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Announcements

‣ P2	due	today

‣ Final	project	proposals	due	Feb	20

‣ FP	samples	posted	on	course	website



Recap:	BERT	ObjecLve
‣ Input:	[CLS]	Text	chunk	1	[SEP]	Text	chunk	2

[CLS]	John			visited				[MASK]			yesterday				and			really		[MASK]		it		[SEP]		I	[MASK]	Madonna.

Madagascar

Devlin	et	al.	(2019)

Transformer

Transformer
…

enjoyed likeNotNext

‣ BERT	objecLve:	masked	LM	+	next	sentence	predicLon

‣ Best	version	of	this:	DeBERTa,	very	good	at	NLI/QA/classificaLon	tasks



Today

‣ Decoder	language	models	(GPT):	scaling	LMs	further

‣ PrompLng:	a	new	way	of	using	large	language	models	without	taking	
any	gradient	steps

‣ Decoding	strategies:	beam	search,	nucleus	sampling

‣ Seq2seq	pre-trained	models	(BART,	T5):	how	can	we	leverage	the	same	
kinds	of	ideas	we	saw	in	BERT	for	seq2seq	models	like	machine	
translaLon?



GPT



OpenAI	GPT/GPT2

‣ GPT2:	trained	on	40GB	of	text

Radford	et	al.	(2019)

‣ Very	large	language	models	using	the	Transformer	architecture

‣ Straighdorward	decoder	language	model,	trained	on	raw	text

approximate	size	of	BERT

GPT-2



Encoders	vs.	Decoders
‣ BERT	is	a	Transformer	encoder:	bidirec/onal	a=enLon,	trained	
with	masked	language	modeling

‣ GPT-n	and	other	Transformer	language	models	(e.g.,	Project	2)	are	
decoders:	unidirec/onal	a=enLon,	trained	to	predict	the	next	word
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Encoders	vs.	Decoders
Encoder:

‣ You	can	treat	this	like	a	decoder:	ignore	this	probability	distribuLon	
and	train	a	model	for	P(y	|	x).	But	encoders	are	be=er	for	this	due	to	
bidirecLonal	a=enLon

<latexit sha1_base64="AZkRMT5SGJXrUXUJg4OqRAoDnqc=">AAACIHicbVDLSgMxFM3UV62vqks3wVKoWMuMqHVZdOOygn1ApwyZTNqGZjJDkpGWoZ/ixl9x40IR3enXmE4H0dYD4R7OuZebe9yQUalM89PILC2vrK5l13Mbm1vbO/ndvaYMIoFJAwcsEG0XScIoJw1FFSPtUBDku4y03OH11G/dEyFpwO/UOCRdH/U57VGMlJacfLVeGjkU2j714MixyjbzAiXLIyemJ9Ykqce6/sj8KFe0JxA6+YJZMRPARWKlpABS1J38h+0FOPIJV5ghKTuWGapujISimJFJzo4kCREeoj7paMqRT2Q3Tg6cwKJWPNgLhH5cwUT9PREjX8qx7+pOH6mBnPem4n9eJ1K9y25MeRgpwvFsUS9iUAVwmhb0qCBYsbEmCAuq/wrxAAmElc40p0Ow5k9eJM3TinVROb89K9Su0jiy4AAcghKwQBXUwA2ogwbA4AE8gRfwajwaz8ab8T5rzRjpzD74A+PrG0yhoTE=</latexit>

P (xi | x1, . . . , xi�1, xi+1, . . . , xn)

<latexit sha1_base64="clGmlgaif+ekjM6Wkme8OfIQuJs=">AAACQHicfVDNS8MwHE3n16xfU49egmOw4Ryt+HUcevE4wW3COkqaZltYmpYklY2yP82Lf4I3z148KOLVk9lWRDfxQfg93vs9kjwvYlQqy3oyMguLS8sr2VVzbX1jcyu3vdOQYSwwqeOQheLWQ5IwykldUcXIbSQICjxGml7/cuw374iQNOQ3ahiRdoC6nHYoRkpLbq5ZqBUHLoVOQH04cO2yw/xQyfLATeihPZrMAz2/ZV4yC84IQvPfXMnN5a2KNQGcJ3ZK8iBFzc09On6I44BwhRmSsmVbkWonSCiKGRmZTixJhHAfdUlLU44CItvJpIARLGjFh51Q6MMVnKg/EwkKpBwGnt4MkOrJWW8s/uW1YtU5byeUR7EiHE8v6sQMqhCO24Q+FQQrNtQEYUH1WyHuIYGw0p2bugR79svzpHFUsU8rJ9fH+epFWkcW7IF9UAQ2OANVcAVqoA4wuAfP4BW8GQ/Gi/FufExXM0aa2QW/YHx+AY7mrM8=</latexit>

