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Abstract

User feedback helps an image search system refine its
relevance predictions, tailoring the search towards the
user’s preferences. Existing methods simply take feedback
at face value: clicking on an image means the user wants
things like it; commenting that an image lacks a specific
attribute means the user wants things that have it. How-
ever, we expect there is actually more information behind
the user’s literal feedback. In particular, a user’s (possibly
subconscious) search strategy leads him to comment on cer-
tain images rather than others, based on how any of the vis-
ible candidate images compare to the desired content. For
example, he may be more likely to give negative feedback on
an irrelevant image that is relatively close to his target, as
opposed to bothering with one that is altogether different.
We introduce novel features to capitalize on such implied
feedback cues, and learn a ranking function that uses them
to improve the system’s relevance estimates. We validate
the approach with real users searching for shoes, faces, or
scenes using two different modes of feedback: binary rele-
vance feedback and relative attributes-based feedback. The
results show that retrieval improves significantly when the
system accounts for the learned behaviors. We show that
the nuances learned are domain-invariant, and useful for
both generic user-independent search as well as personal-
ized user-specific search.

1. Introduction

We often use image search to find images that match our
visual mental model. For instance, you might see someone
wearing a pair of black shoes that you would like to pur-
chase. Or you may be on a dating website trying to find
someone with the right looks. Or you may be a graphic de-
signer seeking a specific illustration. Typically, you would
use either keywords or a query image to initiate the search.
Unfortunately, more often that not, the first round of results
returned by today’s image search engines will not be satis-
factory. Hence, feedback plays a critical role in allowing a
user to better communicate his needs.

Interactive image feedback can take various forms. In
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Figure 1: Choices made by users while providing feedback to an image
search system reveal information about the desired target image beyond
what is explicitly stated. See text.

binary relevance feedback [4, 6, 13, 19, 26] the user clicks
on a few of the images returned by the system, and con-
veys whether each one is relevant or not. This system can
then reason about the similarity of images in the database
to these marked references images and provide an updated
set of (hopefully more relevant) results. The feedback can
also be relative [10], where the user clicks on a reference
image and specifies how what he is looking for is different
from it. For instance, the user might say “I am looking for a
downtown scene that is less congested than this.” With ac-
cess to a set of relative attribute models [17] (in this case for
congested), the system can return a new set of results that
satisfy the user-specified constraints. Any such feedback –
be it based on binary relevance, relative attributes, or some
other form – allows users to explicitly inject subjectivity
into the search results, and thereby improve performance.

However, there is more revealed by a user’s feedback be-
yond what is explicitly stated. We hypothesize that when a
user provides feedback, some beyond-the-obvious thought
– be it conscious or subconscious – goes into the specific
choices made. For instance, let’s say you are looking for a
picture of a white furry puppy to place on an advertisement
for an animal shelter. Suppose the set of returned results
contains pictures of a white furry kitten, an elephant, and
a white angry dog (Figure 1, top). We suspect that you are
more likely to click on the kitten and say, “I want something
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like this”, or on the white angry dog and say, “I don’t want
something like this.” It is unlikely that you will instead pro-
vide feedback on the picture of the elephant, even though
“I don’t want something like this” is true for that image as
well. Hence, what the user chooses to not comment on con-
tains nuanced but valuable information that is not tapped
into by existing work.

Consider another search scenario that allows for rela-
tive feedback. Someone witnessed a crime and is searching
through mugshots of suspects at a local police station where
you are the officer in charge. Based on the witness’s de-
scription, you are only showing him pictures of white men
as seen in Figure 1 (bottom). If he now tells you, “The per-
son I saw is less chubby than Person B”, is it likely that in
the next round you will show him pictures of suspects less
chubby than A? No. Rather, you will likely assume that the
person the witness saw is not less chubby than Person A,
otherwise he would have provided that (tighter) constraint.

