
CS388:	Natural	Language	Processing

Greg	Durre8

Lecture	5:	Word	
Embeddings

300-d

vector

spacelexical

semantics

Administrivia

‣ Project	1	due	today

‣ Project	2	released	today;	material	for	it	covered	Thursday	and	finished	
next	Tuesday

Recall:	Feedforward	NNs

V

n	features

d	hidden	units

d	x	n	matrix num_classes	x	d	
matrix

soNmaxWf
(x
)

z

nonlinearity	
(tanh,	relu,	…)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))
num_classes	
probs

Recall:	Deep	Averaging	Networks
‣ Deep	Averaging	Networks:	feedforward	neural	network	on	average	of	
word	embeddings	from	input

Iyyer	et	al.	(2015)

This	Lecture

‣ Word	representaXons

‣ Skip-gram

‣ EvaluaXng	word	embeddings

‣ GloVe

‣ Other	word	embedding	methods

Word	RepresentaXons

Word	RepresentaXons

‣ ConXnuous	model	<->	expects	conXnuous	semanXcs	from	input

‣ “You	shall	know	a	word	by	the	company	it	keeps”	Firth	(1957)

‣ Neural	networks	work	very	well	at	conXnuous	data,	but	words	are	discrete

slide	credit:	Dan	Klein

Discrete	Word	RepresentaXons

good

enjoyablegreat

0

fishcat

‣ Brown	clusters:	hierarchical	agglomeraXve	hard	clustering	(each	word	has	
one	cluster,	not	some	posterior	distribuXon	like	in	mixture	models)

‣ Maximize

‣ Useful	features	for	tasks	like	NER,	not	suitable	for	NNs

dog
…

is
go

0

0 1 1

1
1

1

1

0

0

P (wi|wi�1) = P (ci|ci�1)P (wi|ci)

Brown	et	al.	(1992)

good
enjoyable

bad

dog

great

is

‣ Want	a	vector	space	where	similar	words	have	similar	embeddings

the	movie	was	great

the	movie	was	good

~~

Word	Embeddings

‣ Goal:	come	up	with	a	way	to	
produce	these	embeddings

‣ For	each	word,	want	
“medium”	dimensional	vector	
(50-300	dims)	represenXng	it

Skip-gram

Skip-Gram
‣ Input:	a	corpus	of	raw	text.	(Same	as	the	input	to	“real”	language	
modeling)

Mikolov	et	al.	(2013)

‣ Output:	a	set	of	embeddings:	a	real-valued	vector	for	each	word	in	the	
vocabulary

‣ We	are	going	to	learn	these	by	sehng	up	a	fake	predicXon	problem:	
predict	a	word’s	context	from	that	word

the	dog	bit	the	man

(word	=	bit,	context	=	dog)

(word	=	bit,	context	=	the)

Skip-Gram

the	dog	bit	the	man
‣ Predict	one	word	of	context	from	word

bit

soNmaxMulXply	
by	W

gold	=	dog

‣ Parameters:	d	x	|V|	vectors,	|V|	x	d	output	parameters	(W)	(also	
usable	as	vectors!).	d	is	a	hyperparameter

‣ Another	training	example:	bit	->	the

P (w0|w) = softmax(We(w))

Mikolov	et	al.	(2013)

Using	Skip-Gram

Mikolov	et	al.	(2013)

the	dog	bit	the	man

k=1:	two	words	of	context

k=2:	four	words	of	context

‣ Context	window	size:	how	many	words	around	the	“center”	word	do	
we	look?

‣ Advantages/disadvantages	of	different	sizes	of	k?

‣ Vector	size:	controls	capacity	of	model

‣ IniXalizaXon:	need	to	randomly	iniXalize	in	a	reasonable	way

‣ Training:	maximize	log	likelihood	of	the	examples	derived	given	k,	summed	
over	a	corpus	(but	we’ll	never	use	the	model	as	is,	only	its	embeddings)

Hierarchical	SoNmax

‣ Matmul	+	soNmax	over	|V|	is	very	slow	to	compute	for	skip-gram

‣ Hierarchical	soNmax:‣ Standard	soNmax:	
|V|	dot	products	
of	size	d

log(|V|)	dot	products	of	size	d,

…

…

the
a

‣ Huffman	encode	
vocabulary,	use	binary	
classifiers	to	decide	
which	branch	to	take

|V|	x	d	parameters Mikolov	et	al.	(2013)

P (w0|w) = softmax(We(w))

‣ log(|V|)	binary	decisions

Skip-Gram	with	NegaXve	Sampling

‣ d	x	|V|	vectors,	d	x	|V|	context	vectors	(same	#	of	params	as	before)

