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The Nearest-Neighbor Search Problem

● Input Description: A set S of n points in d dimensions; a 
query point q.

● Which point in S is closest to q?

     (   Linear scan approach has query time of Θ(dn)   )



  

The Nearest-Neighbor Search Problem



  

The Nearest-Neighbor Search 
Problem:Application

Depends on the value of d:
● low d: graphics, vision, natural language,  etc
● high d: 

– similarity search in databases (text, images etc)
– finding pairs of similar objects (e.g., copyright violation 

detection)
– useful subroutine for clustering
– Classification



  

The Nearest-Neighbor Search Problem

● Efficient solutions have been discovered for the case when the 
points lie in a space of constant dimension.

    (For example, if the points lie in the plane, the nearest-neighbor problem can be   
solved with O(log n) time per query, using only O(n) storage.)

● Unfortunately, as the dimension grows, the algorithms become 
less and less efficient. More specifically, their space or time 
requirements grow exponentially in the dimension.



  

The Nearest-Neighbor Search Problem

● r-Near Neighbor: for any query q, returns a point p P∈
                                  s.t. ||p-q|| ≤ r (if it exists)

● c-Approximate r-Near Neighbor: build data structure which, 
for any query q:

    – If there is a point p P, ||p-q|| ≤ r∈
    – it returns p’ P, ||p'-q|| ≤ cr∈



  

Metric space
Metric Space: In mathematics, a metric space is a set where a 

notion of distance (called a metric) between elements of the set 
is defined. The metric space which most closely corresponds to 
our intuitive understanding of space is the 3-dimensional 
Euclidean space. 

   1. d(x, y) ≥ 0     (non-negativity)
   2. d(x, y) = 0   if and only if   x = y     (identity of indiscernibles)
   3. d(x,y) !=0    implies D(x,y)>0  (isolation)
   4. d(x, y) = d(y, x)     (symmetry)
   5. d(x, z) ≤ d(x, y) + d(y, z)     (triangle inequality).
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Quad-Tree

● Split the space into 2d equal subsquares.



  

Quad-Tree:Build
● Split the space into 2d equal subsquares
● Repeat until done:

– only one point left
– no point left

● Variants:
– split only one dimension at a time



  

Quad-Tree:Query
● Near neighbor (range search):

– put the root on the stack
– repeat

● pop the next node T from the stack
● for each child C of T:

– if C is a leaf, examine point(s) in C
– if C intersects with the ball of radius r around q, add C to the 

stack (bounding box)



  

Quad-Tree



  

Quad-Tree

● Start range search with r = ∞
● Whenever a point is found, update r
● Only investigate nodes with respect to current r



  

Quad-Tree

● Simple data structure
● Versatile, easy to implement
● Disadvantages:

– Empty spaces: if the points form sparse clouds, it takes a while to 
reach them 

– Space exponential in dimension
– Time exponential in dimension, e.g., points on the hypercube
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Motivation:Space issues



  

KD-Tree [Bentley’75]
● Main ideas:

– only one-dimensional splits
– instead of splitting in the median, random position 

or split “carefully” (many variations)
– near(est) neighbor queries: as for quadtrees

● Advantages:
– no (or less) empty spaces
– only linear space

● Exponential query time still possible



  

 

KD-Tree: Animation



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  



  

KD-Tree:Exponential Query Time

● What does it mean exactly ?
– Unless we do something really stupid, query time is at 

most dn
– Therefore, the actual query time is

Min[ dn, exponential(d) ]

• Object retrieval with large vocabularies and fast spatial matching
           James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman

• http://www.cgg.cvut.cz/members/havran/ 
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Tree-Structure



  

Motivation: Curse of Dimension
● The tree structure is still quite bad though, when the 

dimension is around 20-30

● Unfortunately, it seems inevitable (both in theory and 
experiments) “Curse of Dimension”



  

Hash Table



  

Locality Sensitive Hashing [Indyk-Motwani’98]

● Hash functions are locality-sensitive, if,  for a random hash 
random function h, for any pair of points p,q we have:
– Pr[h(p)=h(q)] is “high” if p is “close” to q
– Pr[h(p)=h(q)] is “low” if  p is”far” from q
The probabilities are based on the functions from 
the family H.



