CS388: Natural Language Processing Lecture 7: Transformers

Greg Durrett

Administrivia

Project 2 due on Feb 13 (one week); autograder fixed

d_internal vs. d_model: d_internal in the code is d_k in the slides

Final project spec posted Thursday

Recap: Attention

```
Step 1: Compute scores for each key
```

```
keys k_i
[1, 0] [1, 0] [0, 1] [1, 0] query: q = [0, 1] (we want to find 1s)

0 \quad 0 \quad 1 \quad 0

s_i = k_i^T q

0 \quad 0 \quad 1 \quad 0
```

Step 2: softmax the scores to get probabilities α

```
0 0 1 0 => (1/6, 1/6, 1/2, 1/6) if we assume e=3
```

Step 3: compute output values by multiplying embs. by alpha + summing

```
result = sum(\alpha_i e_i) = 1/6 [1, 0] + 1/6 [1, 0] + 1/2 [0, 1] + 1/6 [1, 0] = [1/2, 1/2]
```


Recap: Self-Attention

$$E = \begin{pmatrix} 10 \\ 10 \\ 01 \\ 10 \end{pmatrix}$$

$$\mathcal{N}^{Q} = \begin{array}{c} 0 & 1 \\ 0 & 1 \end{array}$$

$$W^{\mathsf{K}} = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$$

$$E = \begin{pmatrix} 10 \\ 10 \\ 01 \\ 10 \end{pmatrix} \qquad W^{Q} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \qquad W^{K} = \begin{pmatrix} 10 & 0 \\ 0 & 10 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$$

$$Q = E(W^{Q}) = \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \qquad K = E(W^{K}) = \begin{pmatrix} 10 & 0 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \end{pmatrix}$$

$$K = E(W^{K}) = \begin{cases} 10.0 \\ 10.0 \\ 0.10 \\ 10.0 \end{cases}$$

Scores
$$S = QK^T$$
 $S_{ij} = q_i \cdot k_j$
len x len = (len x d) x (d x len)

Final step: softmax to get attentions A, then output is AE *technically it's A (EW), using a values matrix V = EW

Recap: Multi-head Self-Attention

Just duplicate the whole computation with different weights:

Alammar, The Illustrated Transformer

Recap: Positional Encodings

Encode each sequence position as an integer, add it to the word embedding vector

Recap: Positional Encodings

Alammar, The Illustrated Transformer

 Alternative from Vaswani et al.: sines/cosines of different frequencies (closer words get higher dot products by default)

Embedding dim

Transformers

Architecture

 Alternate multi-head self-attention with feedforward layers that operate over each word individually

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

- These feedforward layers are where most of the parameters are
- Residual connections in the model: input of a layer is added to its output
- Layer normalization: controls the scale of different layers in very deep networks (not needed in the assignment)

Dimensions

- Vectors: d_{model}
- Queries/keys: d_k , always smaller than d_{model}
- Values: separate dimension d_v , output is multiplied by W^o which is $d_v x d_{model}$ so we can get back to d_{model} before the residual

 $d_v \rightarrow d_{model}$

FFN can explode the dimension with W_1 and collapse it back with W_2

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

Vaswani et al. (2017)

Transformer Architecture

	$\mid N \mid$	$d_{ m model}$	$d_{ m ff}$	h	d_{k}	d_v
base	6	512	2048	8	64	64

From Vaswani et al.

Model Name	$n_{ m params}$	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$
GPT-3 Small	125M	12	768	12	64
GPT-3 Medium	350M	24	1024	16	64
GPT-3 Large	760M	24	1536	16	96
GPT-3 XL	1.3B	24	2048	24	128
GPT-3 2.7B	2.7B	32	2560	32	80
GPT-3 6.7B	6.7B	32	4096	32	128
GPT-3 13B	13.0B	40	5140	40	128
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128

From GPT-3; d_{head} is our d_k

Transformer Architecture

1	description	FLOPs / update	% FLOPS MHA	FLOPS FFN	% FLOPS attn	% FLOPS logit
8	OPT setups					
9	760M	4.3E+15	35%	44%	14.8%	5.8%
10	1.3B	1.3E+16	32%	51%	12.7%	5.0%
11	2.7B	2.5E+16	29%	56%	11.2%	3.3%
12	6.7B	1.1E+17	24%	65%	8.1%	2.4%
13	13B	4.1E+17	22%	69%	6.9%	1.6%
14	30B	9.0E+17	20%	74%	5.3%	1.0%
15	66B	9.5E+17	18%	77%	4.3%	0.6%
16	175B	2.4E+18	17%	80%	3.3%	0.3%

Credit: Stephen Roller on Twitter

Attention Maps

- Example visualization of attention matrix A (from assignment)
- Each row: distribution over what that token attends to.
 E.g., the first "v" attends very heavily to itself (bright yellow box)
- On the HW: look to see if the attentions make sense!

