http://www.youtube.com/watch?v=l de77E4PY4Q

Alignment and Image Warping Tuesday, Oct 6

Announcements

- Midterm is next Tues, 10/13
 - In class
 - Can bring one 8.5 x 11" sheet of notes
 - Handout: 2 previous years' midterms

Today

- Alignment & warping
 - 2d transformations
 - Forward and inverse image warping
 - Fitting transformations
 - Affine
 - Projective
 - Application: constructing mosaics

Main questions Warping: Given a source image and a transformation, what does the transformed output look like? Alignment: Given two images with corresponding features, what is the transformation between them?

Parametric (global) warping

 $\mathbf{p} = (\mathbf{x}, \mathbf{y})$

 $\mathbf{p'} =$

Transformation T is a coordinate-changing machine:

$$p' = T(p)$$

What does it mean that T is global?

- Is the same for any point p
- can be described by just a few numbers (parameters)

Let's represent *T* as a matrix:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{M} \begin{bmatrix} x \\ y \end{bmatrix}$$

Source: Alyosha Efro

Scaling

Non-uniform scaling: different scalars per component:

urce: Alvosha Efros

Scaling

Scaling operation:

$$x' = ax$$

$$y' = by$$

Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
scaling matrix S

What transformations can be represented with a 2x2 matrix?

$$x'=s_x*x$$

$$y' = s_v * y$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

2D Rotate around (0,0)?

$$x' = \cos \Theta * x - \sin \Theta * y$$

$$y' = \sin \Theta * x + \cos \Theta * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Shear?

$$x' = x + sh_x * y$$

$$y' = sh_v * x + y$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x \\ s\mathbf{h}_y & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

Source: Alyosha Efros

What transformations can be represented with a 2x2 matrix?

2D Mirror about Y axis?

$$x' = -x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror over (0,0)?

$$x' = -x$$
$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Translation?

$$x' = x + t_x$$

$$y' = y + t_y$$

Source: Alyosha Efros

2D Linear Transformations

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Only linear 2D transformations can be represented with a 2x2 matrix.

Linear transformations are combinations of ...

- · Scale,
- · Rotation,
- · Shear, and
- Mirror

Source: Alyosha Efro

Homogeneous Coordinates

Q: How can we represent translation as a 3x3 matrix using homogeneous coordinates?

$$x' = x + t_x$$

$$y' = y + t_y$$

Source: Alyosha Efro

Homogeneous Coordinates

Q: How can we represent translation as a 3x3 matrix using homogeneous coordinates?

$$x' = x + t_x$$

$$y'=y+t_y$$

A: Using the rightmost column:

$$\mathbf{Translation} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

Source: Alyosha Efro

Basic 2D Transformations

Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} x' \\ y' \\ \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ \end{bmatrix}$$

 $\begin{vmatrix} x' \\ y' \\ 1 \end{vmatrix} = \begin{vmatrix} s_x & 0 & 0 & x \\ 0 & s_y & 0 & y \\ 0 & 0 & 1 & 1 \end{vmatrix}$

Scale

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\Theta & -\sin\Theta & 0 \\ \sin\Theta & \cos\Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotate

Translate

 $\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x & 0 \\ s\mathbf{h}_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$

Shear

Source: Aluncha Efroc

2D Affine Transformations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Affine transformations are combinations of ...

- · Linear transformations, and
- Translations

Parallel lines remain parallel

Projective Transformations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Projective transformations:

- · Affine transformations, and
- Projective warps

Parallel lines do not necessarily remain parallel

Today

- · Alignment & warping
 - 2d transformations
 - Forward and inverse image warping
 - Fitting transformations
 - Affine
 - Projective
 - Application: constructing mosaics

Image warping

Given a coordinate transform and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?

Slide from Alyosha Efros, CMI

Forward warping

Send each pixel f(x,y) to its corresponding location (x',y') = T(x,y) in the second image

Q: what if pixel lands "between" two pixels?

Slide from Alyosha Efros, CML

Forward warping

Send each pixel f(x,y) to its corresponding location (x',y') = T(x,y) in the second image

- Q: what if pixel lands "between" two pixels?
- A: distribute color among neighboring pixels (x',y')
- Known as "splatting"

Slide from Alyosha Efros, CMU

Inverse warping

Get each pixel g(x',y') from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image

Q: what if pixel comes from "between" two pixels?

Slide from Alyosha Efros, CMU

Inverse warping

Get each pixel g(x',y') from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image

- Q: what if pixel comes from "between" two pixels?
- A: Interpolate color value from neighbors
 - nearest neighbor, bilinear...

