

Announcements

- Midterm is next Tues, 10/13

Today

- Alignment \& warping
- 2d transformations
- Forward and inverse image warping
- Fitting transformations
- Affine
- Projective
- Application: constructing mosaics

Motivation: Recognition

- Can bring one 8.5×11 " sheet of notes
- Handout: 2 previous years' midterms

Motivation: Mosaics

- Getting the whole picture
- Consumer camera: $50^{\circ} \times 35^{\circ}$
- Human Vision: $176^{\circ} \times 135^{\circ}$

Warping problem

- Given a set of points and a transformation, generate the warped image

Parametric (global) warping

Transformation T is a coordinate-changing machine:

$$
\mathrm{p}^{\prime}=T(\mathrm{p})
$$

What does it mean that T is global?

- Is the same for any point p
- can be described by just a few numbers (parameters) Let's represent T as a matrix:

$$
\begin{gathered}
\mathrm{p}^{\prime}=\mathbf{M p} \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\mathbf{M}\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{gathered}
$$

Scaling
Scaling a coordinate means multiplying each of its components by a scalar
Uniform scaling means this scalar is the same for all components:

Scaling
Non-uniform scaling: different scalars per component:

Scaling

Scaling operation:

$$
\begin{aligned}
& x^{\prime}=a x \\
& y^{\prime}=b y
\end{aligned}
$$

Or, in matrix form:

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\underbrace{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]}_{\text {scaling matrix s }}
$$

What transformations can be represented with a 2×2 matrix?
$\begin{aligned} \text { 2D Scaling? } \\ x^{\prime}=s_{x} * \boldsymbol{x} \\ \boldsymbol{y}^{\prime}=s_{y} * \boldsymbol{y}\end{aligned} \quad\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}s_{x} & 0 \\ 0 & s_{y}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
2D Rotate around (0,0)?

$$
\begin{aligned}
& x^{\prime}=\cos \Theta^{*} x-\sin \Theta * y \\
& y^{\prime}=\sin \Theta^{*} x+\cos \Theta * y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
\boldsymbol{y}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \Theta & -\sin \Theta \\
\sin \Theta & \cos \Theta
\end{array}\right]\left[\begin{array}{l}
x \\
\boldsymbol{y}
\end{array}\right]
$$

2D Shear?
$x^{\prime}=x+s h_{x} * y$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & s h_{x} \\
s h_{y} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

> What transformations can be represented with a 2×2 matrix?

2D Mirror about Y axis?

$$
\begin{aligned}
& x^{\prime}=-x \\
& y^{\prime}=y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Mirror over (0,0)?

$$
\begin{aligned}
& x^{\prime}=-x \\
& y^{\prime}=-y
\end{aligned} \quad\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

2D Translation?
$x^{\prime}=x+\boldsymbol{t}_{x}$
$y^{\prime}=\boldsymbol{y}+\boldsymbol{t}_{y}$
NO!

2D Linear Transformations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Only linear 2D transformations can be represented with a 2×2 matrix.
Linear transformations are combinations of ...

- Scale,
- Rotation,
- Shear, and
- Mirror

Homogeneous Coordinates

Q: How can we represent translation as a 3×3 matrix using homogeneous coordinates?
$x^{\prime}=x+t_{x}$
$y^{\prime}=y+t_{y}$

Homogeneous Coordinates
Q: How can we represent translation as a 3×3 matrix using homogeneous coordinates?

$$
\begin{aligned}
& x^{\prime}=x+t_{x} \\
& y^{\prime}=y+t_{y}
\end{aligned}
$$

A: Using the rightmost column:
Translation $=\left[\begin{array}{ccc}1 & 0 & \boldsymbol{t}_{x} \\ 0 & 1 & \boldsymbol{t}_{\boldsymbol{y}} \\ 0 & 0 & 1\end{array}\right]$

Translation

2D Affine Transformations

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Affine transformations are combinations of ..

- Linear transformations, and
- Translations

Parallel lines remain parallel
Parallel lines remain paralel

Projective Transformations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Projective transformations:

- Affine transformations, and
- Projective warps

Parallel lines do not necessarily remain parallel

Image warping

Given a coordinate transform and a source image $f(x, y)$, how do we compute a transformed image $g\left(x^{\prime}, y^{\prime}\right)=f(T(x, y))$?

