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Previously

• Local invariant features for multi-view matching
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Local features: main components
1) Detection: Identify the 

interest points

2) Description:Extract vector 
feature descriptor 
surrounding each interest 
point.

],,[ )1()1(
11 dxx K=x

3) Matching: Determine 
correspondence between 
descriptors in two views

],,[ )2()2(
12 dxx K=x

Local features: code
• Lots of nice code / binaries available online.
• Check class page for links.
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Previously

• Local invariant features for multi-view matching
L l f t f ( b )i t i l• Local features for (sub-)image retrieval

Visual words
• Example: each 

group of patches 
belongs to the g
same visual word

Figure from  Sivic & Zisserman, ICCV 2003
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Bags of visual words

• Summarize entire image 
based on its distribution 
(histogram) of word 
occurrences.

• Analogous to bag of words 
representation commonly 
used for documentsused for documents.

Inverted file index

• Database images are loaded into the index mapping 
words to image numbers
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Inverted file index

• New query image is mapped to indices of database 
images that share a word.

Review questions
• What are the tradeoffs related to the visual vocabulary 

size (number of words)?

• What is the role of tf-idf weighting for a bag-of-words 
representation?

• If we have established a vocabulary, and get a new 
image with some SIFT descriptors, how do we assign its 
features to words?
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Today

• Introduction to object recognition problem
• Recognition by alignment, voting

What does object recognition involve?
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Verification: is that a lamp?

Detection: are there people?
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Identification: is that Potala Palace?

Object categorization

mountain

building
tree

banner

vendor
people

street lamp
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Scene and context categorization

• outdoor
• city
•• …

ng

What could be done with recognition algorithms?
There is a wide range of applications, including…
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Medical image 
analysis

Content-based retrieval and analysis for 
images and videos
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Object Categorization

• Task Description
“Given a small number of  training images of a category, 
recognize a-priori unknown instances of that category and assign 
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the correct category label.”

• Which categories are feasible visually?
Extensively studied in Cognitive Psychology,
e.g. [Brown’58]
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Visual Object Categories

• Basic Level Categories in human categorization 
[Rosch 76, Lakoff 87]

or
y 

A
ug

m
en

te
d 

Co
m

pu
ti

gn
iti

on
 T

ut
or

ia
l

The highest level at which category members have similar 
perceived shape
The highest level at which a single mental image reflects the 
entire category
The level at which human subjects are usually fastest at 
identifying category members
The first level named and understood by children 
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y
The highest level at which a person uses similar motor actions 
for interaction with category members
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Visual Object Categories

• Basic-level categories in humans seem to be defined 
predominantly visually.

• There is evidence that humans (usually)
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• There is evidence that humans (usually)
start with basic-level categorization 
before doing identification.
⇒ Basic-level categorization is easier

and faster for humans than object
identification!

⇒ Most promising starting point
f  i l l ifi i

Abstract 
levels

animal

quadruped

…

……
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K. Grauman, B. Leibe

for visual classification
Basic level

Individual 
level

“Fido”

dog

German
shepherd

Doberman

cat cow

…

… …

How many object categories are there?

Biederman 1987Source: Fei-Fei Li, Rob Fergus, Antonio Torralba.
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Other Types of Categories

• Functional Categories
e.g. chairs = “something you can sit on”
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Other Types of Categories

• Ad-hoc categories
e.g. “something you can find in an office environment”
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Challenges: robustness
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appearance

Occlusions
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Challenges: robustness
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Learn object variability

– Changes in appearance, scale, and articulation
Compensate for clutter, overlap, and occlusion
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Challenges: context and human experience
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Challenges: context and human experience
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Context cues

Image credit: D. Hoeim
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Challenges: learning with minimal supervision

MoreLess
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Slide from Pietro Perona, 2004 Object Recognition workshop

Slide from Pietro Perona, 2004 Object Recognition workshop
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Levels of Object Categorization

“cow”
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• Different levels of recognition

