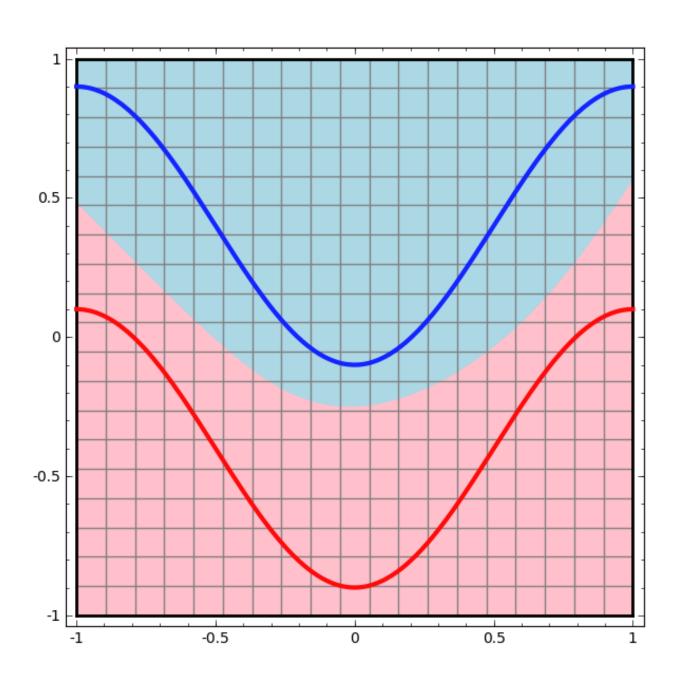


Neural Networks

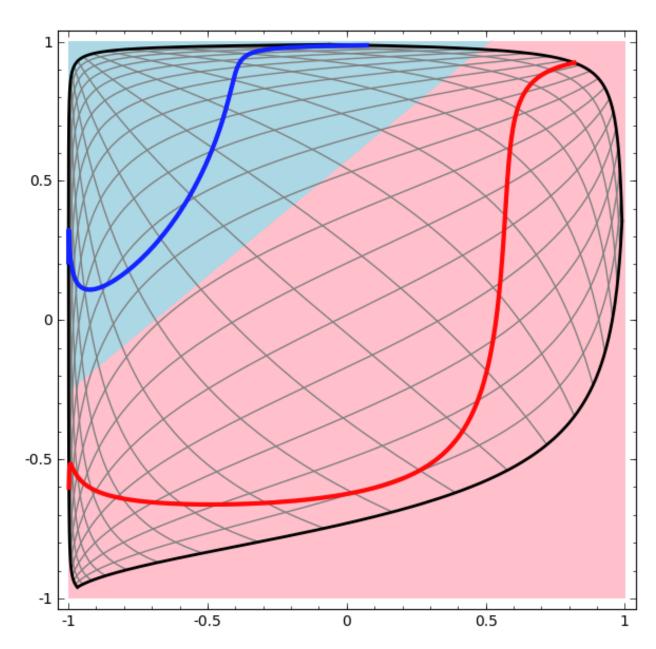
Linear classifier



Neural network



...possible because we transformed the space!

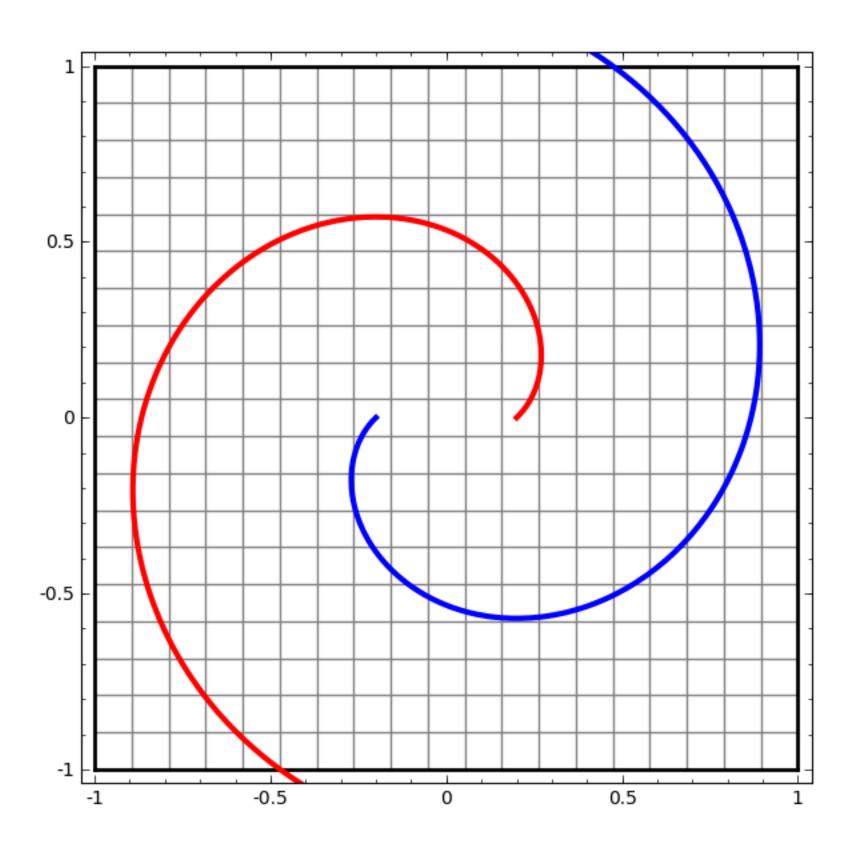


Deep Neural Networks

$$egin{aligned} oldsymbol{y} &= g(\mathbf{W}oldsymbol{x} + oldsymbol{b}) \ \mathbf{z} &= g(\mathbf{V}oldsymbol{y}(\mathbf{W}\mathbf{x} + \mathbf{b}) + \mathbf{c}) \ \end{aligned}$$
 output of first layer