Slide from Alyosha Etros, CM

Q: what if pixel lands "between" two pixels?

Forward warping

Send each pixel $f(x, y)$ to its corresponding location $\left(x^{\prime}, y^{\prime}\right)=T(x, y)$ in the second image
Q: what if pixel lands "between" two pixels?

Inverse warping

Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location

$$
(x, y)=T^{-1}\left(x^{\prime}, y^{\prime}\right) \text { in the first image }
$$

Q: what if pixel comes from "between" two pixels?

Today

- Alignment \& warping
- 2d transformations
- Forward and inverse image warping
- Fitting transformations
- Affine
- Projective
- Application: constructing mosaics

A: distribute color among neighboring pixels (x^{\prime}, y^{\prime})

- Known as "splatting"

Slide from Alyosha Efros, CMU

Inverse warping

Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location $(x, y)=T^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image
Q: what if pixel comes from "between" two pixels?
A: Interpolate color value from neighbors

- nearest neighbor, bilinear..

Slide from Alyosha Efros, CMU
>> help interp2

Today

- Alignment \& warping
- 2d transformations
- Forward and inverse image warping
- Fitting transformations
- Affine
- Projective
- Application: constructing mosaics

Bilinear interpolation

Sampling at $f(x, y)$:

$$
f(x, y)=(1-a)(1-b) \quad f[i, j]
$$

$$
+a(1-b) \quad f[i+1, j]
$$

$$
+a b \quad f[i+1, j+1]
$$

$$
+(1-a) b \quad f[i, j+1]
$$

Slide from Alyosha Etros, CMU

Alignment problem

- We have previously considered how to fit a model to image evidence
- e.g., a line to edge points, or a snake to a deforming contour
- In alignment, we will fit the parameters of some transformation according to a set of matching feature pairs ("correspondences").

Fitting an affine transformation

- Assuming we know the correspondences, how do we get the transformation?

$\left[\begin{array}{l}x_{i}^{\prime} \\ y_{i}^{\prime}\end{array}\right]=\left[\begin{array}{ll}m_{1} & m_{2} \\ m_{3} & m_{4}\end{array}\right]\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right]+\left[\begin{array}{l}t_{1} \\ t_{2}\end{array}\right]$

An aside: Least Squares Example

Say we have a set of data points ($\mathrm{X} 1, \mathrm{X} 1^{\prime}$), ($\mathrm{X} 2, \mathrm{X} 2^{\prime}$),
$(X 3, X 3$ '), etc. (e.g. person's height vs. weight)
We want a nice compact formula (a line) to predict X 's from Xs: $\quad X a+b=X^{\prime}$
We want to find a and b
How many ($\mathrm{X}, \mathrm{X}^{\prime}$) pairs do we need?

$$
\begin{aligned}
& X_{1} a+b=X_{1}^{\prime} \\
& X_{2} a+b=X_{2}^{\prime}
\end{aligned} \quad\left[\begin{array}{ll}
X_{1} & 1 \\
X_{2} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{l}
X_{1}^{\prime} \\
X_{2}^{\prime}
\end{array}\right] \quad \mathrm{Ax}=\mathrm{B}
$$

What if the data is noisy?
$\left[\begin{array}{ll}X_{1} & 1 \\ X_{2} & 1 \\ X_{3} & 1 \\ \ldots & \ldots\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}X_{1}^{\prime} \\ X_{2}^{\prime} \\ X_{3}^{\prime} \\ \ldots\end{array}\right]$

overconstrained

Fitting an affine transformation

$$
\left[\begin{array}{cccccc}
x_{i} & y_{i} & 0 & 0 & 1 & 0 \\
0 & 0 & x_{i} & y_{i} & 0 & 1 \\
& \cdots & & & & \\
& & &
\end{array}\right]\left[\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4} \\
t_{1} \\
t_{2}
\end{array}\right]=\left[\begin{array}{c}
\cdots \\
x_{i}^{\prime} \\
y_{i}^{\prime} \\
\cdots
\end{array}\right]
$$

- How many matches (correspondence pairs) do we need to solve for the transformation parameters?
- Once we have solved for the parameters, how do we compute the coordinates of the corresponding point for ($x_{\text {new }}, y_{\text {new }}$) ?