The above scenarios are just two examples among many
other possible ways in which humans communicate implicit
information in a visual search task. We hypothesize that
such nuances of user behavior also carry over to human-
machine interactions, yet (unlike human listeners) machines
do not exploit them in existing systems. Importantly, these
subtleties need not stem from detailed knowledge of how
the search engine works nor be explicitly taught to the user.
Instead, these strategies seem to be evoked naturally, per-
haps from an implicit assumption by the user that the search
engine incorporates feedback in some reasonable fashion.

We propose to learn these subtle tendencies in user be-
havior, with the goal of improving image search. Whereas
prior work concentrates on building richer interfaces to
elicit more detailed (and thus possibly cumbersome) feed-
back from the user (e.g., [2, 10, 24]), we explore an orthog-
onal direction: how can we more richly model the informa-
tion conveyed in existing modes of interaction?

Our approach works as follows. First, we collect train-
ing data: human subjects are given a target image to search
for, and we record the feedback choices they make. We
consider two possible modes of feedback: binary relevance
feedback and relative attribute-based feedback. Then, we
extract features that characterize the observed feedback in-
teractions, in terms of which among the candidate images
the user chooses to comment on, and how. Critically, these
features capture users’ choices that reflect their underlying
search strategy – as opposed to features of the specific target
image itself. Then, we learn a ranking function that, given
the choices of a user, assigns a higher score to the true target
image than to other distractor images in the database.

We stress that our strategy learns a model of implicit
feedback. Thus, rather than hand code any search rules to
exploit scenarios like the ones suggested above, our method
will learn the nuances in user behavior that are useful for

search. In this regard, the feedback features and ranking
formulation we propose are important novel aspects of the
work.

We conduct experiments on three domains – scenes,
faces, and shoes – and we show that modeling the nuances
of user behavior significantly improves image search with
both binary relevance and relative attribute-based feedback.
Moreover, we show that the model of user behavior learnt is
not dataset-specific and can be successfully used across do-
mains. Finally, we show that our model can be used to per-
sonalize search results by learning user-specific behaviors,
leading to further improvements in search performance.

2. Related Work

Image search: Many efforts have been made in the com-
puter vision and multimedia community to improve image
search. Some approaches build intermediate representa-
tions that capture mid-level semantic concepts [5, 15, 18,
21, 23, 24] and help bridge the well known semantic gap.
These semantic concepts or “attributes” can also be used to
pose queries for image search [11, 20]. Statements about
relative attributes can be used to refine search results [10].
Various other modes of feedback have been explored to im-
prove interactive search, the most common being binary rel-
evance feedback [4, 6, 13, 19, 22, 26]. We show that both
binary relevance and attribute-based feedback are enhanced
by the proposed implicit cues. While typically the exem-
plar images presented to a user are those currently ranked
highest by the system, some methods actively select exem-
plars to elicit the most informative feedback [4, 6]. The
goal of our work is orthogonal to these efforts. We wish to
model the implicit information hidden in the explicit feed-
back provided by users in order to improve image search.
In particular, the fact that we consider how to more deeply
leverage existing modes of feedback is in stark contrast to
prior work that explores novel forms of deeper explicit feed-
back [2, 10, 24].

Reading between the lines: Our idea can be thought of
as reading between the lines of what the user is saying, and
not simply taking the feedback at face value. This is re-
lated to an approach that uses the order in which a user
tags objects in an image to better localize the objects [8].
It models how nuances of the image implicitly affect the
order in which people name objects in a scene. Although
for a completely different application, we are similarly in-
terested in modeling the nuances involved in the complex
subconscious strategies users may follow when providing
the search engine feedback. This goal also relates to natural
language processing research on pragmatics, which studies
how people vary their text usage to convey more than their
explicit words [7].



Personalization: Personalization of web services is re-
ceiving more attention as diverse information about users
is available online. Some work looks specifically at per-
sonalizing image search. This can be viewed as modeling
contextual information about a specific user beyond what
is explicitly stated to improve search. For example, users
can teach the machine to detect visual concepts that interest
them [2], and user-generated meta-data on social networks
can be used to personalize search results by learning user
preferences [14]. Our work of modeling user behavior lends
itself naturally to personalization. While our primary goal
is to learn patterns in collective user behavior to improve
search results in a domain- and user-independent manner,
we also conduct experiments on learning user-specific be-
haviors for further improvements in search quality.