“motorbike”

“car”

Pe
rc

ep
tu

al
 a

nd
 S

en
s

Vi
su

al
 O

bj
ec

t R
ec

og Which object class is in the image? ⇒ Obj/Img classification
Where is it in the image? ⇒ Detection/Localization
Where exactly ― which pixels? ⇒ Figure/Ground 

segmentation

Primary steps
• How to represent a category or object

H t f iti ( l ifi ti• How to perform recognition (classification, 
detection) with that representation

• How to learn models, new categories/objects
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Coarse genres of approaches
• Alignment: hypothesize and test

– Pose clustering with object instances

– Indexing invariant features + verification

Recall: Alignment

• Alignment: fitting a model to a transformation 
between pairs of features (matches) in twobetween pairs of features (matches) in two 
images

Find transformation T
that minimizesT
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Alignment-based

L. G. Roberts, Machine Perception 
of Three Dimensional Solids,
Ph.D. thesis, MIT Department of 
Electrical Engineering, 1963.

Alignment-based

Huttenlocher & Ullman (1987) Source: Lana Lazebnik
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Alignment-based

Projective invariants (Rothwell et al., 1992):

ACRONYM (BrooksACRONYM (Brooks 
and Binford, 1981)

Sparser patch matches : for object instances



11/3/2009

36

Coarse genres of approaches
• Alignment: hypothesize and test

– Pose clustering with object instances

– Indexing invariant features + verification

• Local features: as parts or words
– Part-based models

– Bags of words models

Local feature-based: 
bag of words models

• Remove spatial information, treat object as a 
collection of local appearance regionscollection of local appearance regions.
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Local feature-based: constellation models
• In categorization problem, we no longer have exact 

correspondences…
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• On a local level, we
can still detect 
similar parts.

• Bag-of-words 
represents objects
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73

by their parts

• How can we
improve on this?

Encode structure

Slide credit: Rob Fergus
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Local feature-based: constellation models

• Fischler & Elschlager 1973
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• Model has two components
parts 
(2D image fragments)
structure 
(configuration of parts)
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Local feature-based: voting

• For every feature, store possible “occurrences”
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– Object identity• For new image, let the matched features vote for 
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j y
– Pose
– Relative position

g ,
possible object positions

Coarse genres of approaches
• Alignment: hypothesize and test

– Pose clustering with object instances

– Indexing invariant features + verification

• Local features: as parts or words
– Part-based models

– Bags of words models

• Global appearance: “texture templates”
– With or without a sliding window
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Global appearance-based

Swain and Ballard, Color Indexing, IJCV 1991.

Global appearance-based

Eigenfaces (Turk & Pentland, 1991)
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Global appearance-based

Scene recognition based on global texture pattern.
[Oliva & Torralba (2001)]
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Global appearance-based: sliding windows

Given a binary classifier that makes a decision based on 
global appearance, can slide a window around
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Yes, car.No, not a car.
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Global appearance-based: sliding windows

Given a binary classifier that makes a decision based on 
global appearance, can slide a window around
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Context can constrain a sliding window search
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Global appearance-based
• Appropriate for classes with more rigid structure, and 

when good training examples available

• But sensitive to occlusion, clutter, deformations, 
larger variability within the class.g y

What “works” today

• Reading license plates, zip codes, checks

Source: Lana Lazebnik
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What “works” today

• Reading license plates, zip codes, checks
Fi i t iti• Fingerprint recognition

Source: Lana Lazebnik

What “works” today

• Reading license plates, zip codes, checks
Fi i t iti• Fingerprint recognition

• Face detection

Source: Lana Lazebnik
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What “works” today

• Reading license plates, zip codes, checks
Fi i t iti• Fingerprint recognition

• Face detection
• Recognition of flat textured objects (CD covers, 

book covers, etc.)

