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Motivation
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Leverage contextual information to enhance detectiong
Some context objects are non-rigid and are more naturally 
classified based on texture or color. e.g., sky, trees, road
Find the relationships between the stuff of context and the 
object
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Preprocessing
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SegmentationSeg e tat o
Superpixel
Pentium-D 2.4 GHz, 4G RAM
Run out of memory with a 792x636 image
~6.4 minutes for a 480x321 image

Detection
HOG for detecting humans, cars, bicycles, and 
motorbikesmotorbikes
Patch-based boosted detector for detecting cars in 
satellite images
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This level of 
segmentation 
result is used



HoG-Cars
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HoG-People
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HoG-Motorbikes
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HoG-Bicycles
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Running TAS
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Run TAS inference on all detected candidatesRun TAS inference on all detected candidates
False positives detected by the base detector will be 
filtered outfiltered out
Object not detected by the base detector could not 
be detected by TASbe detected by TAS
Data set: VOC2005, Google earth satellite images



Base Detector vs TAS
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Left: base detector result. Right: TAS result
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Things-and-Stuff Relationships
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Feature description: 44 features including colorFeature description: 44 features, including color, 
texture, shape
The relationships are learnt during trainingThe relationships are learnt during training
The relationships change the score of a candidate
25 relationship candidates25 relationship candidates
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Some regions inside the bounding box haveSome regions inside the bounding box have 
relationships with the candidate
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View pointView point. 
Different viewpoints generate different relationships

Region features might be misleadingRegion features might be misleading
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The diversities of the backgroundsThe diversities of the backgrounds
The region features inside the bounding box might 
be a complementary cue to the features used by thebe a complementary cue to the features used by the 
base detector
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Performance Analysis
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Training samples: 15g p
Test samples: 15
Image size: 792x636g
Test machine: Core(TM)2 Quad@2.40GHz, 8G RAM
Implemented in Matlab
Detection and segmentation are not included
Required computing power

Learning – 2141.67 seconds of CPU time
Inferring – 63.89 seconds of CPU time



Base Detector vs TAS
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Cars

P lPeople

Red: base detector. Blue: TAS



Base Detector vs TAS - Motorbikes
62

Motorbikes

Bi lBicycles

Red: base detector. Blue: TAS



Base Detector vs TAS - Satellite
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Number of Region Clusters
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Red: 10

Blue: 3 Blue: 5Blue: 3 Blue: 5

Blue: 20 Blue: 30



Number of Gibbs Iterations
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Red: 10

Blue: 20 Blue: 100
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Conclusion
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Can be easily integrated with detectorsCan be easily integrated with detectors
The performance is dependent on the detector
The “stuff” can come from the context as well asThe stuff  can come from the context as well as 
the object itself
Especially suitable for background consistent andEspecially suitable for background consistent and 
view point consistent datasets, ex: aerial images
3D information could be used to improve the3D information could be used to improve the 
performance
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