3. Approach

We model user behavior in two different feedback set-
tings: binary relevance feedback and relative attribute-
based feedback (Section 3.1). To gather training data, we
conduct user studies and log the interactions – that is, the
feedback choices made by users searching for a given target
image. We extract features to describe each such interac-
tion that capture not only the feedback the user provided,
but also the feedback the user could have provided but did
not (Section 3.3). We then learn a ranking function, which,
given a set of user choices, assigns higher scores to true tar-
get images and lower scores to other distractor images in the
database (Section 3.2). The learnt ranking function is used
at test time; given a novel user’s feedback choices, the sys-
tem computes the likelihood of each image in the database
being the target.

3.1. Image Search with Feedback

Let’s say a user is searching through a database of N
images D = {x1, . . . ,xi, . . . ,xN} for a specific target im-
age t ∈ D. That target could be something he has liter-
ally seen before (e.g., a specific person), or simply a rough
idea of what he wants (e.g., a style of shoes). The search
process starts by showing the user a set P of K images;
P = {p1, . . . ,pv, . . . ,pK}, P ⊂ D. These may be se-
lected randomly, or by using keywords or a query image
provided by the user. The user then examines these images.
Assuming the target image is not one of them i.e. t /∈ P ,
the user provides the system feedback on one of the images
p∗ ∈ P . The system uses this feedback to compute a rele-
vance function S(xi) that captures the likelihood of image
xi being the target image t (not known to the system). The
system sorts all images inD by S(xi) (in descending order)
and returns the top K images as the new set of candidate
reference images P . This revised set P is shown to the user

for further feedback, and the process continues.1

We now explain how S(xi) is computed using two dif-
ferent modes of explicit user feedback. In Sections 3.2
and 3.3, we show how to model the nuances of user be-
havior for either of these feedback mechanisms to improve
their effectiveness.

Binary Relevance Feedback: In this form of feedback,
the user can select a reference image p∗ ∈ P and state
whether the reference image is relevant or irrelevant to the
image that he is looking for. If the user says “What I want is
like p∗”, then we have S(xi) = −d(xi,p

∗), where d cap-
tures the distance between two images in some feature space
(e.g., texture, attributes). So the images that are most simi-
lar to the selected reference image are returned as the most
relevant images in the next iteration. If the user says “What
I want is not like p∗”, then S(xi) = d(xi,p

∗), making
the images most dissimilar from p∗ to be the most relevant.
This simple model captures the essence of standard prior
models [19, 26] that continue to be used today (e.g., [25]),
though of course one could elaborate the details, for exam-
ple by using classifiers that use all accumulated feedback.

Relative Attribute-based Feedback: In this form of
feedback, the user can select a reference image p∗ ∈ P
and state how it is different from what he is looking for, as
proposed in [10]. The system is assumed to have access to
a vocabulary of M attributes {a1, . . . , am, . . . , aM} (e.g.,
shiny, chubby). For each attribute, there is an associated
pre-trained relative attribute predictor rm(xi), which esti-
mates the extent to which the attribute m is present in im-
age xi. Following [17], we use a max-margin “learning to
rank” approach to learn these functions, where the training
data consists of image pairs whose relative strengths (more,
less, equal) of the property are known. See [17] for details.

If the user feedback is “What I want is more am than
p∗”, then the explicit feedback method (which will serve as
a baseline for our approach) computes S(xi) = rm(xi) −
rm(p∗). Hence, the stronger the presence of attribute m in
an image, the more likely it is to be the target image. Sim-
ilarly, if the user says “What I want is less am than p∗”,
then S(xi) = rm(p∗) − rm(xi). This relevance scoring
strategy is similar to the one proposed in [10], but softer.
In [10], S(xi) = 1 if rm(xi) > rm(p∗) and 0 otherwise
for the first feedback statement, and vice-versa for the sec-
ond feedback statement. We find the softer version to work
better in practice and so it offers a stronger baseline in our
experiments.

