CS 378 Computer Vision

Oct 22, 2009

Outline: Stereopsis and calibration

I. Computing correspondences for stereo

A. Epipolar geometry gives hard geometric constraint, but only reduces match for a point to be on a line.

Other “soft” constraints are needed to assign corresponding points:

Similarity — how well do the pixels match in a local region by the point?
0 Normalized cross correlation
0 Dense vs. sparse correspondences
0 Effect of window size
Uniqueness—up to one match for every point
Disparity gradient—smooth surfaces would lead to smooth disparities
Ordering—points on same surface imaged in order
0 Enforcing ordering constraint with scanline stereo + dynamic programming

(Aside from point-based matching, or order-constrained DP, graph cuts can be used to minimize energy

function expressing preference for well-matched local windows and smooth disparity labels.)

Sources of error when computing correspondences for stereo

B. Examples of applications leveraging stereo

Segmentation with depth and spatial gradients
Body tracking with fitting and depth
Camera+microphone stereo system

Virtual viewpoint video

Il. Camera calibration

A. Estimating projection matrix

Intrinsic and extrinsic parameters; we can relate them to image pixel coordinates and world point
coordinates via perspective projection.

Use a calibration object to collect correspondences.

Set up equation to solve for projection matrix when we know the correspondences.

B. Weak calibration

When all we have are corresponding image points (and no camera parameters), can solve for the
fundamental matrix. This gives epipolar constraint, but unlike essential matrix does not require
knowing camera parameters.

Stereo pipeline with weak calibration: must estimate both fundamental matrix and
correspondences. Start from correspondences, estimate geometry, refine.
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— Afew stereo applications
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Last time:
Estimating depth with stereo

» Stereo: shape from “motion” between two views

* We need to consider:
* Info on camera pose (“calibration”)
* Image point correspondences

scene point

Kl
<_ image|plane

o
optical
center

Last time: \
Epipolar constraint

- Potential matches for p have to lie on the corresponding
epipolar line I'.

- Potential matches for p’ have to lie on the corresponding
epipolar line I.

Slide credit: M. Pollefeys
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An audio camera & epipolar geometry

Spherical microphone array

Adam O' Donovan, Ramani Duraiswami and Jan Neumann
Microphone Arrays as Generalized Cameras for Integrated Audio
Visual Processing, IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Minneapolis, 2007

An audio camera & epipolar geometry

Figure 4. An example of the use of the system in speaker tracking
with noise suppression. The bright red spot on the sound image
(marked with a +) corresponds to the dominant source. The less
dominant source however lies on the epipolar line in the sound
image induced by the location of the mouth in the camera image,
and this source is beamformed.
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Correspondence problem
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Figure from Gee & Cipolla 1999

Correspondence problem

» Beyond the hard constraint of epipolar
geometry, there are “soft” constraints to help
identify corresponding points
— Similarity

— Uniqueness
— Ordering
— Disparity gradient

» To find matches in the image pair, we will
assume
— Most scene points visible from both views

— Image regions for the matches are similar in
appearance
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Correspondence problem

S\ N

| epipolar

Parallel camera example: epipolar lines are
corresponding image scanlines

Source: Andrew Zisserman

Correspondence problem

Intensity
profiles

E

o 100 200 o 400 500 L) 100 mn aon
* Clear correspondence between intensities, but also noise and ambiguity

Source: Andrew Zisserman
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Correspondence problem

N
N

Neighborhoods of corresponding points are
similar in intensity patterns.

Source: Andrew Zisserman

Normalized cross correlation

subtract mean: A+ A—<A> B+ B—<B>

i ¥ AL 4)B(L )

NCC =
VEi T, AG, )25 T B, §)?

Write regions as vectors region A region B
A—a B—Db ﬁ %
NCC = 2P a 2 (]

|a|[b] E g
b
—-1<NCC<1

vector a vector b

Source: Andrew Zisserman
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Correlation-based window matching

left image band (x)

i right image band (x')

cross
correlation

disparity = x/ - x

Source: Andrew Zisserman

Dense correspondence search

£ =TTHON. ABRATIAM ?.I!“Cﬁl‘!\', President of Unlted States. -:gl-

For each epipolar line
For each pixel / window in the left image

« compare with every pixel / window on same epipolar line in right
image
» pick position with minimum match cost (e.g., SSD, correlation)

Adapted from Li Zhang




Textureless regions

@

target region

| ‘B J left image band (x)
g right image band (x/)

cross
correlation

S, Textureless regions are
non-distinct; high
ambiguity for matches.

