CS388: Natural Language Processing Lecture 7: Transformers

Greg Durrett

Administrivia

- Project 2 due on Feb 13 (one week); autograder fixed
- d_internal vs. d_model: d_internal in the code is d_k in the slides
- Final project spec posted Thursday

Recap: Attention

Step 1: Compute scores for each key
keys k_{i}
$[1,0][1,0][0,1][1,0]$ query: $q=[0,1]$ (we want to find 1s)
0

0	1	0
$s_{i}=$	$k_{i}^{\top} q$	

$0 \quad 0 \quad 1 \quad 0$
Step 2: softmax the scores to get probabilities α
$0 \quad 0 \quad 1 \quad 0=>(1 / 6,1 / 6,1 / 2,1 / 6)$ if we assume e=3
Step 3: compute output values by multiplying embs. by alpha + summing result $=\operatorname{sum}\left(\alpha_{i} e_{i}\right)=1 / 6[1,0]+1 / 6[1,0]+1 / 2[0,1]+1 / 6[1,0]=[1 / 2,1 / 2]$

Recap: Self-Attention

$$
\left.E=\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right) \quad W^{Q}=\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array} \quad W^{\mathrm{K}}=\begin{array}{cc}
10 & 0 \\
0 & 10
\end{array}\right]
$$

Scores $\mathrm{S}=\mathrm{QK}^{\top} \quad \mathrm{S}_{\mathrm{ij}}=q_{\mathrm{i}} \cdot k_{\mathrm{j}}$
len x len $=(l e n \times d) \times(d x$ len $)$
Final step: softmax to get attentions A, then output is $A E$
*technically it's A (EWV), using a values matrix $V=E W$

Recap: Multi-head Self-Attention

Just duplicate the whole computation with different weights:

Thinking
Machines
X
Alammar, The Illustrated Transformer

ATTENTION HEAD \#1

$W_{1}{ }^{\mathrm{K}}$
$\mathrm{W}_{0} \mathrm{~V}$

$\mathrm{W}_{1}{ }^{\mathrm{v}}$

Recap: Positional Encodings

- Encode each sequence position as an integer, add it to the word embedding vector

Recap: Positional Encodings

Alammar, The Illustrated Transformer

- Alternative from Vaswani et al.: sines/cosines of different frequencies (closer words get higher dot products by default)

Transformers

Architecture

- Alternate multi-head self-attention with feedforward layers that operate over each word individually

$$
\operatorname{FFN}(x)=\max \left(0, x W_{1}+b_{1}\right) W_{2}+b_{2}
$$

- These feedforward layers are where most of the parameters are
- Residual connections in the model: input of a layer is added to its output
- Layer normalization: controls the scale of different layers in very deep networks (not
 needed in the assignment)

Dimensions

- Vectors: $d_{\text {model }}$
- Queries/keys: d_{k}, always smaller than $d_{\text {model }}$
- Values: separate dimension d_{v}, output is multiplied by wo which is $d_{v} x d_{\text {model }}$ so we can get back to $d_{\text {model }}$ before the residual

Vaswani et al. (2017)

Transformer Architecture

	N	$d_{\text {model }}$	d_{ff}	h	d_{k}	d_{v}
base	6	512	2048	8	64	64

- From Vaswani et al.

Model Name	$n_{\text {params }}$	$n_{\text {layers }}$	$d_{\text {model }}$	$n_{\text {heads }}$	$d_{\text {head }}$
GPT-3 Small	125 M	12	768	12	64
GPT-3 Medium	350 M	24	1024	16	64
GPT-3 Large	760 M	24	1536	16	96
GPT-3 XL	1.3 B	24	2048	24	128
GPT-3 2.7B	2.7 B	32	2560	32	80
GPT-3 6.7B	6.7B	32	4096	32	128
GPT-3 13B	13.0 B	40	5140	40	128
GPT-3 175B or "GPT-3"	175.0 B	96	12288	96	128

- From GPT-3; $d_{h e a d}$ is our d_{k}

Transformer Architecture

1	description	FLOPs / update	$\begin{array}{r} \% \\ \text { FLOPS } \\ \text { MHA } \end{array}$	$\%$ FLOPS FFN	FLOPS	FLOPS logit
8	OPT setups					
9	760M	$4.3 \mathrm{E}+15$	35\%	44\%	14.8\%	5.8\%
10	1.3B	1.3E+16	32\%	51\%	12.7\%	5.0\%
11	2.7B	$2.5 \mathrm{E}+16$	29\%	56\%	11.2\%	3.3\%
12	6.7B	1.1E+17	24\%	65\%	8.1\%	2.4\%
13	13B	$4.1 \mathrm{E}+17$	22\%	69\%	6.9\%	1.6\%
14	30B	9.0E+17	20\%	74\%	5.3\%	1.0\%
15	66B	$9.5 \mathrm{E}+17$	18\%	77\%	4.3\%	0.6\%
16	175B	$2.4 \mathrm{E}+18$	17\%	80\%	3.3\%	0.3\%

Credit: Stephen Roller on Twitter

Attention Maps

- Example visualization of attention matrix A (from assignment)
- Each row: distribution over what that token attends to. E.g., the first " v " attends very heavily to itself (bright yellow box)
- On the HW: look to see if the attentions make sense!

Transformers: Complete Model

- Original Transformer paper presents an encoder-decoder model
- Right now we don't need to think about both of these parts - will return in the context of MT
- Can turn the encoder into a decoder-only model through use of a triangular causal attention mask (only allow attention to previous tokens)

Using Transformers

What do Transformers produce?