P (xi | x1, . . . , xi�1)

‣ To	use	in	prac/ce:	Ignore	this	probability	distribuLon.	Fine-tune	the	
model	for	some	other	task	P(y	|	x)

Decoder:

‣ To	use	in	prac/ce:	we	use	this	model	to	actually	generate	text



OpenAI	GPT2

slide	credit:	OpenAI‣ We’ll	see	in	a	few	mins	how	this	was	generated!



Pre-Training	Cost	(with	Google/AWS)

h=ps://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/

‣ GPT-2	(as	reported	in	other	work):	$25,000

‣ BERT:	Base	$500,	Large	$7000

‣ This	is	for	a	single	pre-training	run…developing	new	pre-training	
techniques	may	require	many	runs

‣ Fine-tuning	these	models	can	typically	be	done	with	a	single	GPU	(but	
may	take	1-3	days	for	medium-sized	datasets)

https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/


Pushing	the	Limits:	GPT-3

Brown	et	al.	(2020)

‣ 175B	parameter	model:	96	layers,	96	heads,	12k-dim	vectors

‣ Trained	on	
Microsoo	Azure,	
esLmated	to	
cost	roughly	
$10M



Llama	1	+	Llama	2

‣ Tokenizer:	byte	pair	encoding	(what	we	said	didn’t	work	well…)
‣ Rotary	posiLonal	encodings,	a	few	other	small	architecture	changes

‣ OpLmized	mix	of	pre-training	data:	Common	Crawl,	GitHub,	Wikipedia,	
Books,	etc.

‣ Models	have	mostly	go=en	smaller	since	GPT-3,	but	haven’t	changed	much:



Decoding	Methods



Decoding	Strategies

Holtzman	et	al.	(2019)

‣ LMs	place	a	distribuLon	P(xi	|x1,	…,	xi-1)

‣ How	do	we	generate	text	from	these?

‣ OpLon	1:	max	xi	P(xi	|x1,	…,	xi-1)	—	take	greedily	best	opLon

‣ OpLon	3:	use	beam	search	to	find	the	sequence	with	the	highest	prob.

‣ OpLon	2:	sample	from	the	model;	draw	xi	from	that	distribuLon

‣ How	do	we	find	the	highest	probability	opLon?



Beam	Search

I

like

eat

swim

…

She

likes

eats

…

‣ Time-synchronous	search	over	the	Lmesteps	of	generaLon,	with	a	fixed	
number	of	opLons	kept	on	the	fringe	(beam	size=3	on	this	slide):

I								0.01

She				0.003

He					0.002

I	like									0.003

She	likes				0.002

I	eat								0.001

‣ All	other	
opLons	
pruned

Step	1	beam: Step	2	beam:Latce

‣ Have	to	consider	
k	*	|V|	opLons	
for	this	beam



Decoding	Strategies

Holtzman	et	al.	(2019)

‣ Beam	search	degenerates	and	starts	
repeaLng.	If	you	see	a	fragment	
repeated	2-3x,	it	has	very	high	
probability	to	keep	repeaLng

‣ Story	generaLon	(this	is	with	GPT-2):

‣ Sampling	is	too	noisy	—	
introduces	many	grammaLcal	
errors



DegeneraLon

Holtzman	et	al.	(2019)

P(/	|	…	México)	and	P(Universidad	|	…	México	/)	—	these	probabiliLes	may	be	
low.	But	those	are	just	2/6	words	of	the	repeaLng	fragment

‣ Beam	search	fails	because	the	model	is	
locally	normalized

P(Nacional	|	…	Universidad)	is	high

P(Autónoma	|	…	Universidad	Nacional)	is	high

P(de	|		…	Universidad	Nacional	Autónoma)	is	high

P(México	|	Universidad	Nacional	Autónoma	de)	is	high

‣Each	word	is	likely	given	the	previous	words	but	the	sequence	is	bad

‣ Let’s	look	at	all	the	individual	decisions	
that	get	made	here



Drawbacks	of	Sampling

Holtzman	et	al.	(2019)

‣ Sampling	is	“too	random”

P(y	|	…	they	live	in	a	remote	desert	uninterrupted	by)

0.01				roads

0.01				towns

0.01				people

0.005		civilizaLon

…
0.0005			town

Good	opLons,	maybe	accounLng	for	90%	of	
the	total	probability	mass.	So	a	90%	chance	of	
getng	something	good

Long	tail	with	10%	of	the	mass



Nucleus	Sampling

Holtzman	et	al.	(2019)

‣ Define	a	threshold	p.	Keep	the	most	probable	opLons	account	for	p%	
of	the	probability	mass	(the	nucleus),	then	sample	among	these.