Source: Andrew Zisserman

Effect of window size

epipolar

Source: Andrew Zisserman
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Effect of window size

W=3 W =20

Want window large enough to have sufficient intensity
variation, yet small enough to contain only pixels with
about the same disparity.

Figures from Li Zhang

Foreshortening effects

X
/72 U N

fronto-parallel surface slanting surface

imaged length the same imaged lengths differ

Source: Andrew Zisserman
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Occlusion

Qecluded in Occiuded in
Right Image Left Image
oty o

Left Image Right Image

Left . Right
Center of Projection Center of Projection

Slide credit: David Kriegman

Sparse correspondence search
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Restrict search to sparse set of detected features

Rather than pixel values (or lists of pixel values) use feature
descriptor and an associated feature distance

Still narrow search further by epipolar geometry

10/22/2009

10



Correspondence problem

» Beyond the hard constraint of epipolar
geometry, there are “soft” constraints to help
identify corresponding points
— Similarity
— Uniqueness
— Disparity gradient
— Ordering

Uniqueness constraint

* Up to one match in right image for every point in left
image

o Violates uniqueness
constraint

-
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0¥ Leftimage Rightimage O/

Figure from Gee &
Cipolla 1999
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Disparity gradient constraint

+ Assume piecewise continuous surface, so want disparity
estimates to be locally smooth

Left image _ Right image _
Epipolar
line

* o ° '\010?\0\
27

Given matches e and o, point o in the left image
must match point 1 in the right image. Point 2
would exceed the disparity gradient limit.

Figure from Gee &
Cipolla 1999

Ordering constraint

» Points on same surface (opaque object) will be in same
order in both views

» Satisfies ordering
constraint

g -

2 - ) »
of Left image Right image =N

Figure from Gee &
Cipolla 1999
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Ordering constraint

+ Won't always hold, e.g. consider transparent object, or
an occluding surface

1 Violates ordering
constraint

Fi - -~ . ..“'. I
af Leftimage Right image o,

Figures from Forsyth & Ponce

Scanline stereo

* Try to coherently match pixels on the entire scanline
+ Different scanlines are still optimized independently

Left image Right image

]
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intensity
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“Shortest paths” for scan-line stereo
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__________ right

Can be implemented with dynamic programming
Ohta & Kanade '85, Cox et al. ‘96

Slide credit: Y. Boykov

Coherent stereo on 2D grid

» Scanline stereo generates streaking artifacts

+ Can’t use dynamic programming to find spatially
coherent disparities/ correspondences on a 2D grid

10/22/2009
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range map

Stereo matching as energy minimization

E =a Edata('li |21 D)+ﬂEsmooth(D)

Ega = 3 (W, (1) =W, (i + DA))’| |Eamoon = 2 2(D()~D(J))

i neighbors i, j

» Energy functions of this form can be minimized using
graph cuts

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization
via Graph Cuts, PAMI 2001

Saurce: Steve Seitz]
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Recap: stereo with calibrated cameras

* Image pair
» Detect some features
+ Compute E from given R

and T

« Match features using the “ ﬁ

epipolar and other Len Rl
constraints

- Triangulate for 3d structure

Error sources

* Low-contrast ; textureless image regions
* Occlusions
« Camera calibration errors

* Violations of brightness constancy (e.g.,
specular reflections)

« Large motions

10/22/2009
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Today

Correspondences, matching for stereo

— Afew stereo applications

Camera calibration

Depth for segmentation

““

(a) Left camera image. (b) Right camera image.

Edges in disparity in
. conjunction with
N VI image edges

=

enhances contours
found

{c) Depth image. (d) Edge combination image.

Figure 3 Stereo video rames with computed depth map and edge combination result.

Danijela Markovic and Margrit Gelautz, Interactive Media Systems Group, Vienna University of Technology

10/22/2009
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Depth for segmentation

dhy g 7

(a) Onginal mage with snake minalizaton Final snake on onginal imay
(e} Final snake on edge combimanon image.  (f) Onginal image with snake from (¢) overlad.

