

- Computational complexity of Correlogram = $O(N^4)$
- Computational complexity of Integral Histogram = O(N²)
- Using integral histogram approach, Computational complexity of Correlogram = O(N³)

Reduction of vocabulary size					size
Experiments			j metrioù u	Original	
Database with	15 classes			v	ize of ocabula I
Model	Number of visual words			ds ,	
	103 (200)	134 (400)	150 (600)	165(100	0
V. words	72.4%	73.6%	74.6%	74.4%	
Correl.	47.1%	37.3%	33.9%	36.9%	
Joint	79.1%	78.9%	79.0%	79.3%	
→ Joint +	80.0%	80.5%	81.1%	80.7%	
Models lear using the jo model approach	nt bint				

Conclusions

- Introduced correlations to capture spatial correlation between visual words.
- Efficiency of computation achieved by integral image processing.
- Introduced object models, based on joint distributions of visual words and correlations.
- Proposed models are shown to outperform appearance-only based models.

References

- Discriminative Object Class Models of Appearance and Shape by Correlations (Savarese, Winn, Criminisi) [1]
- Object Categorization by Learned Universal Visual Dictionary (Winn, Criminisi, Minka) [2]
- Image Indexing Using Color Correlograms (Huang, Kumar, Mitra, Zhu, Zabih) [3]