Check: what happens if no nonlinearity? More powerful than basic linear models?

$$z = V(Wx + b) + c$$



Feedforward Networks, Backpropagation

Logistic Regression with NNs

$$P_{\mathbf{w}}(y = \hat{y} \mid \mathbf{x}) = \frac{\exp\left(\mathbf{w}_{\hat{y}}^{\top} \mathbf{f}(\mathbf{x})\right)}{\sum_{y'} \exp\left(\mathbf{w}_{y'}^{\top} \mathbf{f}(\mathbf{x})\right)}$$
$$P(\mathbf{y} \mid \mathbf{x}) = \operatorname{softmax}([\mathbf{w}_{\hat{y}}^{\top} \mathbf{f}(\mathbf{x})]_{y \in \mathcal{Y}})$$

- Compute scores for all possible labels at once (returns vector)
- $\operatorname{softmax}(p)_i = \frac{\exp(p_i)}{\sum_{i'} \exp(p_{i'})}$
- softmax: exps and normalizes a given vector

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wf(\mathbf{x}))$$

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

Now one hidden layer

Neural Networks for Classification

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

$$d \text{ hidden units}$$

$$v \text{ probs}$$

$$d \times n \text{ matrix}$$

$$nonlinearity$$

$$num_classes \times d$$

$$n \text{ features}$$

$$num_classes \times d$$

$$n \text{ matrix}$$

Training Neural Networks

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(W\mathbf{z})$$
 $\mathbf{z} = g(Vf(\mathbf{x}))$

Maximize log likelihood of training data

$$\mathcal{L}(\mathbf{x}, i^*) = \log P(y = i^* | \mathbf{x}) = \log (\operatorname{softmax}(W\mathbf{z}) \cdot e_{i^*})$$

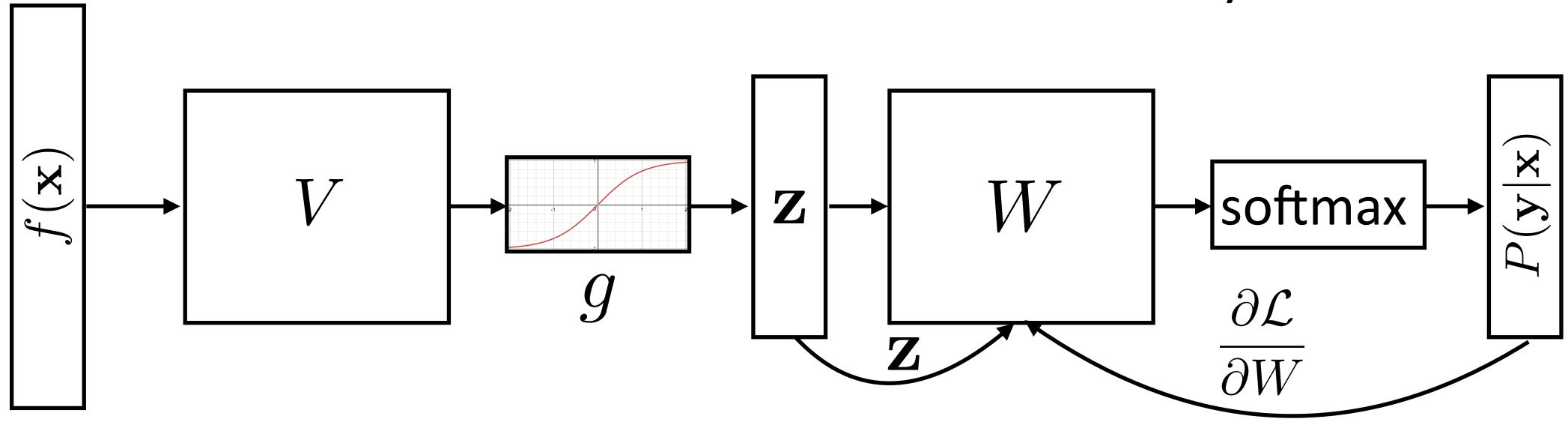
- * i*: index of the gold label
- e_i : 1 in the *i*th row, zero elsewhere. Dot by this = select *i*th index

▶ This is exactly the same as logistic regression with z as the features!

