
Lecture 20: Tracking

Tuesday, Nov 27

Paper reviews
• Thorough summary in your own words
• Main contribution
• Strengths? Weaknesses?
• How convincing are the experiments?
• Suggestions to improve them?
• Extensions?
• 4 pages max

May require reading additional references

(This is list from 8/30/07 lecture)

What to submit for the extension

Include:
• Goal of the extension
• Summarize implementation strategy
• Analyze outcomes
• Show figures as necessary

For both, submit as hardcopy, due by the 
end of the day on 12/6/07.

Outline
• Last time: Motion

– Motion field and parallax
– Optical flow, brightness constancy
– Aperture problem

• Today: Warping and tracking
– Image warping for iterative flow
– Feature tracking (vs. differential)
– Linear models of dynamics
– Kalman filters

Last time: Optical flow problem

How to estimate pixel motion from image H to image I?
• Solve pixel correspondence problem

– given a pixel in H, look for nearby pixels of the same color in I

Adapted from Steve Seitz, UW

Last time: Motion constraints

• To recover optical flow, we need some 
constraints (assumptions)

– Brightness constancy: in spite of motion, image 
measurement in small region will remain the same

– Spatial coherence: assume nearby points belong to 
the same surface, thus have similar motions, so 
estimated motion should vary smoothly.

– Temporal smoothness: motion of a surface patch 
changes gradually over time.



Last time: Brightness constancy equation
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temporal derivatives, 
u and v: rate of 
change in x and y

spatial gradients: how 
image varies in x or y
direction for fixed time

temporal gradient: how 
image varies in time for 
fixed position

Rewritten:

Last time: Aperture problem

• Brightness constancy equation: single equation, 
two unknowns; infinitely many solutions.

• Can only compute projection of actual flow 
vector [u,v] in the direction of the image gradient, 
that is, in the direction normal to the image edge.
– Flow component in gradient direction determined
– Flow component parallel to edge unknown.

Last time: Solving the aperture problem
How to get more equations for a pixel?

• Basic idea:  impose additional constraints
– most common is to assume that the flow field is smooth locally
– one method:  pretend the pixel’s neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25 equations per pixel!

Adapted from Steve Seitz, UW

Last time: Lucas-Kanade flow
Prob:  we have more equations than unknowns

• The summations are over all pixels in the K x K window
• This technique was first proposed by Lucas & Kanade (1981)

Solution:  solve least squares problem
• minimum least squares solution given by solution (in d) of:

Slide by Steve Seitz, UW

Difficulties

• When will this flow computation fail?
– If brightness constancy is not satisfied

• E.g., occlusions, illumination change…
– If the motion is not small

• derivative estimates poor
– If points within window neighborhood do not 

move together
• E.g., if window size is too large

Image warping

Given a coordinate transform and a source image 
f(x,y), how do we compute a transformed 
image g(x’,y’) = f(T(x,y))?

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’

Slide from Alyosha Efros, CMU



f(x,y) g(x’,y’)x
y

Inverse warping

Get each pixel g(x’,y’) from its corresponding location 
(x,y) = T-1(x’,y’) in the first image

x x’

Q:  what if pixel comes from “between” two pixels?

y’
T-1(x,y)

Slide from Alyosha Efros, CMU

f(x,y) g(x’,y’)x
y

Inverse warping

Get each pixel g(x’,y’) from its corresponding location 
(x,y) = T-1(x’,y’) in the first image

x x’

T-1(x,y)

Q:  what if pixel comes from “between” two pixels?

y’

A:  Interpolate color value from neighbors
– nearest neighbor, bilinear…

Slide from Alyosha Efros, CMU

Bilinear interpolation
Sampling at f(x,y):

Slide from Alyosha Efros, CMU

Iterative flow computation

Figure from Martial Hebert, CMU

To iteratively refine flow estimates, repeat until warped 
version of first image very close to second image:

• compute flow vector [u, v]

• warp image toward the other using estimated flow field 

Feature Detection Tracking features
Feature tracking

• Compute optical flow for that feature for each consecutive frame pair

When will this go wrong?
• Occlusions—feature may disappear

– need mechanism for deleting, adding new features
• Changes in shape, orientation

– allow the feature to deform
• Changes in color
• Large motions

Adapted from Steve Seitz, UW



Handling large motions
Derivative-based flow computation requires small motion.