3.2. Relevance Ranking with Implied Feedback

We build our model of user behavior by collecting train-
ing data, that is, by observing users providing feedback in

1We describe our approach for the user providing a single statement of
feedback on a single reference image for one iteration. However, as we
show later, it can be extended to multiple statements and iterations.



search scenarios where the target image is known to us. The
lth training interaction Ωl = 〈Pl,p∗l ,m∗l , ql〉 is a 4-tuple
consisting of (1) Pl, the K candidate reference images vis-
ible to the user for that interaction, (2) p∗l , the user’s choice
of reference image, (3) m∗l , his choice of feedback state-
ment, and (4) ql, the “polarity” of the feedback statement.
In the case of attribute feedback, m∗l is the attribute the
user chose to comment on, whereas in the case of binary
relevance feedback, m∗l is simply constant, since the user
only comments on the “attribute” of generic similarity. The
polarity of the feedback ql refers to whether the user said
“more” or “less” in the attribute case, and “similar” or “dis-
similar” in the binary relevance case.

We represent each observed interaction with a feature
vector φ(tl,Ωl) that depends on both the target image tl for
that interaction as well as the corresponding choices made
by the user Ωl while trying to find that target image tl (fea-
ture details to be given in the next section). At test time
when a user provides novel feedback Ωtest, each image xi
in the database will be considered as a potential target image
and will be paired with Ωtest and plugged into φ to extract
the corresponding feature vector φ(xi,Ωtest).

We wish to learn the scoring function S(x) = wTφ such
that the score is highest when the true target image tl is
paired with the corresponding interaction Ωl to form the ar-
guments to φ. The score should be lower if the same inter-
action Ωl were to be paired with any other distractor (non-
target) image from the dataset. In other words, we wish to
learn w such that the following constraints are satisfied:

S(tl) > S(xi) (1)

=⇒ wTφ(tl,Ωl) > wTφ(xi,Ωl), ∀xi 6= tl,∀l.

While this is an NP hard problem [9], it is possible to ap-
proximate the solution with the introduction of non-negative
slack variables. We directly adapt the formulation proposed
in [9], except we use a quadratic loss function. This leads
to the following optimization problem:

min
w,ξil

1

2

∣∣∣∣w∣∣∣∣2
2

+ C
∑

ξ2il (2)

s.t. wTφ(tl,Ωl) ≥ wTφ(xi,Ωl) + 1− ξil
∀xi 6= tl,∀l, ξil ≥ 0.

Rearranging the constraints reveals that the above formu-
lation is quite similar to the SVM classification problem,
but on pairwise difference vectors, where C is the trade-
off constant between maximizing the margin and satisfying
the pairwise relative constraints, and ξil are slack variables.
We solve the primal problem using Newton’s method [3].
While we use a linear ranking function in our experiments,
the method is also kernelizable. For computational reasons,
instead of enforcing the pairwise constraints between every

training target image and every other image in the dataset,
we enforce them between every target image and a random
sampling of 100 images from the dataset.

We stress that the learned function is parameterized by
both the target image as well as the user feedback. Dur-
ing training, the target images are known, since we tell the
user what image to search for. At test time, however, the
target is unknown. What is known is the user’s interac-
tion with the system Ωtest, which includes the candidate
reference images the user saw. Therefore, to rank the re-
sults at test time, each database image xi is considered
as the potential target in turn and scored accordingly by
S(xi) = wTφ(xi,Ωtest), for i = 1, . . . , N . Our method’s
most confident guess for the target is the database image
scored highest by S(xi).