‣ To	implement:	sort	opLons	by	probability,	truncate	the	list	once	the	
total	exceeds	p,	then	renormalize	and	sample	from	it

P(y	|	…	they	live	in	a	remote	desert	uninterrupted	by)

0.01				roads

0.01				towns

0.01				people

0.005		civilizaLon
cut	off	aoer	p%	of	mass

renormalize	and	sample



GPT-3

Story	compleLon	demo:	
Different	decoding	strategies



Decoding	Strategies

Holtzman	et	al.	(2019)

‣ LMs	place	a	distribuLon	P(xi	|x1,	…,	xi-1)

‣ OpLon	2:	sample	from	the	model;	draw	yi	from	that	distribuLon

‣ OpLon	2:	nucleus	sampling

‣ How	to	generate	text	from	these?

‣ OpLon	1:	max	xi	P(xi	|x1,	…,	xi-1)	—	take	greedily	best	opLon

‣ OpLon	3:	use	beam	search	to	find	the	sequence	with	the	highest	prob.



PrompLng,	In-Context	Learning



Pre-GPT-3:	Fine-tuning

Brown	et	al.	(2020)

‣ Fine-tuning:	this	is	the	
“normal	way”	of	doing	
learning	in	models	like	
GPT-2

‣ Requires	compuLng	the	
gradient	and	applying	a	
parameter	update	on	
every	example

‣This	is	super	expensive	
with	175B	parameters



GPT-3:	Few-shot	Learning

Brown	et	al.	(2020)

‣ This	procedure	
depends	heavily	
on	the	examples	
you	pick	as	well	as	
the	prompt	
(“Translate	English	
to	French”)

‣ GPT-3	proposes	an	alternaLve:	in-context	learning.	Just	uses	the	off-the-
shelf	model,	no	gradient	updates



GPT-3

Brown	et	al.	(2020)

‣ Key	observa/on:	
few-shot	learning	
only	works	with	
huge	models!



GPT-3

Brown	et	al.	(2020)

‣ SomeLmes	very	impressive,	(MulLRC,	ReCoRD),	someLmes	very	bad

‣ Results	on	other	datasets	are	equally	mixed	—	but	sLll	strong	for	a	
few-shot	model!



Prompts

Brown	et	al.	(2020)

‣ In	the	GPT-2	paper,	“tl;dr:”	(too	long;	didn't	read)	is	menLoned	as	a	
prompt	that	frequently	shows	up	in	the	wild	indica/ng	a	summary

‣ Prompts	can	help	induce	the	model	to	engage	in	certain	behavior

‣ tl;dr	is	an	indicator	that	the	model	should	“switch	into	summary	mode”	
now	—	and	if	there	are	enough	clean	instances	of	tl;dr	in	the	wild,	
maybe	the	model	has	been	trained	on	a	ton	of	diverse	data?

‣ Good	prompt	+	a	few	training	examples	in-context	=	strong	task	
performance?



Prompts

Brown	et	al.	(2020)

PrompLng	demo:	
QA,	Math	QA,	etc.



Seq2seq	Pre-trained	Models:	BART,	T5



How	do	we	pre-train	seq2seq	models?

‣ LMs	P(y):	trained	unidirecLonally

‣ Masked	LMs:	trained	bidirecLonally	but	with	masking

‣ How	can	we	pre-train	a	model	for	P(y|x)?

‣ Well,	why	was	BERT	effecLve?

‣ PredicLng	a	mask	requires	some	kind	of	text	“understanding”:

‣ What	would	it	take	to	do	the	same	for	sequence	predicLon?



How	do	we	pre-train	seq2seq	models?
‣ How	can	we	pre-train	a	model	for	P(y|x)?