Mikolov	et	al.	(2013)

(bit,	the)	=>	+1
(bit,	cat)	=>	-1

(bit,	a)	=>	-1
(bit,	fish)	=>	-1

‣ Take	(word,	context)	pairs	and	classify	them	as	“real”	or	not.	Create	
random	negaXve	examples	by	sampling	from	unigram	distribuXon

words	in	similar	
contexts	select	for	
similar	c	vectors

P (y = 1|w, c) = ew·c

ew·c + 1

‣ ObjecXve	=	
sampled

logP (y = 1|w, c) + 1

k

nX

i=1

logP (y = 0|wi, c)
<latexit sha1_base64="WNhcgQmvSCUwPzR5dEpsXRMdq3w=">AAADb3icfVJNb9NAEN04fJTwlZYDhyK0oqpkqyayCxJcIlVw4Rgk0laKw2q9WTurrD+0OyaJXB/5g9z4D1z4B6wdB9G0YiRbs++9mbc7mjCXQoPn/exY3Tt3793fe9B7+Ojxk6f9/YNznRWK8THLZKYuQ6q5FCkfgwDJL3PFaRJKfhEuPtb8xTeutMjSL7DO+TShcSoiwSgYiOx3vh8HVOZzSnxbO3iIA77K7SCfC8Jt7fpukFCYh1G5qhynt9WCrQk0al0kpNSkhNd+VeGWbk52izrXWxJwYbfpXx62RW7d38GGCznc6nfS+DVsc7BbcNeuAV3z+68puNvyxlTyCOyNV4wDkeIA+ApUUqaxook2zktiCDbLALNAiXgOTi+QWYxH9nroXy1d5uATHESKstKvykXV3lwM/eqrabeVeldLIoyY9I+8gdcEvpn4bXKE2hiR/o9glrEi4SkwSbWe+F4O05IqEEzyqhcUmueULWjMJyZNacL1tGz2pcLHBpnhKFPmS80LavTfitK8Ua+T0CjrmeldrgZv4yYFRO+npUjzAnjKNkZRITFkuF4+PBOKM5Brk1CmhLkrZnNqhgRmRXtmCP7uk28m56cD/83g9PPbo7MP7Tj20CF6hWzko3foDH1CIzRGrPPLOrAOrRfW7+7z7ssu3kitTlvzDF2LrvMHMNAQkQ==</latexit>

ConnecXons	with	Matrix	FactorizaXon

Levy	et	al.	(2014)

‣ Skip-gram	model	looks	at	word-word	co-occurrences	and	produces	two	
types	of	vectors

word	pair	
counts

|V|

|V| |V|

d

d

|V|

context	vecs
word	
vecs

‣ Looks	almost	like	a	matrix	factorizaXon…

Skip-Gram	as	Matrix	FactorizaXon

Levy	et	al.	(2014)

|V|

|V|
Mij = PMI(wi, cj)� log k

PMI(wi, cj) =
P (wi, cj)

P (wi)P (cj)
=

count(wi,cj)
D

count(wi)
D

count(cj)
D

‣ If	we	sample	negaXve	examples	from	the	unigram	distribuXon	over	words

num	negaXve	samples

‣ …and	it’s	a	weighted	factorizaXon	problem	(weighted	by	word	freq)

Skip-gram	objecXve	exactly	corresponds	to	factoring	this	matrix:

GloVe

GloVe	(Global	Vectors)

Pennington	et	al.	(2014)

X

i,j

f(count(wi, cj))
�
w>

i cj + ai + bj � log count(wi, cj))
�2‣ ObjecXve	=	

‣ Also	operates	on	counts	matrix,	weighted	
regression	on	the	log	co-occurrence	matrix

‣ Constant	in	the	dataset	size	(just	need	counts),	quadraXc	in	voc	size

‣ By	far	the	most	common	word	vectors	used	today	(30000+	citaXons)

word	pair	
counts

|V|

|V|

GloVe	(Global	Vectors):	Example

Pennington	et	al.	(2014)

X

i,j

f(count(wi, cj))
�
w>

i cj + ai + bj � log count(wi, cj))
�2‣ ObjecXve	=	

the

dog catthe ran

dog

cat

ran

0 200

200

200

200 0

0

0

0

015 15

15

150

0

(made	up	values	—	matrix	will	generally	be	
symmetric,	though)

Linear	regression	with	6	pairs:	
each	element	is	plugged	into	the	above	
equaXon

+	constant	=	log	count	of	pair

Analogies

queen

king

woman

man

(king	-	man)	+	woman	=	queen

‣ Why	would	this	be?

