CS388: Natural Language Processing Lecture 7: Transformers

Greg Durrett

Administrivia

- Project 2 due on Feb 13 (one week); autograder fixed
 - ▶ d_internal vs. d_model: d_internal in the code is d_k in the slides
- Final project spec posted Thursday

Recap: Attention

Step 1: Compute scores for each key

query: q = [0, 1] (we want to find 1s)

$$s_i = k_i^T q$$

Step 2: softmax the scores to get probabilities $\boldsymbol{\alpha}$

0 0 1 0 =>
$$(1/6, 1/6, 1/2, 1/6)$$
 if we assume e=3

Step 3: compute output values by multiplying embs. by alpha + summing

result = sum(
$$\alpha_i e_i$$
) = 1/6 [1, 0] + 1/6 [1, 0] + 1/2 [0, 1] + 1/6 [1, 0] = [1/2, 1/2]

Recap: Self-Attention

$$E = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad W^{Q} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \qquad W^{K} = \begin{pmatrix} 10 & 0 \\ 0 & 10 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \end{pmatrix}$$

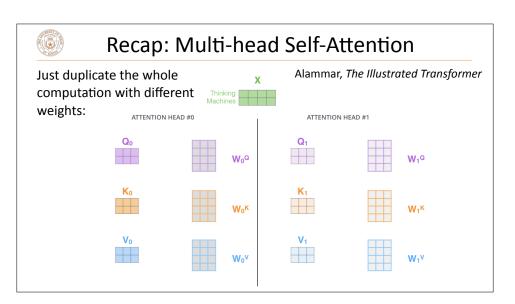
$$Q = E (W^{Q}) = \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \qquad K = E (W^{K}) = \begin{pmatrix} 10 & 0 \\ 10 & 0 \\ 0 & 10 \\ 10 & 0 \end{pmatrix}$$

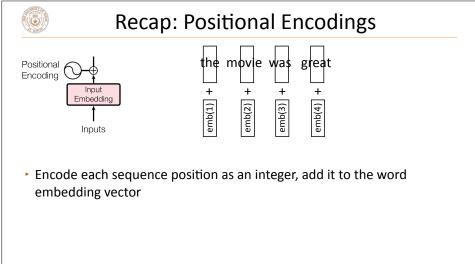
Scores S = QK^T
$$S_{ij} = q_i \cdot k_j$$

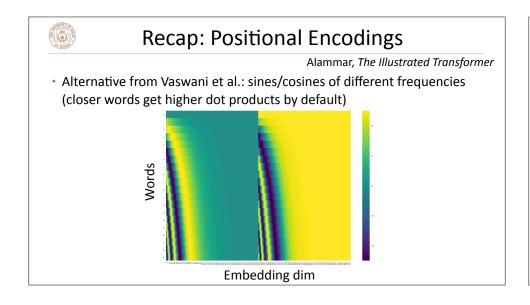
$$len x len = (len x d) x (d x len)$$

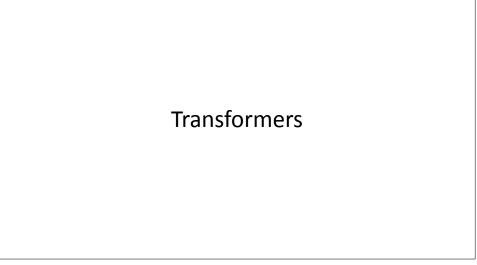
Final step: softmax to get attentions A, then output is $\ensuremath{\mathsf{AE}}$

*technically it's A (EWV), using a values matrix V = EWV







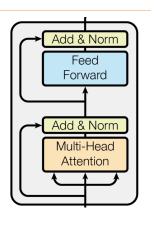


Architecture

 Alternate multi-head self-attention with feedforward layers that operate over each word individually