• If the motion is much more than a pixel, use discrete search instead

• Given feature window W in H, find best matching window in I
• Minimize sum squared difference (SSD) of pixels in window

• Solve by doing a search over a specified range of (u,v) values
– this (u,v) range defines the search window

Adapted from Steve Seitz, UW

• For a discrete matching search, what are the 
tradeoffs of the chosen search window size?

Summary: Motion field estimation
• Differential techniques

– optical flow: use spatial and temporal variation 
of image brightness at all pixels

– assumes we can approximate motion field by 
constant velocity within small region of image 
plane

• Feature matching techniques
– estimate disparity of special points (easily 

tracked features) between frames
– sparse

Think of stereo matching: same as estimating motion if we 
have two close views or two frames close in time.

• Tracking with features: where should the 
search window be placed?
– Near match at previous frame
– More generally, according to expected 

dynamics of the object

Detection vs. tracking

…

t=1 t=2 t=20 t=21

Detection vs. tracking

…

Detection: We detect the object independently in 
each frame and can record its position over time, 
e.g., based on blob’s centroid or detection 
window coordinates



Detection vs. tracking

…

Tracking with dynamics: We use image 
measurements to estimate position of object, but 
also incorporate position predicted by dynamics, 
i.e., our expectation of object’s motion pattern.

Goal of tracking

• Have a model of expected motion
• Given that, predict where objects will occur in 

next frame, even before seeing the image
• Intent: 

– do less work looking for the object, restrict 
search

– improved estimates since measurement noise 
tempered by trajectory smoothness

General assumptions

• Expect motion to be continuous, so we can 
predict based on previous trajectories
– Camera is not moving instantly from viewpoint 

to viewpoint
– Objects do not disappear and reappear in 

different places in the scene
– Gradual change in pose between camera and 

scene
• Able to model the motion

Slow
Down!

Example of Bayesian Inference

?

Environment prior
p(staircase) = 0.1

Bayesian inference
p(staircase | image) 

p(image | staircasse) p(staircase)
p(im | stair) p(stair) + p(im | no stair) p(no stair)

= 0.7 • 0.1 / (0.7 • 0.1 + 0.2 • 0.9) = 0.28

Sensor model
p(image | staircase) = 0.7
p(image | no staircase) = 0.2p(staircase) 

= 0.28

Cost model
cost(fast walk | staircase) = $1,000
cost(fast walk | no staircase) = $0
cost(slow+sense) = $1

Decision Theory
E[cost(fast walk)]     = $1,000 • 0.28 = $280
E[cost(slow+sense)] = $1=

Slide by Sebastian Thrun and Jana Košecká, Stanford University

Tracking as inference: Bayes Filters
Hidden state xt
– The unknown true parameters
– E.g., actual position of the person we are tracking

Measurement yt
– Our noisy observation of the state
– E.g., detected blob’s centroid

Can we calculate p(xt | y1, y2, …, yt) ?
– Want to recover the state from the observed 

measurements

Idea of recursive estimation

Note temporary change of notation: state 
is a, and measurement at time step i is xi.

Adapted from Cornelia Fermüller, UMD.
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Idea of recursive estimation

Adapted from Cornelia Fermüller, UMD.

Inference for tracking

• Recursive process:
– Assume we have initial prior that predicts 

state in absence of any evidence: P(X0)
– At the first frame, correct this given the value 

of Y0=y0

– Given corrected estimate for frame t
• Predict for frame t+1
• Correct for frame t+1

Tracking as inference

• Prediction:
– Given the measurements we have seen up to 

this point, what state should we predict?

• Correction:
– Now given the current measurement, what 

state should we predict?

Assume independences to simplify

• Only immediate past state influences 
current state

• Measurements at time t only depend on 
the current state

Base case Induction step: prediction



Induction step: correction Inference for tracking

• Goal is then to 
– choose good model for the prediction and 

correction distributions
– use the updates to compute best estimate of 

state
• Prior to seeing measurement
• After seeing the measurement

• We stopped here on Tuesday, to be 
continued on Thursday.