3.3. Features to Capture Implicit Feedback

We now describe our intuitions regarding plausible user
behavior when using both types of feedback. Motivated by
these intuitions, we design features describing each user in-
teraction φ(tl,Ωl). We drop the subscript l from the inter-
actions for clarity of notation. The features for any image
xi ∈ D can be computed the same way by replacing t with
xi in the following. We stress that all the hypotheses be-
low are simply possible behaviors that we want our features
to expose to the rank learning algorithm. Ultimately, their
impact will be entirely learned, and not hand-coded by us.

Features for Binary Relevance Feedback: Recall the
puppy example above (Figure 1, top). Perhaps to provide
negative feedback, users may click on images that are dif-
ferent enough from the target images to not be satisfactory,
but not so different that using them as feedback is barely
informative. To capture this sweet spot, we propose the fol-
lowing five features to characterize the interaction. They
capture the distance of the selected reference image from
the target image relative to the min, max and average dis-
tances of all candidate reference images from the target
image, as well as relative to the visual diversity spanned
by the available candidate reference images: φ(t,Ω) =

[d(t,p∗), minp∈P d(t,p)
d(t,p∗) , d(t,p∗)

maxp∈P d(t,p)
, d(t,p∗)

1
K

∑
p∈P d(t,p)

,
d(t,p∗)

maxp1,p2∈P d(p1,p2)−minp1,p2∈P d(p1,p2)
]. These features re-

flect not only how the target relates to the selected reference
image, but also how it relates to the reference images that
the user also saw but declined to comment on. In this way,
we capture implicit cues about the user’s choice.

We expect the distribution of these features to be differ-
ent depending on whether the user says “like this” or “not
like this” (i.e., the value of q). For example, when giving
negative feedback, the user may comment on an image that
is not too similar to the target, but is also not too dissimi-
lar (the puppy example). In contrast, when giving positive
feedback, the user may very well comment on the reference



image that is most similar to the target. Hence, we learn sep-
arate scoring functions for the two feedback statements. At
test time, depending on the user’s feedback, we use the ap-
propriate scoring function. Note that the baseline approach
defined in Section 3.1 essentially uses just the first feature
in this list (or its negative, depending on q).

Features for Relative Attribute-based Feedback: This
form of feedback provides the user with more options for
richer feedback, providing more opportunities to learn the
nuances of user behavior. The explicit feedback baseline
(defined in Section 3.1) can be thought of as looking at one
simple feature (i) q · (sign(tm∗ − p∗m∗)) [10] or the softer
version (ii) q ·(tm∗−p∗m∗) where tm is shorthand for rm(t),
the strength of the attribute am in image t (and similarly
for pm). The direction of feedback q is +1 if the user said
“more” and −1 if the user said “less”. The expressions (i)
and (ii) form our first two features for φ(t,Ω) in the relative
feedback case.

Now we propose novel implicit features motivated by
plausible hypotheses about user behavior. As described in
the crime witness example in the introduction, one hypoth-
esis is that the target image usually lies between the cho-
sen reference image and another candidate reference image
closest to it along the chosen attribute (Figure 1, bottom). If
all candidate reference images in P are sorted by the chosen
attributem∗, let p+ denote the reference image ranked con-
secutively to the chosen reference image p∗ in the direction
q of the feedback. Our third feature that captures this hy-
pothesis is: log

(
|tm∗−p∗m∗ |
p+
m∗−p

∗
m∗

)
, where the log helps control

the spread of feature values.
Another hypothesis is that relative to the entire range

of the attribute values spanned by images in P , perhaps
the target image is usually close to the chosen reference
image along the chosen attribute. This is captured by:

|p∗m∗−tm∗ |
maxp∈P pm∗−minp∈P pm∗

. Or, maybe users pick the refer-
ence image and attribute that allow the target image to be as
close to the reference image as possible, as captured by the
following ratio: minp∈P,m∈{1,...,M} |pm−tm|

|p∗
m∗−tm∗ |

. From here on
we use minp,m as shorthand for minp∈P,m∈{1,...,M}. Sev-
eral versions of this feature can be computed by replacing
the min operator with max or average operators across both
the choice of reference images and attributes, or just one and
not the other. This gives us 8 more features (see supp.).