Source: Lana Lazebnik
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Rough evolution of focus in recognition research
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1980s Currently1990s to early 2000s
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Today

• Introduction to object recognition problem
• Recognition by alignment, voting

Recall: Alignment
• Alignment: fitting a model to a transformation between 

pairs of features (matches) in two images
• We can use this idea to recognize / verify instances ofWe can use this idea to recognize / verify instances of 

an object.

Find transformation T
that minimizesT
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Recall: Alignment
• Alignment: fitting a model to a transformation between 

pairs of features (matches) in two images
• We can use this idea to recognize / verify instances ofWe can use this idea to recognize / verify instances of 

an object.

Hypothesize and test: main idea

• Given model of object
• New image: hypothesize object poseNew image: hypothesize object pose
• Render object
• Compare rendering to actual image: if close, good 

hypothesis.
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We want a good correspondence between model 
features and image features.

How to form a hypothesis?

– Brute force?

Brute force hypothesis generation

• For every possible model, try every possible 
subset of image points as matches for thatsubset of image points as matches for that 
model’s points.

• Say we have L objects with N features, M 
features in image
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We want a good correspondence between model 
features and image features.

How to form a hypothesis?

– Alignment: 
• Use subsets of features to estimate larger 

correspondence
• Verify

Recall: Fitting an affine transformation
• Assuming we know the correspondences, how do we 

get the transformation?
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Alignment: fitting

⎥
⎥
⎤

⎢
⎢
⎡
′⎥

⎥
⎥
⎤

⎢
⎢
⎢
⎡

⎥
⎥
⎤

⎢
⎢
⎡ LL

xm
m
m

yx
2

1

0100

• 3+ matches needed to solve for the parameters

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣

′
=

⎥
⎥
⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣ LL
i

i

ii

ii

y
x

t
t
m
m

yx
yx

2

1

4

3

1000
0100

• Use local invariant features for reliable matches:
interest points relatively sparse 
very distinctive descriptors

Alignment: backprojection

• 3+ matches needed to solve for the parameters
• Once we have the model parameters, can 

“backproject”, meaning compute the hypothesized 
location of any other model points.
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Alignment: verification

• 3+ matches needed to solve for the parameters
• Once we have the model parameters, can 

“backproject”, meaning compute the hypothesized 
location of any other model points.

• Verification: check for total agreement (e.g., do the 
image edges coincide with predicted model edges?)
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We want a good correspondence between model 
features and image features.

How to form a hypothesis?

– Alignment: 
• Use subsets of features to estimate larger 

correspondence
• Verify

B t h t id h ki ll ibl t fBut how to avoid checking all possible sets of 
correspondences?

We’d like to look at the most likely hypotheses first…

We want a good correspondence between model 
features and image features.

How to form a hypothesis?

– Alignment: 
• Use subsets of features to estimate larger 

correspondence
• Verify

– Voting (a.k.a. “pose clustering”): 
• Let features vote  on model parameters
• Verify those with a lot of support.
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Voting: Generalized Hough Transform
• If we use scale, rotation, and translation invariant local 

features, then each feature match gives an alignment 
hypothesis (for scale translation and orientation ofhypothesis (for scale, translation, and orientation of 
model in image).

Model Novel image

Adapted from Lana Lazebnik

Voting: Generalized Hough Transform
• A hypothesis generated by a single match may be 

unreliable,
So let each match vote for a hypothesis in Hough space• So let each match vote for a hypothesis in Hough space

Model Novel image
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G. Hough Transform details (Lowe’s system)

• Training phase: For each model feature, record 2D 
location, scale, and orientation of model (relative to 
normalized feature frame)

• Test phase: Let each match btwn a test SIFT feature 
and a model feature vote in a 4D Hough space
• Use broad bin sizes of 30 degrees for orientation, a factor of 

2 for scale, and 0.25 times image size for location
• Vote for two closest bins in each dimension

• Find all bins with at least three votes and perform 
i ifi igeometric verification 

• Estimate least squares affine transformation 
• Search for additional features that agree with the alignment

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004. 