Neural Networks for Classification

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

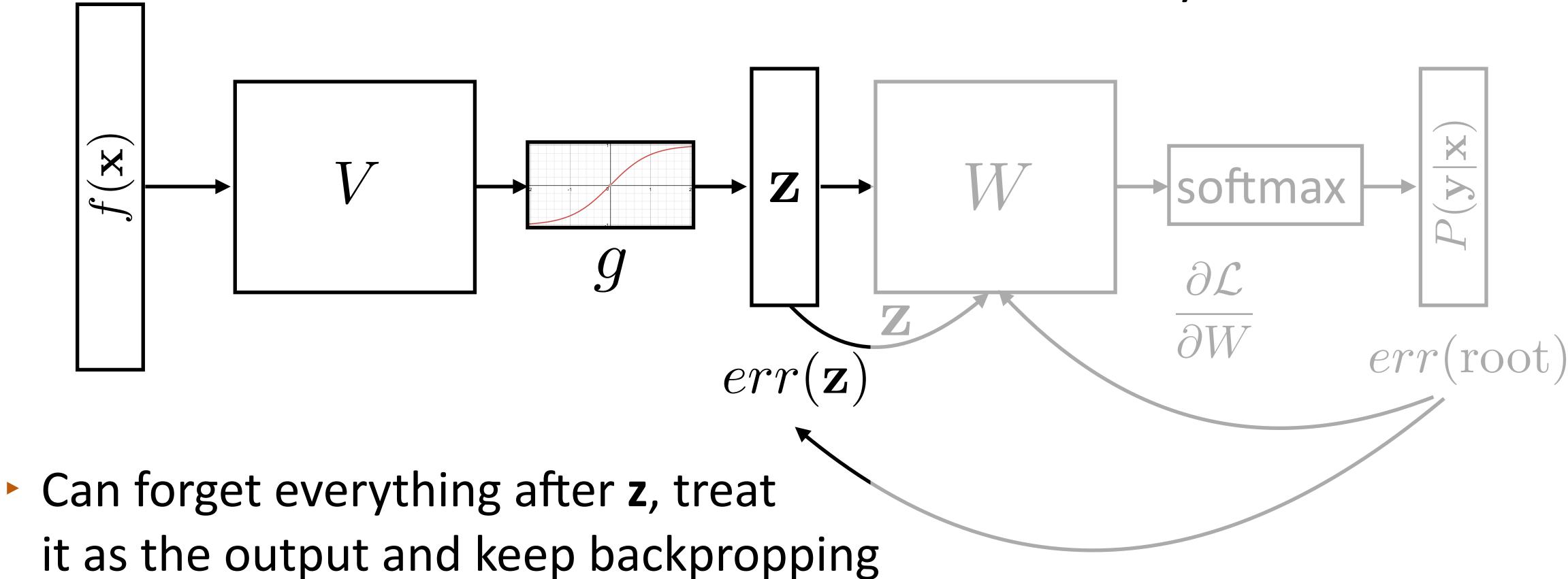
Two sets of params to update: W and V.
W is easy!



Backpropagation: Picture

$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$

Two sets of params to update: W and V.
W is easy!



Backpropagation: Takeaways

- Gradients of output weights W are easy to compute looks like logistic regression with hidden layer z as feature vector
- Can compute derivative of loss with respect to z to form an "error signal" for backpropagation
- Easy to update parameters based on "error signal" from next layer, keep pushing error signal back as backpropagation
- Need to remember the values from the forward computation

Implementing NNs

(see ffnn_example.py on the course website)

Computation Graphs

- Computing gradients is hard! Computation graph abstraction allows us to define a computation symbolically and will do this for us
- Automatic differentiation: keep track of derivatives / be able to backpropagate through each function:

$$y = x * x$$
 \longrightarrow $(y,dy) = (x * x, 2 * x * dx)$ codegen

Use a library like Pytorch or Tensorflow. This class: Pytorch

Computation Graphs in Pytorch

• Define forward pass for $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

```
class FFNN(nn.Module):
    def init (self, inp, hid, out):
        super(FFNN, self). init ()
        self.V = nn.Linear(inp, hid)
        self.g = nn.Tanh()
        self.W = nn.Linear(hid, out)
        self.softmax = nn.Softmax(dim=0)
    def forward(self, x):
        return self.softmax(self.W(self.g(self.V(x)))
```

Computation Graphs in Pytorch

```
ei*: one-hot vector
P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x}))) of the label
                                     (e.g., [0, 1, 0])
ffnn = FFNN()
def make update(input, gold label):
   ffnn.zero grad() # clear gradient variables
   probs = ffnn.forward(input)
   loss = torch.neg(torch.log(probs)).dot(gold label)
   loss.backward()
   optimizer.step()
```


Training a Model

Define a computation graph

For each epoch:

For each batch of data:

Compute loss on batch

Autograd to compute gradients

Take step with optimizer

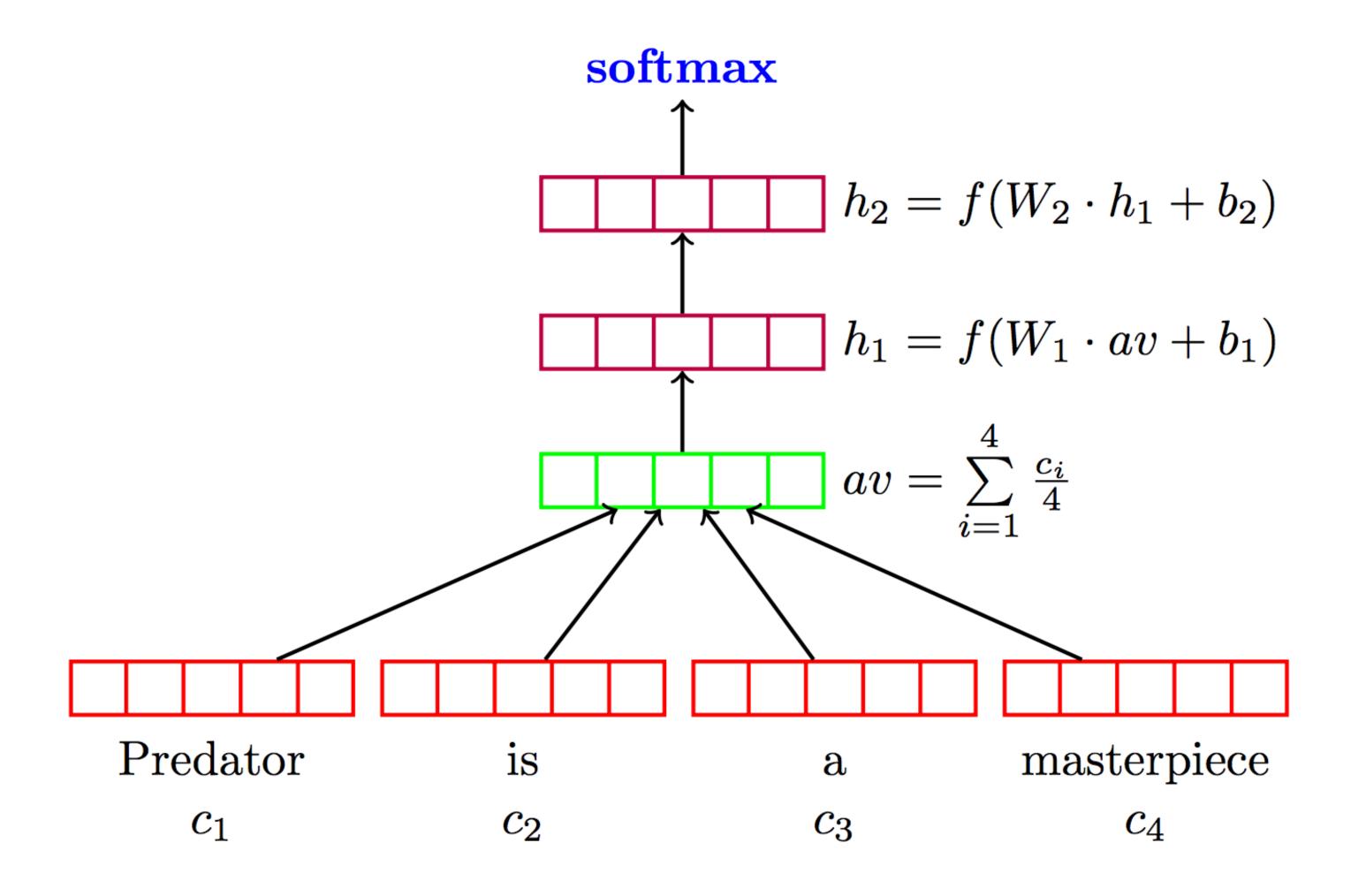
Decode test set

Deep Averaging Networks, Sentiment Analysis

Credit: Stephen Roller

Sentiment Analysis (Project 1)

 Deep Averaging Networks: feedforward neural network on average of word embeddings from input

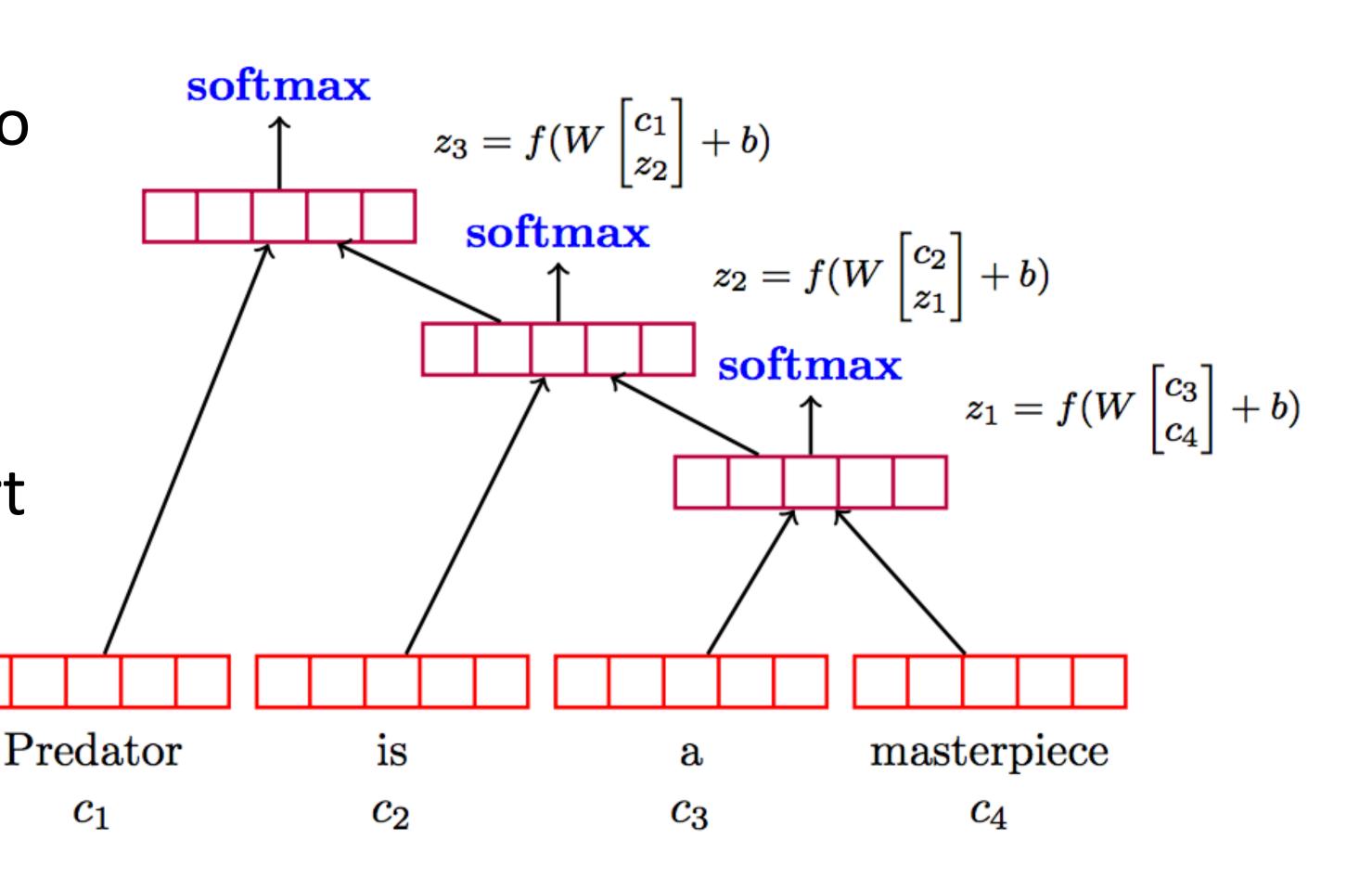


lyyer et al. (2015)