Further, maybe users pick the attribute and reference im-
age such that the target image falls in the smallest interval
formed by any two consecutive candidate reference images
when sorted by the strength of the chosen attribute. This is
captured by: minp,m |pm−p+m|

|p∗
m∗−p

+
m∗ |

. For any candidate reference

image p and attributem, p+m is the value of themth attribute
in a candidate reference image closest to p along m, while
ensuring that tm ∈ [pm, p

+
m]. Again, different versions of

“more	  expanding	  space	  than”	  

Figure 2: Perhaps the user means “I want a scene overall like this, but with
more of the expanding space property”.

this feature can be obtained by varying the min operator.
This gives us 6 more features (total 19 so far).

Finally, another hypothesis is that when a user says
“What I want is more am than p∗”, perhaps he really
means “I want something like p∗ but more am” (see Fig-
ure 2). In this case the user would pick the reference
image and attribute such that the reference image has a
high difference from the target image along the chosen at-
tribute, but is similar to the target image along the remain-
ing attributes. That is, |p∗m∗−tm∗ |

maxm6=m∗ |p∗m−tm|
is high. A user

may make choices that optimize this value, as captured by:
|p∗

m∗−tm∗ |
maxm 6=m∗ |p

∗
m−tm|

maxp,m
|pm−tm|

max
m′ 6=m

|p
m′−t

m′ |
. A variety of such features can

be computed by replacing the various max operators by av-
erages in different combinations (spelled out in supp. file).
This gives us a total of 31 features that we use to learn the
single scoring function defined in Section 3.2.

Discussion: Overall, the proposed features capture both
what the user did say in the feedback, as well as what he
chose not to say, in light of all candidate reference images
available. While they are fairly complex, they rely on intu-
itive hypotheses of user behavior. Moreover, we do not as-
sume that the user optimizes these complex features while
making choices. Our hypothesis is simply that users have
soft inclinations towards some of these high-level strategies,
and learning a model in this feature space will help cap-
ture those inclinations, leading to improved image search
results. If any of our hypotheses are false, the model can
learn to ignore the corresponding features.

Instead of learning the nuances of user behavior, one
might envision simply instructing the user to behave in a
certain way. For instance, we could explain to users how
the system works, and tell them the optimal strategy of pro-
viding feedback to converge on their desired result quickly.
However, this line of attack has several flaws. First, it may
not be practical to effectively convey this information to lay-
man users using search engines. Second, the optimal strate-
gies may be unnatural or too complex, making the user ex-
perience unpleasant and inefficient. Finally, we suspect that
in spite of being instructed to follow a certain strategy, nat-
ural human tendencies and biases would creep in. Instead
of treating these biases as noise, we take the approach of
treating them as an informative signal. Instead of forcing
users to adapt to a system, we take the approach of having



Figure 3: User interfaces for two forms of feedback: binary relevance (top) relative attribute-based (bottom; a subset of attributes are shown for illustration)

our systems adapt to user behavior.

4. Results
We conduct experiments on three domains: scenes,

faces, and shoes. We use the Outdoor Scene Recognition
dataset [16] with 2688 images from 8 categories, 900 ran-
dom images of the 60 celebrities that comprise the devel-
opment set of the Public Figures Face Dataset [12], and
1000 random images from all 10 categories in the Shoes
dataset [1]. Our search task is to find a specific target image
from the entire database, making the notion and number of
categories somewhat irrelevant to the task at hand.
Data Collection: We collect our user data on Amazon
Mechanical Turk. Subjects were shown one target image,
and a set of K = 8 random images as candidate reference
images. The task was disguised as a game between two
players. Subjects were told that their goal is to help their
partner guess what the “secret” (target) image is by giving
him clues (see supp.). Subjects were allowed to pick a ref-
erence image and provide a feedback statement (clue) for
that image (Figure 3). Our game-like interface is intended
to bolster the realism of the data. The game aspect encour-
ages the user to care about the quality of his response, much
as he would if doing a search for his own purposes. In con-
trast, if he were to think he is simply participating in a data
collection effort, it could dilute the very nuances in behavior
that we are interested in modeling.