Slide credit: Lana Lazebnik

Example result

Objects recognized, Recognition in 
spite of occlusion

Background subtract 
for model boundaries

[Lowe]
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Recall: difficulties of voting

• Noise/clutter can lead to as many votes as 
true targettrue target

• Bin size for the accumulator array must be 
chosen carefully

• In practice, good idea to make broad bins and 
d t t b bi i ifi tispread votes to nearby bins, since verification 

stage can prune bad vote peaks.

ng

Example Applications
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B. Leibe

• Self-localization
• Object/building recognition
• Photo/video augmentation

[Quack, Leibe, Van Gool, CIVR’08]
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Application: Large-Scale Retrieval
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[Philbin CVPR’07]

Query Results from 5k Flickr images (demo available for 100k set)
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Web Demo: Movie Poster Recognition
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50’000 movie
posters indexed
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http://www.kooaba.com/en/products_engine.html#

p

Query-by-image
from mobile phone
available in Switzer-
land
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Making the Sky Searchable:
F t G t i H hi fFast Geometric Hashing for 
Automated Astrometry

Sam Roweis, Dustin Lang & Keir Mierle
University of Toronto

http://astrometry.net roweis@cs.toronto.edu

University of Toronto

David Hogg & Michael Blanton
New York University

Sam Roweis slides and the project over view available here:
http://www.astrometry.net/summary.html

http://astrometry.net roweis@cs.toronto.edu
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• I show you a picture of the night sky.

Basic Problem

http://astrometry.net roweis@cs.toronto.edu

• You tell me where on the sky it  came from.

Rules of the game
• We start with a catalogue of stars in the sky, 

and from it build an index which is used to 
assist us in locating (‘solving’) new test images.

?

http://astrometry.net roweis@cs.toronto.edu
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Rules of the game
• We start with a catalogue of stars in the sky, 

and from it build an index which is used to 

• We can spend as 
much time as we want 
building the index but 
solving should be fast. 
Ch ll

assist us in locating (‘solving’) new test images.

http://astrometry.net roweis@cs.toronto.edu

• Challenges:
1) The sky is big.
2) Both catalogues  
and pictures are noisy.

• Bad news:
Query images may contain

Distractors and Dropouts

Query images may contain 
some extra stars that are not 
in your index catalogue, and 
some catalogue stars may 
be missing from the image.

http://astrometry.net roweis@cs.toronto.edu

• These “distractors” & “dropouts” mean that 
naïve matching techniques will not work.



11/3/2009

59

You try

http://astrometry.net roweis@cs.toronto.edu

Find this “field” on this “sky”.

You try

Hint #1: Missing stars.

http://astrometry.net roweis@cs.toronto.edu

Find this “field” on this “sky”.
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You try

Hint #1: Missing stars.
Hint #2: Extra starsHint #2: Extra stars.

http://astrometry.net roweis@cs.toronto.edu

Find this “field” on this “sky”.

You try

http://astrometry.net roweis@cs.toronto.edu

Find this “field” on this “sky”.
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Robust Matching
• We need to do some sort

of robust matching of theg
test image to any proposed 
location on the sky.

• Intuitively, we need to ask:
“Is there an alignment of the test image 
and the catalogue so that (almost*) every 

http://astrometry.net roweis@cs.toronto.edu

g ( ) y
catalogue star in the field of view of the 
test image lies (almost*) exactly on top of 
an observed star?” 

Solving the search problem
• Even if we can succeed in 

finding a good robust matching 
algorithm there is still a hugealgorithm, there is still a huge 
search problem.

• Which proposed location
should we match to?

• Exhaustive search?

?

http://astrometry.net roweis@cs.toronto.edu

too expensive!

The Sky is BigTM
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(Inverted) Index of Features
• To solve this problem, we will employ 

the classic idea of an “inverted index”.
f f “f f• We define a set of “features” for any 

particular view of the sky (image).
• Then we make an (inverted) index, 

telling us which views on the sky 
exhibit certain (combinations of) 
feature values.

http://astrometry.net roweis@cs.toronto.edu

• This is like the question: 
Which web pages contain
the words “machine learning”?

