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Motivation

o Leverage contextual information to enhance detection

- Some context objects are non-rigid and are more natura
classified based on texture or color. e.g., sky, trees, roac

o Find the relationships between the stuff of context and t
object
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Preprocessing

Segmentation
Superpixel
Pentium-D 2.4 GHz, 4G RAM
Run out of memory with a 792x636 image
~6.4 minutes for a 480x321 image

Detection

HOG for detecting humans, cars, bicycles, and
motorbikes

Patch-based boosted detector for detecting cars in
satellite images



Segmentation

This level of
segmentation
result is used
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Running TAS

Run TAS inference on all detected candidates

False positives detected by the base detector will be
filtered out

Object not detected by the base detector could not
be detected by TAS

Data set: VOC2005, Google earth satellite images



Base Detector vs TAS

Left: base detector result. Right: TAS result



Base Detector vs TAS
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Base Detector vs TAS
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Things-and-Stuff Relationships

Feature description: 44 features, including color,
texture, shape

The relationships are learnt during training

The relationships change the score of a candidate

25 relationship candidates
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Relationships

- Some regions inside the bounding box have
relationships with the candidate




Relationships

]
o View point.
Different viewpoints generate different relationships
o Region features might be misleading




Relationships
N

o The diversities of the backgrounds

o The region features inside the bounding box might
be a complementary cue to the features used by the
base detector e e
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Performance Analysis

Training samples: 15

Test samples: 15

Image size: 792x636

Test machine: Core(TM)2 Quad@2.40GHz, 8G RAM
Implemented in Matlab

Detection and segmentation are not included

Required computing power
Learning — 2141.67 seconds of CPU time
Inferring — 63.89 seconds of CPU time



Base Detector vs TAS
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Base Detector vs TAS - Motorbikes
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Base Detector vs TAS - Satellite
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Number of Region Clusters
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Conclusion

Can be easily integrated with detectors
The performance is dependent on the detector

"he “stuff” can come from the context as well as
the object itself

Especially suitable for background consistent and
view point consistent datasets, ex: aerial images

3D information could be used to improve the
performance
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