Fitting an affine transformation

- Assuming we know the correspondences, how do we get the transformation?

$$
\left[\begin{array}{l}
x_{i}^{\prime} \\
y_{i}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
m_{1} & m_{2} \\
m_{3} & m_{4}
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]+\left[\begin{array}{l}
t_{1} \\
t_{2}
\end{array}\right]\left[\begin{array}{c}
m_{1} \\
m_{2} \\
m_{3} \\
m_{4} \\
t_{1} \\
t_{2}
\end{array}\right]=\left[\begin{array}{l}
] \\
]
\end{array}\right]
$$

What are the correspondences?
 es?

- Compare content in local patches, find best matches. e.g., simplest approach: scan with template, and compute SSD
or correlation between list of pixel intensities in the patch e.g., simplest approach: scan with template, and compute SSD
or correlation between list of pixel intensities in the patch
- Later in the course: how to select regions according to the geometric changes, and more robust descriptors.

Today

- Alignment \& warping
- 2d transformations
- Forward and inverse image warping
- Fitting transformations
- Affine
- Projective
- Application: constructing mosaics

How to stitch together a panorama (a.k.a. mosaic)?

- Basic Procedure
- Take a sequence of images from the same position - Rotate the camera about its optical center
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- (If there are more images, repeat)
- ...but wait, why should this work at all?
- What about the 3D geometry of the scene?
- Why aren't we using it?

Image reprojection

The mosaic has a natural interpretation in 3D

- The images are reprojected onto a common plane
- The mosaic is formed on this plane
- Mosaic is a synthetic wide-angle camera

Image reprojection: Homography

A projective transform is a mapping between any two PPs with the same center of projection

- rectangle should map to arbitrary quadrilateral
- parallel lines aren't
- but must preserve straight lines
called Homography

Source: Alyosha Efros

Panoramas: generating synthetic views

Can generate any synthetic camera view as long as it has the same center of projection!

Image reprojection

Basic question

- How to relate two images from the same camera center? - how to map a pixel from PP1 to PP2

Answer

- Cast a ray through each pixel in PP1
- Draw the pixel where that ray intersects PP2

Observation:
Rather than thinking of this as a 3D reprojection, think of it as a 2D image warp from one image to another.

Solving for homographies

$$
\begin{gathered}
\mathbf{p}^{\prime}=\mathbf{H p} \\
{\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}
\end{gathered}
$$

Can set scale factor $i=1$. So, there are 8 unknowns. Set up a system of linear equations:

$\mathbf{A h}=\mathbf{b}$

where vector of unknowns $h=[a, b, c, d, e, f, g, h]^{\top}$
Need at least 8 eqs, but the more the better..
Solve for h . If overconstrained, solve using least-squares: $\min \|A h-b\|^{2}$
>> help lmdivide
BOARD

Recap: How to stitch together a panorama (a.k.a. mosaic)?

- Basic Procedure
- Take a sequence of images from the same position - Rotate the camera about its optical center
- Compute transformation (homography) between second image and first using corresponding points.
- Transform the second image to overlap with the first.
- Blend the two together to create a mosaic.
- (If there are more images, repeat)

Analysing patterns and shapes

Automatic rectification

From Martin Kemp, The Science of Art (manual reconstruction)

Recall: same camera center

Can generate synthetic camera view as long as it has the same center of projection.

Some mosaic results from Fall 2008

HP "Frames" commercials

- http://www.youtube.com/watch?v=UirmvN ktkBc
- http://www.youtube.com/watch?v=2RPI5v PEoQk

Summary: alignment \& warping

- Write 2d transformations as matrix-vector multiplication (including translation when we use homogeneous coordinates)
- Perform image warping (forward, inverse)
- Fitting transformations: solve for unknown parameters given corresponding points from two views (affine, projective (homography)).
- Mosaics: uses homography and image warping to merge views taken from same center of projection.