Slide from Alyosha Efros, CMU

>> help interp2

Bilinear interpolation

Sampling at f(x,y):

$$f(x,y) = (1-a)(1-b) \quad f[i,j] \\ +a(1-b) \quad f[i+1,j] \\ +ab \quad f[i+1,j+1] \\ +(1-a)b \quad f[i,j+1]$$

Slide from Alvosha Efros CMU

Today

- · Alignment & warping
 - 2d transformations
 - Forward and inverse image warping
 - Fitting transformations
 - Affine
 - Projective
 - Application: constructing mosaics

Alignment problem

- We have previously considered how to fit a model to image evidence
 - e.g., a line to edge points, or a snake to a deforming contour
- In alignment, we will fit the parameters of some transformation according to a set of matching feature pairs ("correspondences").

Fitting an affine transformation

Affine model approximates perspective projection of planar objects.

Figures from David Lowe, ICCV 1999

Fitting an affine transformation

 Assuming we know the correspondences, how do we get the transformation?

$$\begin{bmatrix} x_i' \\ y_i' \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$

An aside: Least Squares Example

Say we have a set of data points (X1,X1'), (X2,X2'), (X3,X3'), etc. (e.g. person's height vs. weight)

We want a nice compact formula (a line) to predict X's

from Xs: Xa + b = X'

We want to find a and b

How many (X,X') pairs do we need?

$$X_1a + b = X_1$$

$$X_2a + b = X_2$$

$$\begin{bmatrix} X_1 & 1 \\ X_2 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} X \\ X \end{bmatrix}$$

What if the data is noisy?

$$\begin{bmatrix} X_1 & 1 \\ X_2 & 1 \\ X_3 & 1 \\ \dots & \dots \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} X_1^T \\ X_2^T \\ X_3^T \end{bmatrix}$$

overconstrained

Ax=B

Fitting an affine transformation

Assuming we know the correspondences, how do we get the transformation?

Fitting an affine transformation

$$\begin{bmatrix} x_i & y_i & 0 & 0 & 1 & 0 \\ 0 & 0 & x_i & y_i & 0 & 1 \\ & & \cdots & & & 1 \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_1 \\ t_2 \end{bmatrix} = \begin{bmatrix} \cdots \\ x_i' \\ y_i' \\ \cdots \end{bmatrix}$$

- How many matches (correspondence pairs) do we need to solve for the transformation parameters?
- Once we have solved for the parameters, how do we compute the coordinates of the corresponding point for (x_{new}, y_{new}) ?

What are the correspondences?

- · Compare content in local patches, find best matches. e.g., simplest approach: scan with template, and compute SSD or correlation between list of pixel intensities in the patch
- · Later in the course: how to select regions according to the geometric changes, and more robust descriptors.

Today

- · Alignment & warping
 - 2d transformations
 - Forward and inverse image warping
 - Fitting transformations
 - Affine
 - Projective
 - Application: constructing mosaics

Panoramas Obtain a wider angle view by combining multiple images.

How to stitch together a panorama (a.k.a. mosaic)?

- · Basic Procedure
 - Take a sequence of images from the same position
 - · Rotate the camera about its optical center
 - Compute transformation between second image and first
 - Transform the second image to overlap with the first
 - Blend the two together to create a mosaic
 - (If there are more images, repeat)
- ...but wait, why should this work at all?
 - What about the 3D geometry of the scene?
 - Why aren't we using it?

Source: Steve Seitz

Homography

To **compute** the homography given pairs of corresponding points in the images, we need to set up an equation where the parameters of **H** are the unknowns...

Solving for homographies

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Can set scale factor *i*=1. So, there are 8 unknowns. Set up a system of linear equations:

Ah = b

where vector of unknowns h = [a,b,c,d,e,f,g,h]^T Need at least 8 eqs, but the more the better... Solve for h. If overconstrained, solve using least-squares: $\min \|Ah-b\|^2$

>> help lmdivide

BOARD

Recap: How to stitch together a panorama (a.k.a. mosaic)?

- Basic Procedure
 - Take a sequence of images from the same position
 - Rotate the camera about its optical center
 - Compute transformation (homography) between second image and first using corresponding points.
 - Transform the second image to overlap with the first.
 - Blend the two together to create a mosaic.
 - (If there are more images, repeat)

Source: Steve Seitz

Image warping with homographies image plane in front black area where no pixel maps to

Image rectification

Some mosaic results from Fall 2008

HP "Frames" commercials

- http://www.youtube.com/watch?v=UirmvN
 ktkBc
- http://www.youtube.com/watch?v=2RPI5v PEoQk

Summary: alignment & warping

- Write 2d transformations as matrix-vector multiplication (including translation when we use homogeneous coordinates)
- Perform image warping (forward, inverse)
- Fitting transformations: solve for unknown parameters given corresponding points from two views (affine, projective (homography)).
- Mosaics: uses homography and image warping to merge views taken from same center of projection.