Deep Averaging Networks

Widely-held view: need to model syntactic structure to represent language

 Surprising that averaging can work as well as this sort of composition



Sentiment Analysis

	Model	RT	SST fine	SST bin	IMDB	Time (s)	
	DAN-ROOT		46.9	85.7		31	
	DAN-RAND	77.3	45.4	83.2	88.8	136	b α το κ ο Ε ο Ι / 201 Γ \
	DAN	80.3	47.7	86.3	89.4	136	lyyer et al. (2015)
	NBOW-RAND	76.2	42.3	81.4	88.9	91	
	NBOW	79.0	43.6	83.6	89.0	91	
	BiNB	<u> </u>	41.9	83.1			Wang and
	NBSVM-bi	79.4			91.2		Manning (2012)
	RecNN*	77.7	43.2	82.4			iviaiiiiig (2012)
	RecNTN*		45.7	85.4			
	DRecNN		49.8	86.6		431	
	TreeLSTM		50.6	86.9			
	DCNN*		48.5	86.9	89.4		
	PVEC* CNN-MC	 Q1 1	48.7	87.8 88.1	92.6	2,452	Kim (2014)
		81.1	47.4	00.1		2,432	KIIII (ZOI4)
	$WRRBM^*$				89.2		

Bag-of-words

Tree RNNs / CNNS / LSTMS

Word Embeddings in PyTorch

torch.nn.Embedding: maps vector of indices to matrix of word vectors

- \triangleright *n* indices => *n* x *d* matrix of *d*-dimensional word embeddings
- b x n indices => b x n x d tensor of d-dimensional word embeddings
- Steps to Project 1: define a module that takes a list of indices, then does the embedding + averaging and feeds the result through an FFNN (can use the module from ffnn_example.py as a starter)

Tips for Project 1

- ► Word embedding layer can be either frozen or trained be attentive to this (torch.nn.Embedding layer from the WordEmbeddings class)
- As with the linear model, most minor tweaks like dropout, etc. will make <1% difference. If you're 10% off the performance target, it's likely due to a mis-sized network, poor optimization, bugs, etc.
- Debugging: follow ffnn_example.py, can use 50-dim embeddings to debug (they're smaller and a bit faster to use)

POS Tagging with FFNNs

NLP with Feedforward Networks

Part-of-speech tagging with FFNNs

55

Fed raises interest rates in order to ...

previous word

- Word embeddings for each word form input
- ~1000 features here smaller feature vector than in sparse models, but every feature fires on every example
- Weight matrix learns position-dependent processing of the words
 othe

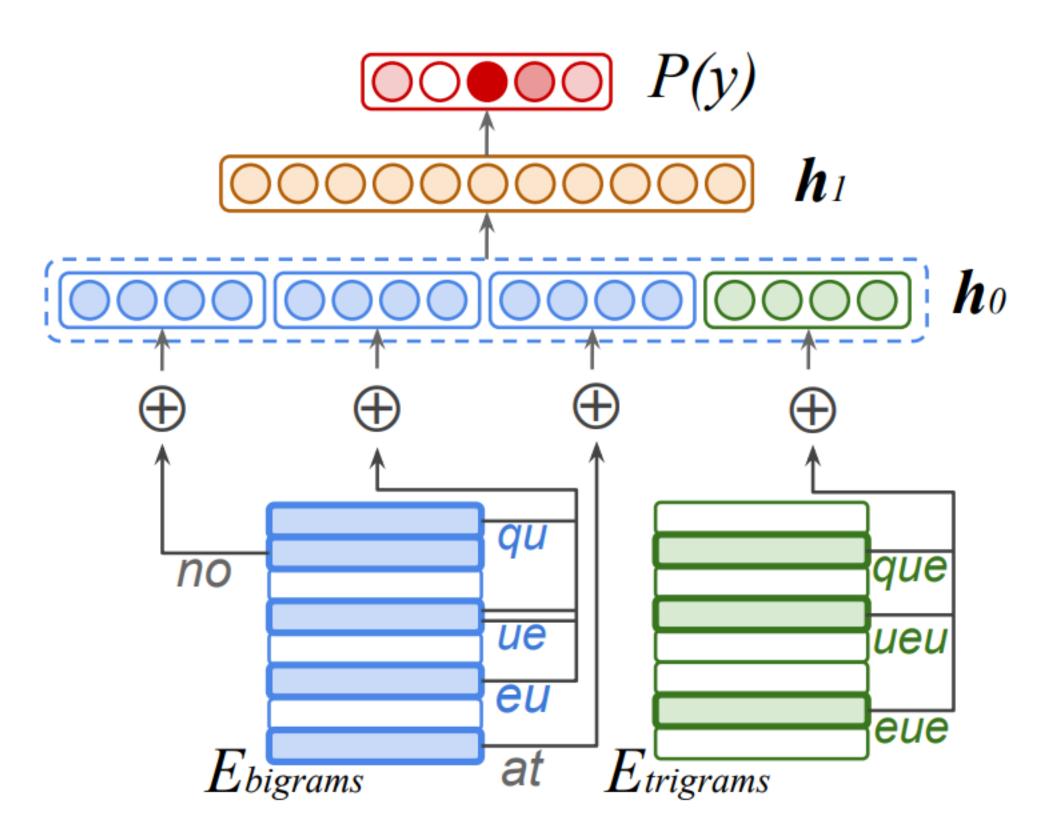
curr word

next word

other words, feats, etc. L...

Botha et al. (2017)

NLP with Feedforward Networks



There was no queue at the ...