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

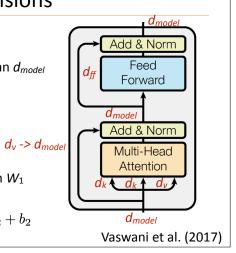
- These feedforward layers are where most of the parameters are
- Residual connections in the model: input of a layer is added to its output
- Layer normalization: controls the scale of different layers in very deep networks (not needed in the assignment)



Dimensions

- ▶ Vectors: *d*_{model}
- Queries/keys: d_k , always smaller than d_{model}
- Values: separate dimension d_v , output is multiplied by W^o which is $d_v \times d_{model}$ so we can get back to d_{model} before the residual
- ► FFN can explode the dimension with W₁ and collapse it back with W₂

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$



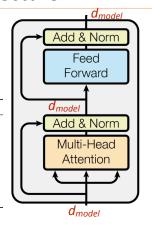
Transformer Architecture

		N	d_{model}	$d_{ m ff}$	h	d_k	d_v
_	base	6	512	2048	8	64	64

From Vaswani et al.

Model Name	$n_{ m params}$	n_{layers}	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$
GPT-3 Small	125M	12	768	12	64
GPT-3 Medium	350M	24	1024	16	64
GPT-3 Large	760M	24	1536	16	96
GPT-3 XL	1.3B	24	2048	24	128
GPT-3 2.7B	2.7B	32	2560	32	80
GPT-3 6.7B	6.7B	32	4096	32	128
GPT-3 13B	13.0B	40	5140	40	128
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128

From GPT-3; d_{head} is our d_k



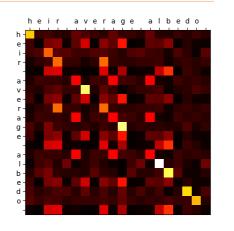
Transformer Architecture

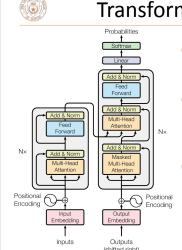
1	description	FLOPs / update	% FLOPS MHA	% FLOPS FFN	% FLOPS attn	% FLOPS logit
8	OPT setups					
9	760M	4.3E+15	35%	44%	14.8%	5.8%
10	1.3B	1.3E+16	32%	51%	12.7%	5.0%
11	2.7B	2.5E+16	29%	56%	11.2%	3.3%
12	6.7B	1.1E+17	24%	65%	8.1%	2.4%
13	13B	4.1E+17	22%	69%	6.9%	1.6%
14	30B	9.0E+17	20%	74%	5.3%	1.0%
15	66B	9.5E+17	18%	77%	4.3%	0.6%
16	175B	2.4E+18	17%	80%	3.3%	0.3%

Credit: Stephen Roller on Twitter

Attention Maps

- Example visualization of attention matrix A (from assignment)
- Each row: distribution over what that token attends to.
 E.g., the first "v" attends very heavily to itself (bright yellow box)
- On the HW: look to see if the attentions make sense!





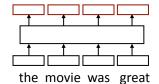
Transformers: Complete Model

- Original Transformer paper presents an encoder-decoder model
- Right now we don't need to think about both of these parts — will return in the context of MT
- Can turn the encoder into a decoder-only model through use of a triangular causal attention mask (only allow attention to previous tokens)

Vaswani et al. (2017)

Using Transformers

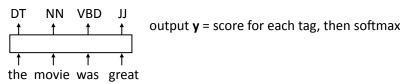
What do Transformers produce?