‣ woman	-	man	captures	the	difference	in	
the	contexts	that	these	occur	in

king	+	(woman	-	man)	=	queen

‣ Dominant	change:	more	“he”	with	man	
and	“she”	with	woman	—	similar	to	
difference	between	king	and	queen

‣ Can	evaluate	on	this	as	well

GloVe	MoXvaXon

Pennington	et	al.	(2014)

‣ GloVe	objecXve	is	derived	to	preserve	regulariXes	in	cooccurrence	
of	words	with	other	words

Other	Methods

fastText:	Sub-word	Embeddings

‣ Same	as	SGNS,	but	break	words	down	into	n-grams	with	n	=	3	to	6

Bojanowski	et	al.	(2017)

where:	
3-grams:	<wh,	whe,	her,	ere,	re>	
4-grams:	<whe,	wher,	here,	ere>,	
5-grams:	<wher,	where,	here>,	
6-grams:	<where,	where>

‣ Replace														in	skip-gram	computaXon	with		w · c
<latexit sha1_base64="okWze5eSFLfuKNB+HrglgUZNf6E=">AAADBXicfVLLbtQwFHXCqwyPTmHZjcWoUiLCKClIZYNUwYZlkZi20mQUOZ6bjlUnsewb2lGUDRt+hQ0LEGLLP7Djb3DSDKLTiivZOj7n3nv8SpUUBsPwt+PeuHnr9p2Nu4N79x883BxuPTo0ZaU5THgpS32cMgNSFDBBgRKOlQaWpxKO0tM3rX70AbQRZfEelwpmOTspRCY4Q0slW872TsykWrAk8oxPX9EYzpUXq4VIwDNBFMQ5w0Wa1eeN7w9WueiZBLtsU+VJbZIan0VNQ3u5W3k9619umWCA603/6rgqCtr+PrVaCnit39POr1O7hdeT63YdGdjpv6YYrMqt6RmN+bxEypPhKByHXdCrIOrBiPRxkAx/xfOSVzkUyCUzZhqFCmc10yi4hGYQVwYU46fsBKYWFiwHM6u7V2zojmXmNCu1HYV1b9l/K2qWG7PMU5vZnsSsay15nTatMHs5q0WhKoSCXxhllaRY0vZL0LnQwFEuLWBcC7tXyhdMM4724wzsJUTrR74KDnfH0fPx7rsXo/3X/XVskG3yhHgkIntkn7wlB2RCuPPR+ex8db65n9wv7nf3x0Wq6/Q1j8mlcH/+AZLG7d0=</latexit>

X

g2ngrams

wg · c
!

<latexit sha1_base64="W7TRZGN2482/ctHk1BCU8sCouKE=">AAADMXicfVJNb9QwEHXCV1k+uoUjF4tVpUSEVVKQ4IJUwQGORWLbSutV5HidrFXHiewJ7CrKX+LCP0FcegAhrvwJnGwW0W3FSI6e35uZN3aclFIYCMNzx712/cbNWzu3B3fu3ru/O9x7cGyKSjM+YYUs9GlCDZdC8QkIkPy01JzmieQnydmbVj/5yLURhfoAq5LPcpopkQpGwVLxnvN2n1BZLmgcecbHrzDhy9Ij5ULE3DNBFJCcwiJJ62Xj+4NNLngmhi7bVHlcm7iGp1HT4F7udl7P+hdbxhDAdtO/OmyKgra/j62WcLjS70nn16ndxuvJbbuODOznv6YQbMqtKZE8BW9tlWEiFCbAl6DzWmWa5sYaf4qtwOYFYEa0yBbgx8NROA67wJdB1IMR6uMoHn4l84JVOVfAJDVmGoUlzGqqQTDJmwGpDC8pO6MZn1qoaM7NrO7+eIP3LTPHaaHtUnaIlv23orZjmlWe2Mz21GZba8mrtGkF6ctZLVRZAVdsbZRWEkOB2+eD50JzBnJlAWVa2FkxW1BNGdhHNrCXEG0f+TI4PhhHz8YH75+PDl/317GDHqHHyEMReoEO0Tt0hCaIOZ+db85354f7xT13f7q/1qmu09c8RBfC/f0HGUoAvg==</latexit>

‣ Advantages?

Preview:	Context-dependent	Embeddings

Peters	et	al.	(2018)

‣ Train	a	neural	language	model	to	predict	the	next	word	given	previous	
words	in	the	sentence,	use	its	internal	representaXons	as	word	vectors

‣ Context-sensiFve	word	embeddings:	depend	on	rest	of	the	sentence

‣ Huge	improvements	across	nearly	all	NLP	tasks	over	GloVe

they swing the batthey see the bat

‣ How	to	handle	different	word	senses?	One	vector	for	bat

ComposiXonal	SemanXcs

‣ What	if	we	want	embedding	representaXons	for	whole	sentences?