Matching a test image
• When we see a new test image, 

we compute which features are 
present and use our invertedpresent, and use our inverted 
index to look up which possible 
views from the catalogue also 
have those feature values.

• Each feature generates a 
candidate list in this way,

d b i t ti th li t

http://astrometry.net roweis@cs.toronto.edu

and by intersecting the lists
we can zero in on the true
matching view.
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Robust Features for Geometric Hashing
• In our star matching task, the 

features we chose must be 
invariant to scale rotation

The features we 
use are the 

invariant to scale, rotation 
and translation.

relative positions of 
nearby quadruples 

of stars.

http://astrometry.net roweis@cs.toronto.edu

Quads as Robust Features
• We encode the relative positions 

of nearby quadruples of stars
(ABCD) using a coordinate B(ABCD) using a coordinate 
system defined by the most 
widely separated pair (AB).

• Within this coordinate system, 
the positions of the remaining 
two stars form a 4-dimensional 
code for the shape of the quad.

A

B

C
D

http://astrometry.net roweis@cs.toronto.edu
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Solving a new test image
• Identify objects (stars+galaxies) in the image 

bitmap and create a list of their 2D positions.
C * (• Cycle through all possible valid* quads (brightest 
first) and compute their corresponding codes.

• Look up the codes in the code KD-tree to find 
matches within some tolerance; this stage incurs 
some false positive and false negative matches.

• Each code match returns a candidate position &

http://astrometry.net roweis@cs.toronto.edu

Each code match returns a candidate position & 
rotation on the sky. As soon as 2 quads agree 
on a candidate, we proceed to verify that 
candidate against all objects in the image.

A Real Example from SDSS

http://astrometry.net roweis@cs.toronto.edu

Query image
(after object detection).

An all-sky catalogue.
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A Real Example from SDSS

http://astrometry.net roweis@cs.toronto.edu

Query image
(after object detection).

Zoomed in by a 
factor of ~ 1 million.

A Real Example from SDSS

http://astrometry.net roweis@cs.toronto.edu

Query image
(after object detection).

The objects in our index.
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A Real Example from SDSS

http://astrometry.net roweis@cs.toronto.edu

All the quads in our index which
are present in the query image.

A Real Example from SDSS

http://astrometry.net roweis@cs.toronto.edu

A single quad which we happened to try.
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A Real Example from SDSS

http://astrometry.net roweis@cs.toronto.edu

The query image scaled, translated & rotated 
as specified by the quad.

A Real Example from SDSS

http://astrometry.net roweis@cs.toronto.edu

The proposed match, on 
which we run verification.
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A Real Example from SDSS

http://astrometry.net roweis@cs.toronto.edu

The verified answer, overlaid 
on the original catalogue.

The proposed match, on 
which we run verification.

Example

A shot of the Great Nebula, by Jerry Lodriguss (c.2006), from astropix.com
http://astrometry.net/gallery.html



11/3/2009

69

Example

An amateur shot of M100, by Filippo Ciferri (c.2007) from flickr.com
http://astrometry.net/gallery.html

Example

A beautiful image of Bode's nebula (c.2007) by Peter Bresseler, from starlightfriend.de 
http://astrometry.net/gallery.html
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Summary:
alignment-based recognition

• Looking for object+pose that fits well with image.
– Use good correspondences (i.e., based on local 

invariant feature matches) to designate hypotheses.
– Can limit number of verifications performed by voting 

for most likely model parameters.
• Pros:

– Effective when we are able to find reliable features 
within clutterwithin clutter

– Great results for matching specific instances
• Cons:

– May not scale well with the number of models
– Not as suited for category-level recognition

Coming up

• Pset 4 is out this Thursday 11/5, due 11/24