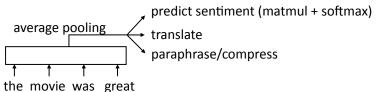
- Encoding of each word can pass this to another layer to make a prediction (like predicting the next word for language modeling)
- Like RNNs, Transformers can be viewed as a transformation of a sequence of vectors into a sequence of context-dependent vectors

Transformer Uses

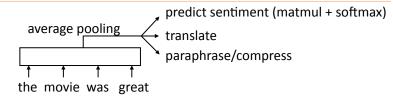
► Transducer: make some prediction for each element in a sequence



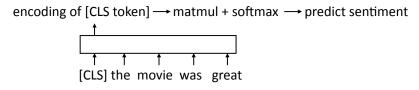
Classifier: encode a sequence into a fixed-sized vector and classify that



Transformer Uses

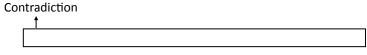


Alternative: use a placeholder [CLS] token at the start of the sequence. Because [CLS] attends to everything with self-attention, it can do the pooling for you!



Transformer Uses

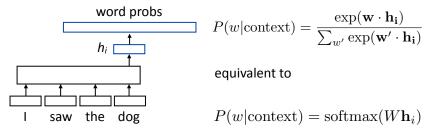
 Sentence pair classifier: feed in two sentences and classify something about their relationship



[CLS] The woman is driving a car [SEP] The woman is walking .

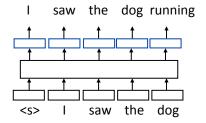
Why might Transformers be particularly good at sentence pair tasks compared to something like a DAN? Transformer Language Modeling

Transformer Language Modeling

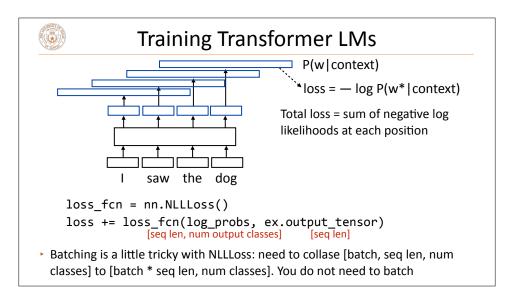


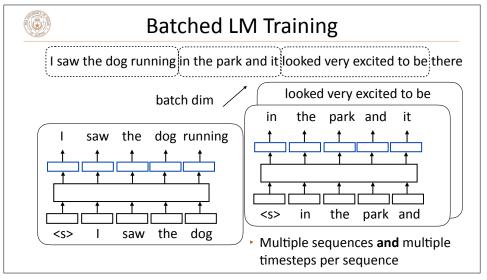
► W is a (vocab size) x (hidden size) matrix; linear layer in PyTorch (rows are word embeddings)

Training Transformer LMs



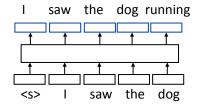
- Input is a sequence of words, output is those words shifted by one,
- Allows us to train on predictions across several timesteps simultaneously (similar to batching but this is NOT what we refer to as batching)





A Small Problem with Transformer LMs

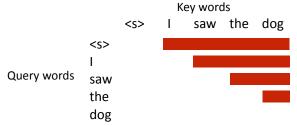
This Transformer LM as we've described it will easily achieve perfect accuracy. Why?



With standard self-attention: "I" attends to "saw" and the model is "cheating". How do we ensure that this doesn't happen?

Attention Masking

What do we want to prohibit?



We want to mask out everything in red (an upper triangular matrix)

Implementing in PyTorch

• nn.TransformerEncoder can be built out of nn.TransformerEncoderLayers, can accept an input and a mask for language modeling:

You cannot use these for Part 1, only for Part 2

output = transformer_encoder(input, mask=mask)

LM Evaluation

- Accuracy doesn't make sense predicting the next word is generally impossible so accuracy values would be very low
- Evaluate LMs on the likelihood of held-out data (averaged to normalize for length)

$$\frac{1}{n}\sum_{i=1}^n \log P(w_i|w_1,\ldots,w_{i-1})$$

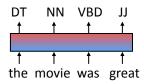
- Perplexity: exp(average negative log likelihood). Lower is better
 - ► Suppose we have probs 1/4, 1/3, 1/4, 1/3 for 4 predictions
 - Avg NLL (base e) = 1.242 Perplexity = 3.464 <== geometric mean of denominators