‣ Skip-thought	vectors	(Kiros	et	al.,	2015),	similar	to	skip-gram	generalized	
to	a	sentence	level	(more	later)

‣ Is	there	a	way	we	can	compose	vectors	to	make	sentence	representaXons?	
Summing?

‣ Will	return	to	this	in	a	few	weeks	as	we	move	on	to	syntax	and	semanXcs

Using	Word	Embeddings

‣ Approach	1:	learn	embeddings	as	parameters	from	your	data

‣ Approach	2:	iniXalize	using	GloVe,	keep	fixed

‣ Approach	3:	iniXalize	using	GloVe,	fine-tune
‣ Faster	because	no	need	to	update	these	parameters

‣ Works	best	for	some	tasks

‣ ONen	works	pre8y	well

EvaluaXng	Word	Embeddings

EvaluaXng	Word	Embeddings

‣ What	properXes	of	language	should	word	embeddings	capture?

good
enjoyable

bad

dog

great

is

cat

wolf

Fger

was

‣ Similarity:	similar	words	are	close	to	
each	other

‣ Analogy:

Paris	is	to	France	as	Tokyo	is	to	???

good	is	to	best	as	smart	is	to	???

Similarity

Levy	et	al.	(2015)

‣ SVD	=	singular	value	decomposiXon	on	PMI	matrix

‣ GloVe	does	not	appear	to	be	the	best	when	experiments	are	carefully	
controlled,	but	it	depends	on	hyperparameters	+	these	disXncXons	don’t	
ma8er	in	pracXce

Stability

‣ Stability:	percent	overlap	
between	nearest	
neighbors	in	embedding	
space	if	you	retrain	
embeddings	from	
different	iniXalizaXon

Burdick	et	al.	(2018)

‣ To	what	extent	are	the	
relaXonships	captured	
by	word	embeddings	
consistent?

Stability:	GloVe

‣ LeN	y-axis:	bucketed	corpus	
frequency

‣ Right	y-axis:	number	of	neighbors

‣ x-axis:	percent	of	neighbors	
stable	across	samples

‣ Being	all	the	way	to	the	right	is	
be8er	(most	neighbors	are	stable)

Burdick	et	al.	(2018)

GloVe	vs.	word2vec:	w2v	much	less	stable!

Burdick	et	al.	(2018)GloVe word2vec

What	can	go	wrong	with	word	embeddings?

‣ What’s	wrong	with	learning	a	word’s	“meaning”	from	its	usage?

Ukraine's	deputy	defense	minister	resigns	amid	corrupFon	allegaFons

From	2015	through	2020,	there	were	at	least	2,070	unintenFonal	shooFngs	by	
children	under	18	in	the	US,	according	to	a	report	from	Everytown.	Those	shooFngs	
resulted	in	765	deaths	and	1,366	injuries.

Convicted	child	sex	trafficker	Ghislaine	Maxwell	has	said	a	decades-old	photograph	
of	Prince	Andrew	with	his	sexual	abuse	accuser	Virginia	Giuffre	is	“fake,”	in	a	series	
of	interviews	from	prison.

What	do	we	mean	by	bias?

‣ IdenXfy	she	-	he	axis	in	
word	vector	space,	
project	words	onto	this	
axis

Bolukbasi	et	al.	(2016)

Manzini	et	al.	(2019)

‣ Nearest	neighbor	of	
(b	-	a	+	c)

Debiasing

Bolukbasi	et	al.	(2016)

‣ IdenXfy	gender	subspace	with	gendered	
words

she

he

homemaker

woman

man

‣ Project	words	onto	this	subspace

‣ Subtract	those	projecXons	from	
the	original	word

homemaker’

Hardness	of	Debiasing

Gonen	and	Goldberg	(2019)

‣ Not	that	effecXve…and	the	male	
and	female	words	are	sXll	
clustered	together

‣ Bias	pervades	the	word	embedding	
space	and	isn’t	just	a	local	property	
of	a	few	words

Takeaways

‣ Word	vectors:	learning	word	->	context	mappings	has	given	way	to	
matrix	factorizaXon	approaches	(constant	in	dataset	size)

‣ Next	Xme:	language	modeling	and	Transformers

‣ Lots	of	pretrained	embeddings	work	well	in	pracXce,	they	capture	some	
desirable	properXes

‣ Even	be8er:	context-sensiXve	word	embeddings	(ELMo)