  

Locality Sensitive Hashing

● A family H of functions h: Rd → U is called             
(r,cr, P1,P2)-sensitive, if for any p,q:

 – if ||p-q|| <r then Pr[ h(p)=h(q) ] > P1
 – if ||p-q|| >cr then Pr[ h(p)=h(q) ] < P2

Now, we consider NN with parameter r, Є. Set r1=r, 
r2= (1+Є)r, where c=(1+Є).



  

LSH:Function Exist?

● Consider the hypercube, i.e.,
–  points from {0,1}d

–  Hamming distance D(p,q)= # positions on which p and q differ
● Define hash function h by choosing a set I of k random 

coordinates, and setting
h(p) = projection of p on I



  

LSH: Hamming Distance

● Take
– d=10, p=0101110010
– k=2, I={2,5}

● Then h(p)=11

– Probabilities: 
Pr[ h(p)=h(q) ] = 1-D(p,q)/d

3-bit binary cube
Two example distances: 100->011 

has distance 3 (red path); 010-
>111 has distance 2 (blue path)



  

LSH: Preprocessing

Algorithm: Preprocessing, O(ln)
Input: A set of points    ,        (number of hash tables)
Output: Hash tables      ,     =1,....,
Foreach      =1,...,

Initialize hash table      by generating
a random hash function 

Foreach   =1,...,
Foreach   =1,...,

Store point     on bucket               of hash table 

T i

P l
T i l l

i l

Gi .
i l

j n
P j Gi P j  T i



  

LSH: Approximate Nearest Neighbor Query

Algorithm Approximate Nearest Neighbor Query, O(l)
Input A query point      ,       (number of approximate nearest 

neighbors)
Output          (or less) approximate nearest neighbors 

Foreach      =1,...,
              U  {points found in          bucket of table      }
Return        nearest neighbors of       found in set       
/*Can be found by main memory linear search*/

q M

M

S

i l
S S Gi q T i

M q

S ∅



  

LSH: Analysis(more proof and analysis in GIM99')

● By proper choice of parameters k and l, we can 
make, for any p,  the probability that

hi(p)=hi(q) for some i 
    look like this:

●                          where B is size of bucket 

●              where  
distance

K=log1 /p2 n /B

l=
n
B

V

v=ln 1/ p1
ln 1/ p2
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Motivation: Non-Metric Distance

● Distance function may be non-metric.
● Each query requires n distance calculation for a database of 

size n.
● What if the distance function is very complicated and expensive 

computationally.

●  The Solution: BoostMap
BoostMap is a method that can reduce the number of expensive distance 

calculations down to some d << n.

It works for ANY distance function.
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Expensive Distance Measures
● Comparing d-

dimensional vectors is 
efficient:
– O(d) time.

x1 x2 x3 x4 … xd

y1 y2 y3 y4 … yd



60

Expensive Distance Measures

● Comparing d-
dimensional vectors is 
efficient:
– O(d) time.

● Comparing strings of 
length d with the edit 
distance is more 
expensive:
– O(d2) time.

● Reason:alignment.easo
n: alignment.

x1 x2 x3 x4 … xd

y1 y2 y3 y4 … yd

i m m i g r a t i o n

i m i t a t i o n
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Expensive Distance Measures

● Comparing d-
dimensional vectors is 
efficient:
– O(d) time.

 Comparing strings of 
length d with the edit 
distance is more 
expensive:
 O(d2) time.