Preview: Pre-training and BERT

 Transformers are usually large and you don't want to train them for each new task

Train on language modeling...

 then "fine-tune" that model on your target task with a new classification layer



Transformer Extensions

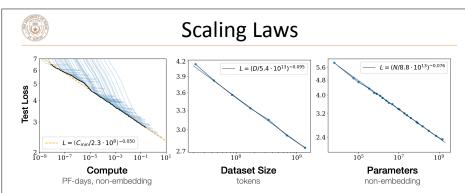
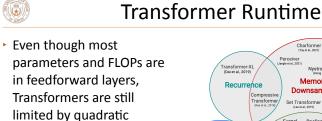


Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute² used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

► Transformers scale really well!

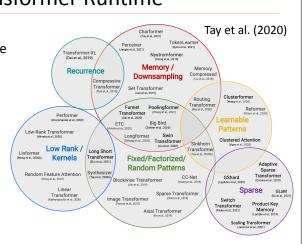
Kaplan et al. (2020)

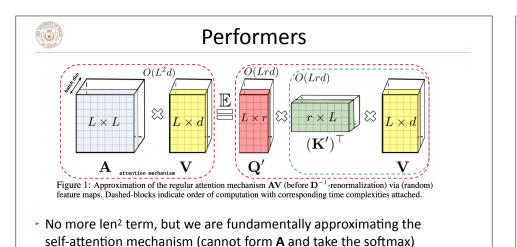


 Many ways proposed to handle this

complexity of self-

attention





Choromanski et al. (2020)

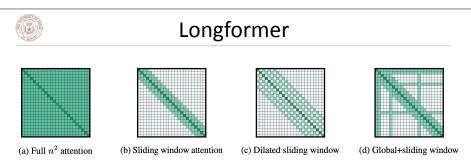
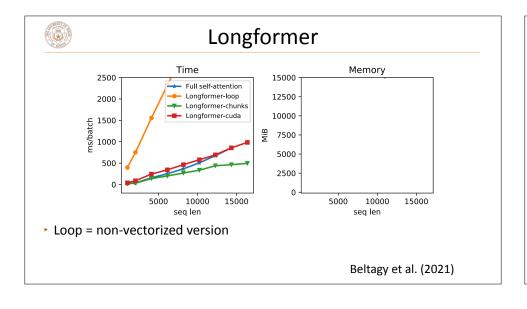
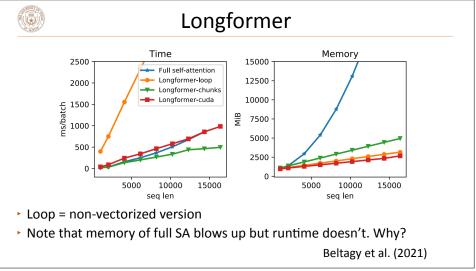


Figure 2: Comparing the full self-attention pattern and the configuration of attention patterns in our Longformer.

- Use several pre-specified self-attention patterns that limit the number of operations while still allowing for attention over a reasonable set of things
- Scales to 4096-length sequences

Beltagy et al. (2021)





Frontiers

- Will come back later in the semester when we talk about efficiency in LLMs
- Engineering-based approaches like Flash Attention (which supports the "basic" Transformer) have superseded changing the Transformer model itself

Vision and RL

- DALL-E 1: learns a discrete "codebook" and treats an image as a sequence of visual tokens which can be modeled autoregressively, then decoded back to an image
- Decision Transformer: does reinforcement learning by Transformerbased modeling over a series of actions
- ► Transformers are now being used all over AI

Ramesh et al. (2021), Chen et al. (2021)

Takeaways

- Transformers are going to be the foundation for the much of the rest of this class and are a ubiquitous architecture nowadays
- Many details to get right, many ways to tweak and extend them, but core idea is the multi-head self attention and their ability to contextualize items in sequences