 Hidden layer mixes these different signals and learns feature conjunctions

NLP with Feedforward Networks

Multilingual tagging results:

Model	Acc.	Wts.	MB	Ops.
Gillick et al. (2016)	95.06	900k	_	6.63m
Small FF	94.76	241k	0.6	0.27m 0.31m 0.18m
+Clusters	95.56	261k	1.0	0.31m
$\frac{1}{2}$ Dim.	95.39	143k	0.7	0.18m

Gillick used LSTMs; this is smaller, faster, and better

Training Tips

Batching

- Batching data gives speedups due to more efficient matrix operations
- Need to make the computation graph process a batch at the same time

```
# input is [batch_size, num_feats]
# gold_label is [batch_size, num_classes]
def make_update(input, gold_label)
    ...
    probs = ffnn.forward(input) # [batch_size, num_classes]
    loss = torch.sum(torch.neg(torch.log(probs)).dot(gold_label))
    ...
```

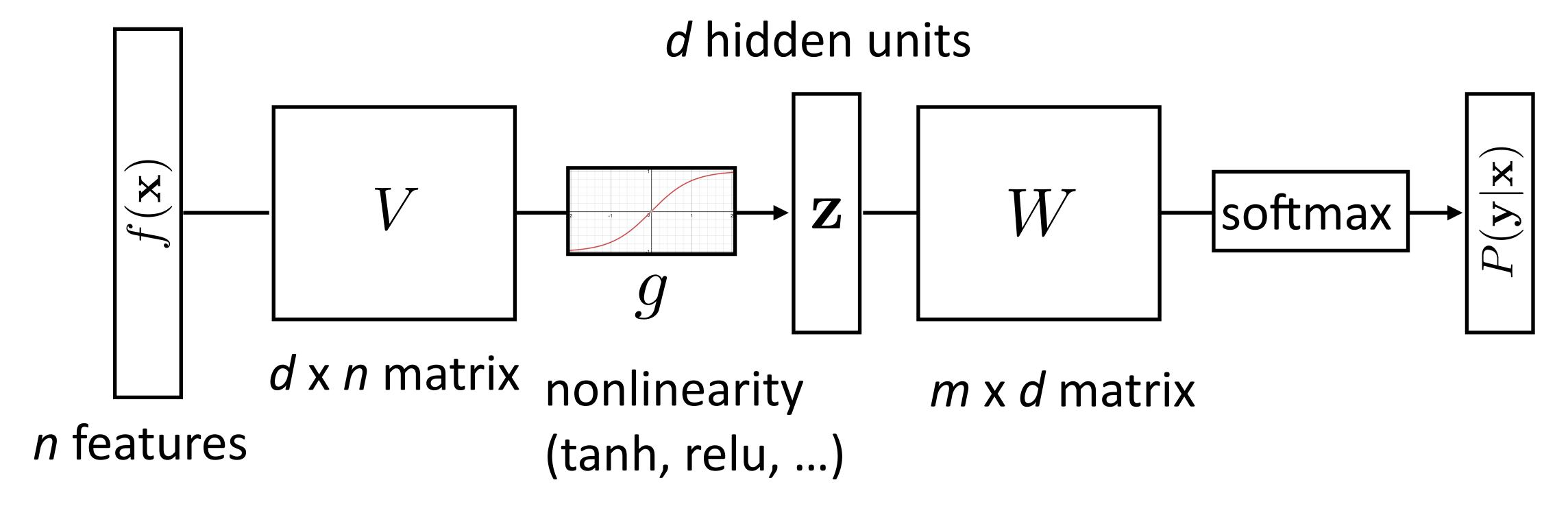
Batch sizes from 1-100 often work well

Training Basics

- Basic formula: compute gradients on batch, use first-order optimization method (SGD, Adagrad, etc.)
- How to initialize? How to regularize? What optimizer to use?
- This lecture: some practical tricks. Take deep learning or optimization courses to understand this further

How does initialization affect learning?