 Reason: alignment.

x1 x2 x3 x4 … xd

y1 y2 y3 y4 … yd

i m m i g r a t i o n

i m   i t   a t i o n
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Hand Shape Classification

query

Database (80,640 images)



63Chamfer distance: 112 seconds per query

Hand Shape Classification

query

Database (80,640 images)nearest 
neighbor



64

Embeddings
database

x1

x2

x3

xn

embedding 
F

x1
x2

x3

x4
xn

Rd
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Rd



66

Embeddings
database

x1

x2

x3

xn

embedding 
F

x1
x2

x3

x4
xn

q
query

q

Rd



67

Embeddings
database

x1

x2

x3

xn

embedding 
F

x1
x2

x3

x4
xn

Rd

q
query

q

 Measure distances between vectors 
(typically much faster).
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Embeddings
database

x1

x2

x3

xn

embedding 
F

x1
x2

x3

x4
xn

Rd

q
query

q

 Measure distances between vectors 
(typically much faster).

 Caveat: the embedding must 
preserve similarity structure.
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Ideal Embedding Behavior
original space X F Rd

Notation: NN(q) is the nearest neighbor of q in the 
database.
For any q: we want F(NN(q)) = NN(F(q)).

a
q
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Ideal Embedding Behavior
original space X F Rd

Notation: NN(q) is the nearest neighbor of q in the 
database.
For any q: we want F(NN(q)) = NN(F(q)).

a
q



  

●BoostMap: 1D Embeddings

●  Use a reference object r

A set of five 2D points (shown on the left), and an embedding F of
those five points into the real line, using r as the reference object.



  

●BoostMap: 1D Embeddings

● Use “pivot points”

Select the pair (x1,x2) and construct the triangle using (x,x1,x2).
The length of line segment BD is equal to

(Triangle inequality?)

F x1 , x2 x 
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Embeddings Seen As Classifiers

q
a

b

Classification task: is q
closer to a or to b?
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 Any embedding F defines a classifier F’(q, a, b).
 F’ checks if  F(q) is closer to F(a) or to F(b).

q
a

b

Embeddings Seen As Classifiers

Classification task: is q
closer to a or to b?
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 Given embedding F: X  Rd:
 F’(q, a, b) = ||F(q) – F(b)|| - ||F(q) – F(a)||.

 F’(q, a, b) > 0 means “q is closer to a.”
 F’(q, a, b) < 0 means “q is closer to b.”

q
a

b

Classifier Definition

Classification task: is q
closer to a or to b?
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Key Observation
original space X F Rd

a
q

b

 If classifier F’ is perfect, then for every q, 
F(NN(q)) = NN(F(q)).
 If F(q) is closer to F(b) than to F(NN(q)), then triple

 (q, a, b) is misclassified.
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Key Observation
original space X F Rd

a
q

b

 Classification error on triples (q, NN(q), b) measures 
how well F preserves nearest neighbor structure.
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● Goal: construct an embedding F optimized for k-nearest neighbor 
retrieval.

● Method: maximize accuracy of F’ on triples (q, a, b) of the following 
type:
– q is any object.
– a is a k-nearest neighbor of q in the database.
– b is in database, but NOT a k-nearest neighbor of q.

● If F’ is perfect on those triples, then F perfectly preserves k-nearest 
neighbors.

Optimization Criterion
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Overview of Strategy

● Start with simple 1D embeddings.
● Convert 1D embeddings to classifiers.
● Combine those classifiers into a single, 

optimized classifier.
● Convert optimized classifier into a 

multidimensional embedding.
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1D Embeddings as Weak Classifiers
 1D embeddings define weak classifiers.

 Better than a random classifier (50% error rate).
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1D Embeddings as Weak Classifiers
 1D embeddings define weak classifiers.

 Better than a random classifier (50% error rate).
 We can define lots of different classifiers.

 Every object in the database can be a reference object.
 Each pair also can work as 'pivot'.*
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1D Embeddings as Weak Classifiers
 1D embeddings define weak classifiers.

 Better than a random classifier (50% error rate).
 We can define lots of different classifiers.

 Every object in the database can be a reference object.
 Each pair also can work as 'pivot'.*

Question: how do we combine many such 
classifiers into a single strong classifier?
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1D Embeddings as Weak Classifiers
 1D embeddings define weak classifiers.

