

Classification Task

- Assign a query image into one of several classes
 - Yes/No (detection)
 - One of several images (retrieval)
 - One of several types (recognition)
- If we can compress the query down to a fixed-length vector, we can leverage many machine learning techniques for classification (e.g., SVM).

Central Idea

- Develop a canonical set of features— "the vocabulary"
 - Define a basis set for a new space
 - Partition the space into classes
- Describe new images in terms of the vocabulary
- Classify images (or parts of images) according to where they fall in the vocabulary space

Steps

- ➤ Define a way of acquiring image features
- ➢ Partition the space defined by features
- ➤ Assign a value to each partition
 - (or combinations of partitions)
- Classify new images by the partitions in which they fit

What do we do with a Set of Features? Create a Vocabulary

- ➤ A given image may have many or few "interesting points"
- ➤Data are not ordered
- Collapse the feature set into a vector representation
 - K-means
 - Hierarchical k-means
 - Regular lattice
- > Memory/Processing considerations

Partitioning methods

- ≻Flat vs. hierarchical
 - Nearest neighbor
 - Hash
 - Trees
 - Forests
- ≻Dynamic vs. static
 - Adapt to recent needs

Select Intelligent Partitions

- > What partitioning is informative?
 - Randomly choose features
 - Cluster features
 - Look for discriminating features (EM) (Use labels to inform decision)
- ➤ Multiple vocabularies

Use Labels to Build Classifier > Select words that are strong indicators of a specific class or subset of classes > Voting scheme (histogram) > ML classifier • Naïve Bayes • SVM Bikes • Cars • People

Use Vocabulary to Classify

- ➢ Extract features from new image
- Find matching prototype features in precomputed vocabulary
- Determine match
 - Specific image (inverted index)
 - Specific class
 - Which one of many
 - Present/not present

Discussion

- > Nearly all methods discard spatial information
- > Nearly all methods discard color information
- > Why not label hierarchically

Discussion

- What is the space actually covered by a given vocabulary/classification system?
- How easy are they to break?
 - How do you build the worst possible dataset?
- > How do these methods compare to human vision?
- Is it possible to use parametric functions describing image parts as words?