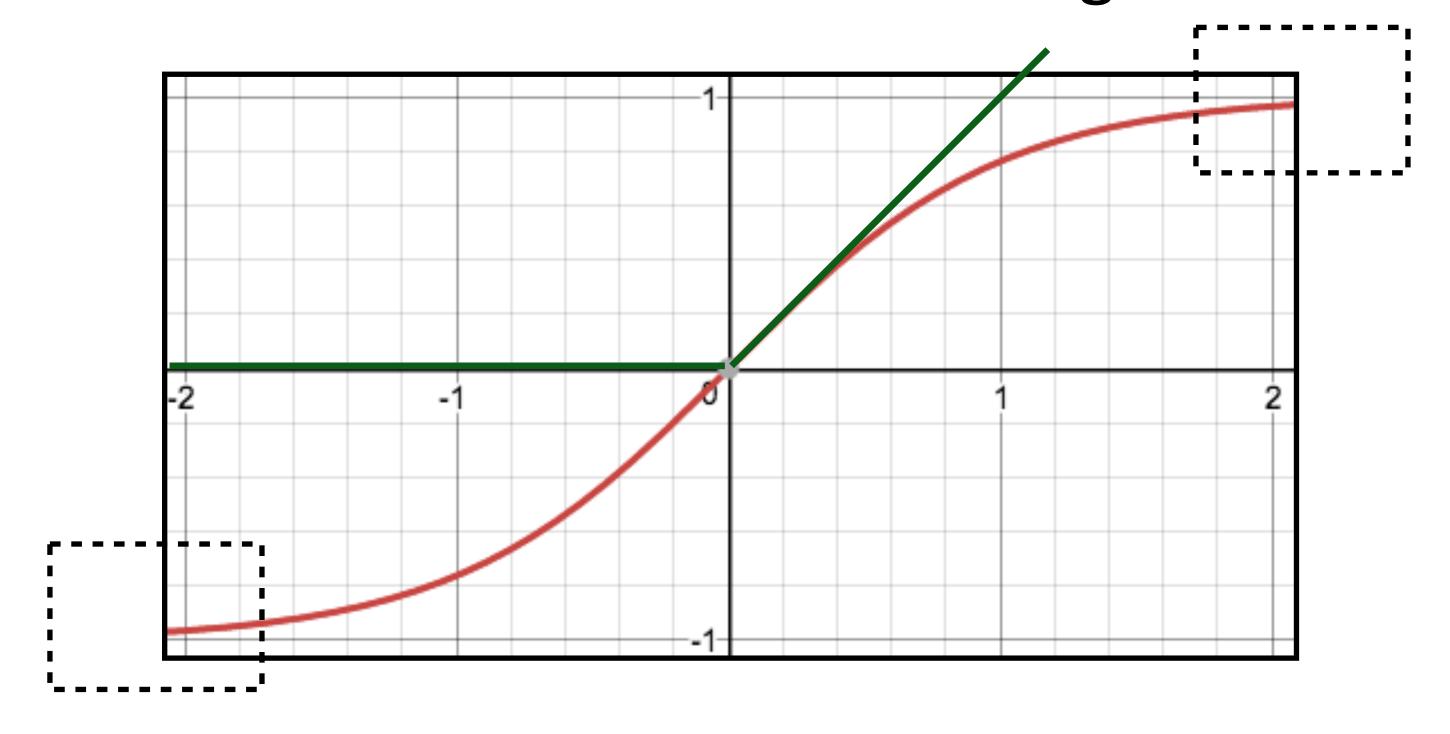
$$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$$



- How do we initialize V and W? What consequences does this have?
- Nonconvex problem, so initialization matters!

How does initialization affect learning?

Nonlinear model...how does this affect things?



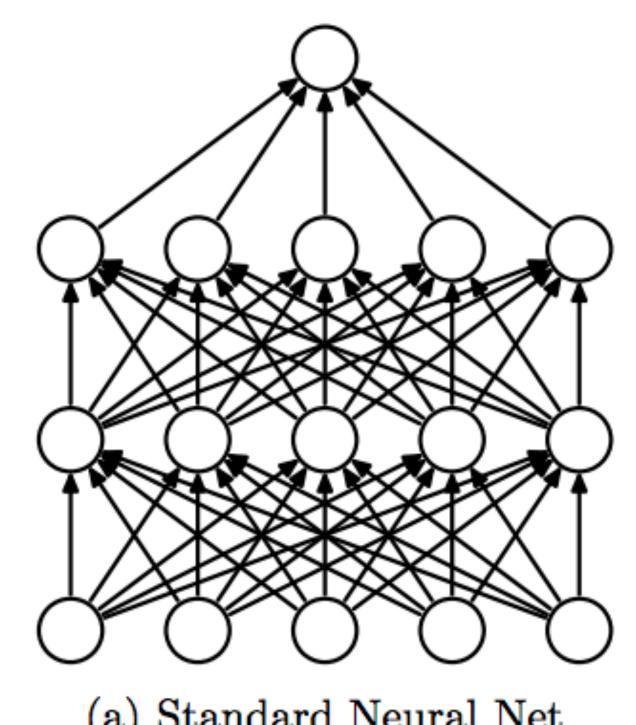
- If cell activations are too large in absolute value, gradients are small
- ReLU: larger dynamic range (all positive numbers), but can produce big values, can break down if everything is too negative

Initialization

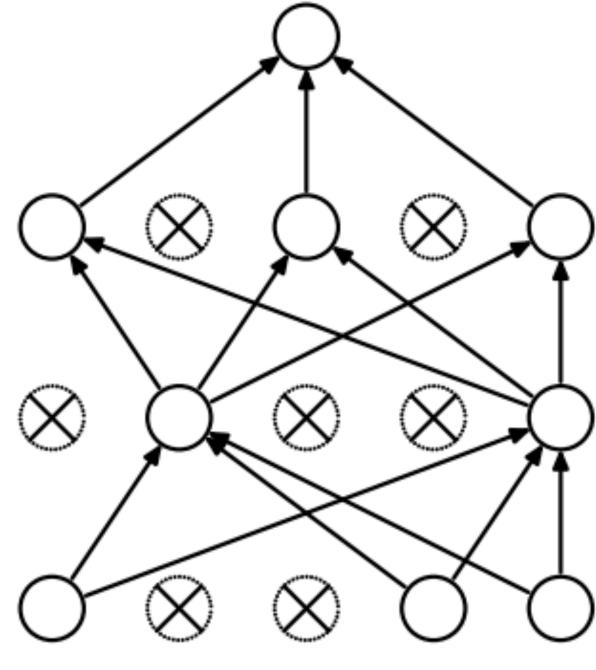
- 1) Can't use zeroes for parameters to produce hidden layers: all values in that hidden layer are always 0 and have gradients of 0, never change
- 2) Initialize too large and cells are saturated
- Can do random uniform / normal initialization with appropriate scale
- Glorot initializer: $U\left[-\sqrt{\frac{6}{\mathrm{fan-in}+\mathrm{fan-out}}},+\sqrt{\frac{6}{\mathrm{fan-in}+\mathrm{fan-out}}}\right]$
 - Want variance of inputs and gradients for each layer to be the same
- ▶ Batch normalization (loffe and Szegedy, 2015): periodically shift+rescale each layer to have mean 0 and variance 1 over a batch (useful if net is deep)

Dropout

- Probabilistically zero out parts of the network during training to prevent overfitting, use whole network at test time
- Form of stochastic regularization
- Similar to benefits of ensembling: network needs to be robust to missing signals, so it has redundancy



(a) Standard Neural Net



(b) After applying dropout.