Transformers: Complete Model

- Original Transformer paper presents an encoder-decoder model
- Right now we don't need to think about both of these parts — will return in the context of MT
- Can turn the encoder into a decoder-only model through use of a triangular causal attention mask (only allow attention to previous tokens)

Using Transformers

What do Transformers produce?

- Encoding of each word can pass this to another layer to make a prediction (like predicting the next word for language modeling)
- Like RNNs, Transformers can be viewed as a transformation of a sequence of vectors into a sequence of context-dependent vectors

Transformer Uses

Transducer: make some prediction for each element in a sequence

output y = score for each tag, then softmax

Classifier: encode a sequence into a fixed-sized vector and classify that

Transformer Uses

Alternative: use a placeholder [CLS] token at the start of the sequence. Because [CLS] attends to everything with self-attention, it can do the pooling for you!

encoding of [CLS token] \rightarrow matmul + softmax \rightarrow predict sentiment

Transformer Uses

Sentence pair classifier: feed in two sentences and classify something about their relationship

Why might Transformers be particularly good at sentence pair tasks compared to something like a DAN?

Transformer Language Modeling

Transformer Language Modeling

 W is a (vocab size) x (hidden size) matrix; linear layer in PyTorch (rows are word embeddings)

Training Transformer LMs

- Input is a sequence of words, output is those words shifted by one,
- Allows us to train on predictions across several timesteps simultaneously (similar to batching but this is NOT what we refer to as batching)

Training Transformer LMs

Batching is a little tricky with NLLLoss: need to collase [batch, seq len, num classes] to [batch * seq len, num classes]. You do not need to batch

Batched LM Training

I saw the dog running in the park and it looked very excited to be there

Multiple sequences and multiple timesteps per sequence

A Small Problem with Transformer LMs

This Transformer LM as we've described it will easily achieve perfect accuracy. Why?

With standard self-attention: "I" attends to "saw" and the model is "cheating". How do we ensure that this doesn't happen?

Attention Masking

What do we want to prohibit?

We want to mask out everything in red (an upper triangular matrix)

Implementing in PyTorch

• nn.TransformerEncoder can be built out of nn.TransformerEncoderLayers, can accept an input and a mask for language modeling:

```
# Inside the module; need to fill in size parameters
layers = nn.TransformerEncoderLayer([...])
transformer_encoder = nn.TransformerEncoder(encoder_layers, num_layers=[...])
[. . .]
# Inside forward(): puts negative infinities in the red part
mask = torch.triu(torch.ones(len, len) * float('-inf'), diagonal=1)
output = transformer_encoder(input, mask=mask)
```

You cannot use these for Part 1, only for Part 2

LM Evaluation

- Accuracy doesn't make sense predicting the next word is generally impossible so accuracy values would be very low
- Evaluate LMs on the likelihood of held-out data (averaged to normalize for length) $\frac{1}{n}$

$$\frac{1}{n} \sum_{i=1}^{n} \log P(w_i | w_1, \dots, w_{i-1})$$

- Perplexity: exp(average negative log likelihood). Lower is better
 - Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions
 - Avg NLL (base e) = 1.242 Perplexity = 3.464 <== geometric mean of denominators

Preview: Pre-training and BERT

 Transformers are usually large and you don't want to train them for each new task

Train on language modeling...

then "fine-tune" that model on your target task with a new classification layer

Transformer Extensions

Scaling Laws

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute² used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

Transformers scale really well!

Transformer Runtime

- Even though most
 parameters and FLOPs are
 in feedforward layers,
 Transformers are still
 limited by quadratic
 complexity of self attention
- Many ways proposed to handle this

Performers

Figure 1: Approximation of the regular attention mechanism AV (before D^{-1} -renormalization) via (random) feature maps. Dashed-blocks indicate order of computation with corresponding time complexities attached.

No more len² term, but we are fundamentally approximating the self-attention mechanism (cannot form **A** and take the softmax)

Choromanski et al. (2020)

Longformer

Figure 2: Comparing the full self-attention pattern and the configuration of attention patterns in our Longformer.

- Use several pre-specified self-attention patterns that limit the number of operations while still allowing for attention over a reasonable set of things
- Scales to 4096-length sequences

Beltagy et al. (2021)

Longformer

Loop = non-vectorized version

Longformer

- Loop = non-vectorized version
- Note that memory of full SA blows up but runtime doesn't. Why?
 Beltagy et al. (2021)

Frontiers

 Will come back later in the semester when we talk about efficiency in LLMs

 Engineering-based approaches like Flash Attention (which supports the "basic" Transformer) have superseded changing the Transformer model itself

Vision and RL

- DALL-E 1: learns a discrete "codebook" and treats an image as a sequence of visual tokens which can be modeled autoregressively, then decoded back to an image
- Decision Transformer: does reinforcement learning by Transformerbased modeling over a series of actions
- Transformers are now being used all over Al

Takeaways

- Transformers are going to be the foundation for the much of the rest of this class and are a ubiquitous architecture nowadays
- Many details to get right, many ways to tweak and extend them, but core idea is the multi-head self attention and their ability to contextualize items in sequences