Learning Spatial Context: Using Stuff to Find Things

Wei-Cheng Su

Motivation

- □ Leverage contextual information to enhance detection
- □ Some context objects are non-rigid and are more naturally classified based on texture or color. e.g., sky, trees, road
- Find the relationships between the stuff of context and the object

Outline

- □ Training and inferring
- Preprocessing
- Experimental results
- Things-and-stuff relationships
- Performance
- Effect of parameters
- □ Conclusion

Training

Inferring

Posterior scores for all candidates

Outline

- □ Training and inferring
- □ Preprocessing
- Experimental results
- Things-and-stuff relationships
- Performance
- Effect of parameters
- □ Conclusion

Preprocessing

- □ Segmentation
 - Superpixel
 - Pentium-D 2.4 GHz, 4G RAM
 - Run out of memory with a 792x636 image
 - □ ~6.4 minutes for a 480x321 image
- Detection
 - HOG for detecting humans, cars, bicycles, and motorbikes
 - Patch-based boosted detector for detecting cars in satellite images

Segmentation

This level of segmentation result is used

HoG-People

HoG-Motorbikes

HoG-Bicycles

□ Th=0

□ Th=0.95

□ Th=0.995

Outline

- □ Training and inferring
- Preprocessing
- □ Experimental results
- Things-and-stuff relationships
- Performance
- □ Effect of parameters
- □ Conclusion

Running TAS

- □ Run TAS inference on all detected candidates
- False positives detected by the base detector will be filtered out
- Object not detected by the base detector could not be detected by TAS
- □ Data set: VOC2005, Google earth satellite images

Left: base detector result. Right: TAS result

Base Detector

TAS

Base Detector

TAS

Base Detector

TAS

Outline

- □ Training and inferring
- Preprocessing
- Experimental results
- □ Things-and-stuff relationships
- Performance
- □ Effect of parameters
- □ Conclusion

Things-and-Stuff Relationships

- Feature description: 44 features, including color, texture, shape
- □ The relationships are learnt during training
- □ The relationships change the score of a candidate
- □ 25 relationship candidates

Some regions inside the bounding box have relationships with the candidate

□ View point.

Different viewpoints generate different relationships
Region features might be misleading

□ The diversities of the backgrounds

 The region features inside the bounding box might be a complementary cue to the features used by the base detector

Outline

- □ Training and inferring
- Preprocessing
- Experimental results
- Things-and-stuff relationships
- □ Performance
- Effect of parameters
- □ Conclusion

Performance Analysis

- □ Training samples: 15
- □ Test samples: 15
- □ Image size: 792x636
- □ Test machine: Core(TM)2 Quad@2.40GHz, 8G RAM
- Implemented in Matlab
- Detection and segmentation are not included
- Required computing power
 - □ Learning 2141.67 seconds of CPU time
 - Inferring 63.89 seconds of CPU time

Red: base detector. Blue: TAS

Base Detector vs TAS - Motorbikes

Base Detector vs TAS - Satellite

Outline

- □ Training and inferring
- Preprocessing
- Experimental results
- Things-and-stuff relationships
- Performance
- □ Effect of parameters
- □ Conclusion

Number of Region Clusters

Number of Gibbs Iterations

Outline

- □ Training and inferring
- Preprocessing
- Experimental results
- Things-and-stuff relationships
- Performance
- Effect of parameters
- □ Conclusion

Conclusion

- □ Can be easily integrated with detectors
- □ The performance is dependent on the detector
- The "stuff" can come from the context as well as the object itself
- Especially suitable for background consistent and view point consistent datasets, ex: aerial images
- 3D information could be used to improve the performance

Reference

- Learning Spatial Context: Using Stuff to Find Things, Geremy Heitz and Daphne Koller.
 European Conference on Computer Vision (ECCV), 2008
- □ TAS <u>http://ai.stanford.edu/~gaheitz/Research/TAS/</u>
- □ Superpixel <u>http://www.cs.sfu.ca/~mori/research/superpixels</u>
- □ HOG implementation <u>http://pascal.inrialpes.fr/soft/olt</u>
- □ PASCAL VOC2005

http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2005/in dex.html