 Better than a random classifier (50% error rate).
 We can define lots of different classifiers.

 Every object in the database can be a reference object.
 Each pair also can work as 'pivot'.*

Question: how do we combine many such 
classifiers into a single strong classifier?

  Answer: use AdaBoost.
 AdaBoost is a machine learning method designed for exactly 

this problem.



85

Using AdaBoost
original space X

Fn

F2

F1

Real line

 Output: H = w1F’1 + w2F’2 + … + wdF’d .
 AdaBoost chooses 1D embeddings and weighs them.
 Goal: achieve low classification error.
 AdaBoost trains on triples chosen from the database.



  

BoostMap : Input
● A training set of                                 of t triples of objects from X

● A set of labels               , where               is the class label of 
              (no triples where      is equally far from       ,       )

● A set                of candidate objects. Elements of       can be used to 
define 1D embeddings. (as ref object or pivot points) 

● A matrix of distances from each                to each       ,        , and       
included in one of the training triples in T.

T=q1, a1, b1 , ... ,q t , at , b t

Y=y1,. .. , y t y i∈−1,1 q i , ai , bi
q i a i b i

C⊂X C

c∈C q i a i b i
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original space X Training triples

 Training round 0.
 Classifier:    H = “I don’t know”.
 Embedding: F = 0
 Distance:     D(F(x), F(y)) = 0.

 Weights: all equal to 1/m (example: m = 100,000).

Weights

(q1, a1, b1)…………1/m 
(q2, a2, b2)…………1/m
(q3, a3, b3)…………1/m

(qm, am, bm) ……… 1/m
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original space X

1

Training triples

 Training round 1.
 Classifier:    H = a1F’1.
 Embedding: F = (F1). 
 Distance:     D(F(x), F(y)) = 
  a1|F1(x) – F1(y)|.

Weights

(q1, a1, b1)…………1/m 
(q2, a2, b2)…………1/m
(q3, a3, b3)…………1/m

(qm, am, bm) ……… 1/m
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original space X

1

Training triples

 Training round 1.
 Classifier:    H = a1F’1.
 Embedding: F = (F1).
 Distance:     D(F(x), F(y)) = 
  a1|F1(x) – F1(y)|.
 Weights: higher for incorrectly classified triples.

Weights

(q1, a1, b1)…………w11 
(q2, a2, b2)…………w12

(q3, a3, b3)…………w13

(qm, am, bm) ……… w1m
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original space X

1 2

Training triples

 Training round 2.
 Classifier:    H = a1F’1 + a2F’2.
 Embedding: F = (F1, F2).
 Distance:     D(F(x), F(y)) = 
  a1|F1(x) – F1(y)| + a2|F2(x) – F2(y)|.

Weights

(q1, a1, b1)…………w11 
(q2, a2, b2)…………w12

(q3, a3, b3)…………w13

(qm, am, bm) ……… w1m
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original space X

1 2

Training triples

 Training round j.
 Classifier:    H = a1F’1 + a2F’2 + … + ajF’j.
 Embedding: F = (F1, F2 , …, Fn).
 Distance:     D(F(x), F(y)) = 
  a1|F1(x) – F1(y)| + a2|F2(x) – F2(y)| + … + aj|Fj(x) – Fj(y)|.

Weights

(q1, a1, b1)…………wj1 
(q2, a2, b2)…………wj2

(q3, a3, b3)…………wj3

(qm, am, bm) ……… wjm
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original space X

1 2
j

Training triples

 Training round j.
 Classifier:    H = a1F’1 + a2F’2 + … + ajF’j.
 Embedding: F = (F1, F2 , …, Fn).
 Distance:     D(F(x), F(y)) = 
  a1|F1(x) – F1(y)| + a2|F2(x) – F2(y)| + … + aj|Fj(x) – Fj(y)|.
 Stop when accuracy stops improving (aj = 0).