One line in Pytorch/Tensorflow

Srivastava et al. (2014)

Adam

```
g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t) m_t \leftarrow \beta_1 \cdot m_{t-1} + (1-\beta_1) \cdot g_t (Update biased first moment estimate) v_t \leftarrow \beta_2 \cdot v_{t-1} + (1-\beta_2) \cdot g_t^2 (Update biased second raw moment estimate) \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate) \widehat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate) \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t/(\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
```

- m: exponentially-weighted moving average of gradients
- v: exponentially-weighted moving average of gradients squared
- β₁ = 0.9, β₂ = 0.999, so these average over many steps
- Update is based on normalized corrected mean, incorporates momentum

Next Time: Word Representations

Word Embeddings

Currently we think of words as "one-hot" vectors

$$the = [1, 0, 0, 0, 0, 0, ...]$$
 $good = [0, 0, 0, 1, 0, 0, ...]$
 $great = [0, 0, 0, 0, 0, 1, ...]$

- good and great seem as dissimilar as good and the
- Neural networks are built to learn sophisticated nonlinear functions of continuous inputs; our inputs are weird and discrete

Word Embeddings

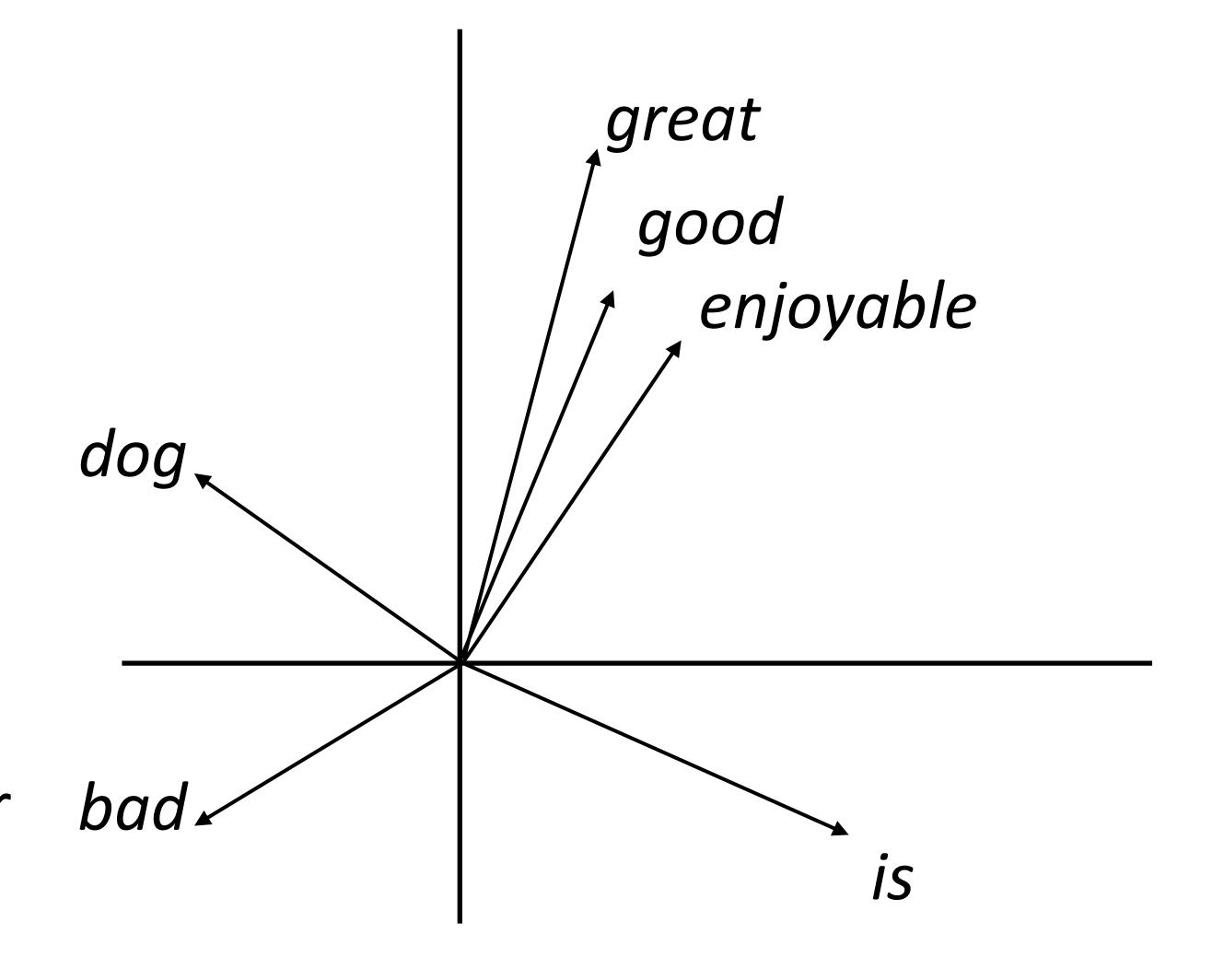
Want a vector space where similar words have similar embeddings

the movie was great

2

the movie was good

- Goal: come up with a way to produce these embeddings
- For each word, want
 "medium" dimensional vector
 (50-300 dims) representing it



Takeaways

- Feedforward neural networks can be implemented easily in PyTorch
 - We saw that these are basically logistic regression
 - Easy to implement backpropagation (you don't have to do anything!)
 and use the standard tricks to get good performance
- Next class: thinking about the feature representations: word representations / word vectors (word2vec and GloVe)