‣ Requirements:	(1)	should	use	unlabeled	data;	(2)	should	force	a	model	to	
a=end	from	y	back	to	x



BART

Lewis	et	al.	(2019)

Infilling	is	longer	
spans	than	masking

‣ Several	possible	strategies	for	corrupLng	a	sequence	are	explored	in	
the	BART	paper



BART

Lewis	et	al.	(2019)

‣ Sequence-to-sequence	Transformer	trained	on	this	data:	permute/
make/delete	tokens,	then	predict	full	sequence	autoregressively



BERT	vs.	BART

Lewis	et	al.	(2019)

‣ BERT:	only	parameters	are	an	
encoder,	trained	with	masked	
language	modeling	objecLve.	
Cannot	generate	text	or	do	
seq2seq	tasks

‣ BART:	both	an	encoder	and	a	
decoder.	Can	also	use	just	the	
encoder	wherever	we	would	
use	BERT

B D

A			_			C			_		E



Seq2seq	Architecture

Lewis	et	al.	(2019)

‣ Encoder-decoder	model	is	
structurally	similar	to	your	
language	model

‣ ModificaLon:	decoder	now	
a=ends	back	to	the	input.	But	
the	input	doesn’t	change,	so	
this	just	needs	to	be	encoded	
once



BART	for	SummarizaLon

Lewis	et	al.	(2019)

‣ Pre-train	on	the	BART	task:	take	random	chunks	of	text,	noise	them	
according	to	the	schemes	described,	and	try	to	“decode”	the	clean	text

‣ Can	achieve	good	results	even	with	few	summaries	to	fine-tune	on,	
compared	to	basic	seq2seq	models	which	require	100k+	examples	to	
do	well

‣ Fine-tune	on	a	summarizaLon	dataset:	a	news	arLcle	is	the	input	and	
a	summary	of	that	arLcle	is	the	output	(usually	1-3	sentences	
depending	on	the	dataset)



BART	for	SummarizaLon:	Outputs

Lewis	et	al.	(2019)



BART	for	SummarizaLon:	Outputs

Lewis	et	al.	(2019)



T5

Raffel	et	al.	(2019)

‣ Pre-training:	similar	denoising	scheme	to	BART	(they	were	released	
within	a	week	of	each	other	in	fall	2019)

‣ Input:	text	with	gaps.	Output:	a	series	of	phrases	to	fill	those	gaps.



Ethical	Issues



Bias	and	Toxicity

https://toxicdegeneration.allenai.org/

‣ “Toxic	degeneraLon”:	systems	that	generate	toxic	stuff

‣ System	trained	on	a	big	chunk	of	the	Internet:	condiLoning	on	“SJW”,	
“black”	gives	the	system	a	chance	of	recalling	bad	stuff	from	its	
training	data



StochasLc	Parrots	(about	LMs	generally)

Bender,	Gebru,	McMillan-Major,	Shmitchell	(2021)

‣ Claim	1:	environmental	cost	is	disproporLonately	born	by	marginalized	populaLons,	
who	aren’t	even	well-served	by	these	tools

‣ Claim	2:	massive	data	is	fundamentally	challenging	to	audit,	contains	data	that	is	
biased	and	is	only	a	snapshot	of	a	single	point	in	Lme

‣ Claim	3	(what	we’ll	focus	on	today):	these	models	are	not	grounded	in	meaning	—	
when	they	generate	an	answer	to	a	quesLon,	it	is	merely	by	memorizing	
cooccurrence	between	symbols

‣ Paper	(that	included	authors	at	Google	who	were	subsequently	fired)	about	dangers	of	
large	language	models



StochasLc	Parrots

Bender,	Gebru,	McMillan-Major,	Shmitchell	(2021)

‣ We	are	likely	to	assume	the	model	is	
producing	factual	informaLon	and	
presenLng	it	in	a	coherent	way,	but	this	is	
our	interpretaLon	we	project	on	the	
model

‣ Risks:	medical	diagnosis	(“What	do	I	have	
if	I	have	X,	Y,	and	Z	symptoms?”)	could	
seem	possible	but	cause	serious	harm



Takeaways

‣ PrompLng	is	a	way	to	harness	their	power	and	learn	to	do	many	tasks	with	a	
single	model.	Can	be	done	without	fine-tuning

‣ Pre-trained	seq2seq	models	and	generaLve	language	models	can	do	well	at	lots	
of	generaLon	tasks

‣ Decoding	strategy	can	ma=er	a	lot	(beam	search	vs.	sampling)