- Encoding of each word - can pass this to another layer to make a prediction (like predicting the next word for language modeling)
- Like RNNs, Transformers can be viewed as a transformation of a sequence of vectors into a sequence of context-dependent vectors

Transformer Uses

- Transducer: make some prediction for each element in a sequence

- Classifier: encode a sequence into a fixed-sized vector and classify that

Transformer Uses

- Alternative: use a placeholder [CLS] token at the start of the sequence. Because [CLS] attends to everything with self-attention, it can do the pooling for you!
encoding of [CLS token] \longrightarrow matmul + softmax \longrightarrow predict sentiment

[CLS] the movie was great

Transformer Uses

- Sentence pair classifier: feed in two sentences and classify something about their relationship

Contradiction

[CLS] The woman is driving a car [SEP] The woman is walking .

- Why might Transformers be particularly good at sentence pair tasks compared to something like a DAN?

Transformer Language Modeling

Transformer Language Modeling

$$
\begin{aligned}
& P(w \mid \text { context })=\frac{\exp \left(\mathbf{w} \cdot \mathbf{h}_{\mathbf{i}}\right)}{\sum_{w^{\prime}} \exp \left(\mathbf{w}^{\prime} \cdot \mathbf{h}_{\mathbf{i}}\right)} \\
& \text { equivalent to } \\
& P(w \mid \text { context })=\operatorname{softmax}\left(W \mathbf{h}_{i}\right)
\end{aligned}
$$

- W is a (vocab size) x (hidden size) matrix; linear layer in PyTorch (rows are word embeddings)

Training Transformer LMs

- Input is a sequence of words, output is those words shifted by one,
- Allows us to train on predictions across several timesteps simultaneously (similar to batching but this is NOT what we refer to as batching)

Training Transformer LMs


```
loss_fcn = nn.NLLLoss()
loss += loss_fcn(log_probs, ex.output_tensor)
    [seq len, num output classes] [seq len]
```

- Batching is a little tricky with NLLLoss: need to collase [batch, seq len, num classes] to [batch * seq len, num classes]. You do not need to batch

Batched LM Training

I saw the dog running in the park and itlooked very excited to be there

A Small Problem with Transformer LMs

- This Transformer LM as we've described it will easily achieve perfect accuracy. Why?

- With standard self-attention: " 1 " attends to "saw" and the model is "cheating". How do we ensure that this doesn't happen?

Attention Masking

- What do we want to prohibit?

- We want to mask out everything in red (an upper triangular matrix)

Implementing in PyTorch

- nn.TransformerEncoder can be built out of nn.TransformerEncoderLayers, can accept an input and a mask for language modeling:

```
# Inside the module; need to fill in size parameters
layers = nn.TransformerEncoderLayer([...])
transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=[...])
[. . .]
# Inside forward(): puts negative infinities in the red part
mask = torch.triu(torch.ones(len, len) * float('-inf'), diagonal=1)
output = transformer_encoder(input, mask=mask)
```

- You cannot use these for Part 1, only for Part 2

LM Evaluation

- Accuracy doesn't make sense - predicting the next word is generally impossible so accuracy values would be very low
- Evaluate LMs on the likelihood of held-out data (averaged to normalize for length)

$$
\frac{1}{n} \sum_{i=1}^{n} \log P\left(w_{i} \mid w_{1}, \ldots, w_{i-1}\right)
$$

- Perplexity: $\exp ($ average negative log likelihood). Lower is better
- Suppose we have probs $1 / 4,1 / 3,1 / 4,1 / 3$ for 4 predictions
- Avg NLL (base e) = 1.242 Perplexity $=3.464$ <== geometric mean of denominators

Preview: Pre-training and BERT

- Transformers are usually large and you don't want to train them for each new task

Train on language modeling... movie was great

the movie was great
then "fine-tune" that model on your target task with a new classification layer

Transformer Extensions

Scaling Laws

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute ${ }^{2}$ used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

- Transformers scale really well!

Transformer Runtime

- Even though most parameters and FLOPs are in feedforward layers, Transformers are still limited by quadratic complexity of selfattention
- Many ways proposed to handle this

Performers

- No more len ${ }^{2}$ term, but we are fundamentally approximating the self-attention mechanism (cannot form \mathbf{A} and take the softmax)

Choromanski et al. (2020)

Longformer

(a) Full n^{2} attention

(b) Sliding window attention

(c) Dilated sliding window

(d) Global+sliding window

Figure 2: Comparing the full self-attention pattern and the configuration of attention patterns in our Longformer.

- Use several pre-specified self-attention patterns that limit the number of operations while still allowing for attention over a reasonable set of things
- Scales to 4096-length sequences

Longformer

- Loop = non-vectorized version

Beltagy et al. (2021)

Longformer

- Loop = non-vectorized version
- Note that memory of full SA blows up but runtime doesn't. Why?

Frontiers

- Will come back later in the semester when we talk about efficiency in LLMs
- Engineering-based approaches like Flash Attention (which supports the "basic" Transformer) have superseded changing the Transformer model itself

Vision and RL

- DALL-E 1: learns a discrete "codebook" and treats an image as a sequence of visual tokens which can be modeled autoregressively, then decoded back to an image
- Decision Transformer: does reinforcement learning by Transformerbased modeling over a series of actions
- Transformers are now being used all over AI

Takeaways

- Transformers are going to be the foundation for the much of the rest of this class and are a ubiquitous architecture nowadays
- Many details to get right, many ways to tweak and extend them, but core idea is the multi-head self attention and their ability to contextualize items in sequences