* {e) Fnal suake on depth muage (d) Ongmal unage with snake from (ch overlaid

Danijela Markovic and Margrit Gelautz, Interactive Media Systems Group, Vienna University of Technology

Stereo in machine vision systems

N

Left : The Stanford cart sports a single camera moving in discrete
increments along a straight line and providing multiple snapshots of
outdoor scenes

Right : The INRIA mobile robot uses three cameras to map its
environment

Forsyth & Ponce

10/22/2009
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Model-based body tracking,
stereo input

David Demirdjian, MIT Vision Interface Group
http://people.csail.mit.edu/demirdji/movie/artic-tracker/turn-around.m1v

First without beamforming

Adam O' Donovan, Ramani Duraiswami and Jan Neumann.
Microphone Arrays as Generalized Cameras for Integrated Audio
Visual Processing, IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Minneapolis, 2007

10/22/2009
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(

Virtual viewpoint video

(c)

ned disparity estimates; (e) smoothed disparity estimate

J A depth-matted object from earlier in the sequeence is inserted into the video.

C. Zitnick et al, High-quality video view interpolation using a layered representation,
SIGGRAPH 2004.

Virtual viewpoint video

Massive Arabesque

http://research.microsoft.com/IVM/VVV/

10/22/2009
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Uncalibrated case

* What if we don’t know the camera parameters?

Today

» Correspondences, matching for stereo

— A few stereo applications

* Camera calibration

21



Perspective projection

[0] Optical
Camera gxis
frame

L - X Y
(x.y.2)>(f=./)
Scene point —> Image coordinates

Thus far, in camera’s reference frame only.

Camera parameters

« Extrinsic: location and orientation of camera frame
with respect to reference frame

* Intrinsic: how to map pixel coordinates to image plane
coordinates

Reference
RIS _\\% frame
] i
prr

Camera 1
frame

10/22/2009
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Extrinsic camera parameters

P.=R(P,-T)
T T

Camera reference World reference
frame frame

P.HX,Y,z)

Camera parameters

» Extrinsic: location and orientation of camera frame with

respect to reference frame

* Intrinsic: how to map pixel coordinates to image

plane coordinates

Reference
...... A frame
1 : /
; p[r

Camera 1
frame

10/22/2009
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Intrinsic camera parameters

 Ignoring any geometric distortions from optics, we can
describe them by:

X = _(Xim o Ox)Sx

y= _(yim o Oy)sy

I R N

Coordinates of Coordinates of Coordinates of Effective size of a
projected point in image point in image center in pixel (mm)
camera reference pixel units pixel units

frame

Camera parameters

We know that in terms of camera reference frame:
X Y P=R(P,—-T
X = f— Y= f_ and ¢ ( W 2
Z Z P.=(X,Y,Z)

Substituting previous eqns describing intrinsic and extrinsic
parameters, can relate pixels coordinates to world points:

—(Xim —0,)8, = f RePy =)
Rg-(PW—T) R;= Row i of
R (P T) rotation matrix
_(yim _Oy)sy = f : -
RB ) (Pw _T)

10/22/2009
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Projection matrix

» This can be rewritten as a WX, X
matrix product using ' Y
homogeneous coordinates: WY | = M im|\/|ext ZW
where: w |

—-fls, 0 o M L -
M,= 0 —f/s, q
0 0 1
T
M I, 3 - Rl T
M, = o1 I I3 - RZTT
r-31 r-32 r33 RSTT

Projection matrix

* This can be rewritten as a Wxim
matrix product using
homogeneous coordinates: WYy,
where: W
—fls, 0 o
M,=| 0 —f/s, o
0 0 1
T
r11 r12 r13 - R1 T
T
Mext = Y I M3 - Rz T
r31 r32 r33 - RaTT

—~MP

W

10/22/2009
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Calibrating a camera

» Compute intrinsic and extrinsic
parameters using observed camera
data

Main idea

* Place “calibration object” with known
geometry in the scene

» Get correspondences

» Solve for mapping from scene to
image: estimate M=M,, M

int"'ext

The Opti-CAL Calibration Target Iinage

Estimating the projection matrix

|

WXim
Wyim = MPW
w

For a given feature point

_ I\/Il'l:)w

im

- Xim(MB'PW): I\/Il'l:)w

N

_M3.PW
y M, -P,
" M,-P,

3

10/22/2009
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Estimating the projection matrix

WXim
Wyim = M |:)w
\

For a given feature point

M, -P,

X"“:M:.pw —0=M;-R, = Xn(M;-PR,)
MZ.PW

yim:
MS'PW

Estimating the projection matrix

WX,
Wyim = M I:>w
w

For a given feature point

M, -P, .
:M: P O_(Ml_ximM3)°Pw
— MZ P

yim M3P

w

- O:(Mz_yimM3)'Pw

10/22/2009
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Estimating the projection matrix

