

Recognition: Alignment and voting

Tuesday, Nov 3

Kristen Grauman UT-Austin

11/3/2009

6

11/3/2009

11/3/2009

Previously

- Local invariant features for multi-view matching
- Local features for (sub-)image retrieval

Today

- Introduction to object recognition problem
- Recognition by alignment, voting

25

Challenges: robustness

Coarse genres of approaches

- Alignment: hypothesize and test
 - Pose clustering with object instances
 - Indexing invariant features + verification

Coarse genres of approaches

- Alignment: hypothesize and test
 - Pose clustering with object instances
 - Indexing invariant features + verification
- Local features: as parts or words
 - Part-based models
 - Bags of words models

40

Today

- Introduction to object recognition problem
- Recognition by alignment, voting

How to form a hypothesis?

We want a good correspondence between model features and image features.

- Alignment:

- Use subsets of features to estimate larger correspondence
- Verify

But how to avoid checking all possible sets of correspondences?

We'd like to look at the most likely hypotheses first...

<section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item>

- **Training phase:** For each model feature, record 2D location, scale, and orientation of model (relative to normalized feature frame)
- **Test phase:** Let each match btwn a test SIFT feature and a model feature vote in a 4D Hough space
 - Use broad bin sizes of 30 degrees for orientation, a factor of 2 for scale, and 0.25 times image size for location
 - Vote for two closest bins in each dimension
- Find all bins with at least three votes and perform geometric verification
 - Estimate least squares affine transformation
 - · Search for additional features that agree with the alignment

David G. Lowe. <u>"Distinctive image features from scale-invariant keypoints."</u> *IJCV* 60 (2), pp. 91-110, 2004.

Recall: difficulties of voting

- Noise/clutter can lead to as many votes as true target
- Bin size for the accumulator array must be chosen carefully
- In practice, good idea to make broad bins and spread votes to nearby bins, since verification stage can prune bad vote peaks.

Rules of the game

- We start with a catalogue of stars in the sky, and from it build an index which is used to assist us in locating ('solving') new test images.
- We can spend as much time as we want building the index but solving should be fast.
- Challenges:
 1) The sky is big.
 2) Both catalogues and pictures are noisy.

http://astrometry.net

roweis@cs.toronto.edu

 We need to do some sort of robust matching of the test image to any proposed location on the sky.

 Intuitively, we need to ask:
 "Is there an alignment of the test image and the catalogue so that (almost^{*}) every catalogue star in the field of view of the test image lies (almost^{*}) exactly on top of an observed star?"

http://astrometry.net

(Inverted) Index of Features

- To solve this problem, we will employ the classic idea of an "inverted index".
- We define a set of "features" for any particular view of the sky (image).
- Then we make an (inverted) index, telling us which views on the sky exhibit certain (combinations of) feature values.
- This is like the question: Which web pages contain the words "machine learning"?

http://astrometry.net

63

roweis@cs.toronto.edu

- Identify objects (stars+galaxies) in the image bitmap and create a list of their 2D positions.
- Cycle through all possible valid^{*} quads (brightest first) and compute their corresponding codes.
- Look up the codes in the code KD-tree to find matches within some tolerance; this stage incurs some false positive and false negative matches.
- Each code match returns a candidate position & rotation on the sky. As soon as 2 quads agree on a candidate, we proceed to verify that candidate against all objects in the image.

http://astrometry.net

Summary: alignment-based recognition

- Looking for object+pose that fits well with image.
 - Use good correspondences (i.e., based on local invariant feature matches) to designate hypotheses.
 - Can limit number of verifications performed by voting for most likely model parameters.
- Pros:
 - Effective when we are able to find reliable features within clutter
 - Great results for matching specific instances
- Cons:
 - May not scale well with the number of models
 - Not as suited for category-level recognition