Weights

(q1, a1, b1)…………wj1 
(q2, a2, b2)…………wj2

(q3, a3, b3)…………wj3

(qm, am, bm) ……… wjm
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BoostMap: Summary
● Maximizes amount of nearest neighbor structure preserved by the 

embedding.

● Based on machine learning, not on geometric assumptions.

● Combines efficiency of measuring distances in vector spaces with 
ability to capture non-metric structure.
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A Binning Scheme for Fast Hard 
Drive Based Image Search



  

Motivation: Beyond the RAM limits

● Investigate how to scale a content based image retrieval 
approach beyond the RAM limits of a single computer and to 
make use of its hard drive to store the feature database. 

● The scheme cuts down the hard drive access significantly and 
results in a major speed up



  

A Binning Scheme for Fast Hard Drive Based Image Search



  

A Binning Scheme for Fast Hard Drive Based Image Search

● The algorithm is largely inspired by the success of Locality Sensitive 
Hashing for nearest neighbor search.

● Database consists of multiple independent binnings.

● Each binning is defined by a number of prototypes where a prototype is a 
vector representing an image.

● The images are assigned to the bin corresponding to the closest prototype, 
which is used as a proxy in the search.



  

A Binning Scheme: Analysis



  

A Binning Scheme: Analysis
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Fast Pose Estimation with Parameter Sensitive Hashing
 (Learning Silhouette Features for Control of Human Motion)
   Liu Ren, Gregory Shakhnarovich , Jessica K. Hodgins, Hanspeter Pfister , Paul A. Viola



  

Motivation:Hidden State Space
● Approximate not the actual distance between objects, but a 

hidden state space distance.

● (x,Ө) x is feature vector extracted from the image and Ө is a 
parameter vector.



  

Sub-linear time search with LSH

N

<< N

h
111

010

000u

v

r

Locality Sensitive Hashing [Gionis, Indyk, Motwani, 1999]

need p1 > p2 and 
p1 > 1/2

h



  

Indexing for parameter estimation

Input space Parameter space
Index with LSH and randomized 
hash functions that respect input 
space locality

This work: learn hash functions that 
respect parameter space locality

x1 x2

x3

x4

x5
x6

Θ6

Θ1
Θ2

Θ3

Θ5

Θ4
q

Θq



  

Learning PSH functions

Posed as a paired classification problem:

For each pair of examples assign label



  

Learning PSH functions
● Interpret a binary hash function h as a classifier:

  p2(h)  -> probability of false positive
1-p1(h) -> probability of false negative

Examples collide, but 
not similar in 
parameter space

Examples similar in 
parameter space, but 
no collision



  

Learning PSH functions

● Set threshold so that #false positives + #false 
negatives minimal (obtained with two passes over 
training examples)

• Assemble some decision stumps for hash 
functions that have high accuracy on paired 
problem for database examples



  



  

An Ensemble Classifier

Question: how do we combine many such 
classifiers into a single strong classifier?



  

An Ensemble Classifier

Question: how do we combine many such 
classifiers into a single strong classifier?

Answer: AdaBoost



  

LSH
LSH proceeds by randomly selecting k functions among those features 

chosen by AdaBoost, thus defining a k-bit hash function:

The entire database is indexed by a hash table with          buckets

gx =[h1 x  , h2x  ,... , hk x ]

2k



  

Pose estimation with PSH

● Describe images with multi-scale edge 
histograms(silhouette)

● Learn PSH functions
● Enter training examples into hash 

tables
● Query database with LSH
● Estimate pose from approximate NN 

using locally weighted regression



  

 

Animation



  

Discussion
● Select the split position for KD-Tree in special domain.
● LSH eats much more space.
● Non-metric space in computer vision.
● Applying BoostMap to other distance functions.
● Applying BoostMap to other domains.

– Natural Language Processing
– Biological sequences.

● How to guess radius parameter for different problem
● Other Application of PSH
● Two spaces as input in PSH