0 z‘(M]H‘XimMS)" I:)w
0= (MZ B yimM3)'Pw

m,
m,

m

0] — X, =X Yy —XinZy — X | [ [
1

im°w im=w
iy,

~Yim Xw - yime - yime = Yim

0

W

00
WZW

Estimating the projection matrix

This is true for every feature point, so we can stack up n
observed image features and their associated 3d points
in single equation:

XOy®z® 1 0 0 0 0-xUXO —xOYG _xOZO _x® [
00 0 0XPYPZI1-yXD —yIvE -y)Z0 -y

Solve for my’s (the calibration information) "y,
[F&P Section 3.1]
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Calibrating a camera

» Compute intrinsic and extrinsic
parameters using observed camera
data

Main idea

* Place “calibration object” with known
geometry in the scene

» Get correspondences

» Solve for mapping from scene to

image: estimate M=M, M.,

The Opti-CAL Calibration Target Iinage

When would we calibrate this way?

+ Makes sense when geometry of system is not going to
change over time

* ...When would it change?

10/22/2009
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Weak calibration

+ Want to estimate world geometry without requiring
calibrated cameras
— Archival videos
— Photos from multiple unrelated users
— Dynamic camera system

 Main idea:

— Estimate epipolar geometry from a (redundant) set of
point correspondences between two uncalibrated
cameras

Uncalibrated case

For a given ~ _ M . Camera
camera. p T intp coordinates

So, for two cameras (left and right):

M}
Camera / p (left) = |eft,int p (Ieft),\ | .
i mage pixel
coordinates

-1 .— coordinates

p(right) =M right,intp(right)

Internal calibration
matrices, one per
camera

10/22/2009
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P = Migi P Uncalibrated case:
Do =M iPoriant fundamental matrix

T
) E =0 From before, the
p(”ght) p('eﬁ) essential matrix E.

(M ;ilght,intﬁright )T E(M I_e%‘t,intﬁleft ) — 0

ﬁrTight( ;ight,intEM;‘t,int )ﬁleft =0

_T P
pright F pleft = O
!

Fundamental matrix

Fundamental matrix

» Relates pixel coordinates in the two views

* More general form than essential matrix: we remove
need to know intrinsic parameters

+ |If we estimate fundamental matrix from correspondences
in pixel coordinates, can reconstruct epipolar geometry
without intrinsic or extrinsic parameters

10/22/2009
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Computing F from correspondences

F — (M EM left. mt)

right,int

prlghtFpIeft = 0

» Cameras are uncalibrated: we don’'t know E or left or
right M, matrices

» Estimate F from 8+ point correspondences.

Computing F from correspondences

Each point 7 o
correspondence prightFpIeft =0
generates one

constraint on F

fin fio fis] | u
! 7 ] i
{u " 1| far fae fz:_cl vi=0
a1 fz2 fa3] [ fun ]

| fi2

N fis

Collect_nof these Ifw.’!-.'.-l wivy Uy viuy vy vp ug v [| fa
constraints fa|=0
f‘l.'i

f.‘H

Solve for f , vector of parameters. :[ j:;i

10/22/2009
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Stereo pipeline with weak calibration

* So, where to start with uncalibrated cameras?

— Need to find fundamental matrix F and the correspondences
(pairs of points (u’,v’) < (u,v)).

1) Find interest points in image (more on this later)
2) Compute correspondences

3) Compute epipolar geometry

4) Refine

Example from Andrew Zisserman

Stereo pipeline with weak calibration

1) Find interest points (next week)

10/22/2009
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Stereo pipeline with weak calibration

2) Match points only using proximity

Putative matches based on
correlation search

« Many wrong matches (10-50%), but enough to compute F

10/22/2009
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RANSAC for robust estimation of
the fundamental matrix

+ Select random sample of correspondences

+ Compute F using them

— This determines epipolar constraint

« Evaluate amount of support — inliers within threshold

distance of epipolar line

» Choose F with most support (inliers)

Putative matches based on
correlation search

* Many wrong matches (10-50%), but enough to compute F

10/22/2009
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Pruned matches

» Correspondences consistent with epipolar geometry

10/22/2009
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Next:

» Tuesday: local invariant features
— How to find interest points?

— How to describe local neighborhoods more
robustly than with a list of pixel intensities?

region A

region B

LR

i

vector a

T
y

vector b

10/22/2009
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