For relative attribute-based feedback, subjects were al-
lowed to comment on one of three attributes for scenes [16]
(natural, open and expanding space)2, 10 attributes for
faces [12] (e.g. masculine-looking, white, dark hair, young,
chubby) and 10 attributes for shoes [10] (e.g. pointy at the
front, open, bright in color). We train all relative attribute
predictors offline on a held-out set of images. See supp. for
attribute lists and details about the training procedure.

We collected on average 1200 interactions for each
dataset from a total of about 60 subjects. For each inter-

2the only three from [16] we find to be reliably understood by users.
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Figure 4: Our approach significantly outperforms baselines on three
datasets and two modes of feedback. (SC: scenes, FA: faces, SH: shoes)

action, we log the true target3 image t and the tuple Ω. Un-
less specified otherwise, we use 100 random interactions for
training and 100 random interactions for testing. We ensure
that the training target images and users do not overlap with
the testing target images and users (except for experiments
where we learn a user-specific behavior model).

Our performance metric is the percentile rank of the tar-
get image according to S(xi), since a good search result
will place the desired image near the top of the list. We
subtract the raw rank of the target from the total number of
images in the dataset, divide by the number of images in
the dataset and multiply by 100 to get an accuracy measure
between 0 and 100. Higher percentiles are better. We report
accuracy averaged across 20 random train/test splits. For
binary relevance feedback, we compute the distance d be-
tween images using low-level raw image features (gist and
color histograms, details in supp.) as well as the mid-level
relative attribute prediction scores.

Binary Relevance Feedback: We compare our proposed
approach of modeling user behavior in binary relevance
feedback to the traditional approach [19, 26] (Section 3.1)
that simply takes what the user says at face value. If the
user says “what I want is (not) like this”, it sorts all images
in the database in (descending) ascending order of their dis-
tance from the selected reference image. In Figure 4 (left

3We use this info at training time to learn our ranking function, and at
test time to evaluate the search results.
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Figure 5: Our models can be trained on different source datasets (SC:
scenes, FA: faces, SH: shoes) and effectively applied to other target
datasets. Values are improvement in performance over the baseline ap-
proach for different pairs of source-target datasets.

two plots) we see that our proposed approach improves per-
formance in most cases, whether using low-level (left) or
mid-level features (right). Using state-of-the-art facial ap-
pearance features and more attributes for scenes may help
overcome the decrease in performance for faces (with fea-
tures) and scenes (with attributes) respectively.

Relative Attribute-based Feedback: We compare to the
existing WhittleSearch method [10] (Section 3.1) which, if
the user says “what I want is more (less) colorful than this”,
sorts all images in descending order of how much more
(less) colorful they are than the selected reference image.
In Figure 4 (right plot) we see significant gains across the
board by modeling the nuances of user behavior. On the
shoes dataset, we see an improvement of as much as 10
points on the absolute scale. On a dataset of 1000 images,
this corresponds to the rank of the true target image improv-
ing by 100 spots on average. The shoes dataset has fluid
category boundaries. This makes it a rich and particularly
realistic testbed for visual search. As a consequence, it is
more amenable to eliciting nuances in user behavior, result-
ing in our dramatic gains in performance. We observe simi-
lar improvements using NDCG as the evaluation metric and
the ground truth relevance from [10]; this metric accounts
not only for the target’s rank, but also the rank of images
that look similar to it.

Cross-dataset: While the above results are trained and
tested per dataset, we are also interested in generalizing the
user behavior models across domains. We next train our
ranking function using interactions from user studies con-
ducted on one dataset and use it to sort the images of a
different dataset. We conduct experiments with all pairs
of datasets, giving us a 3 × 3 performance matrix. Fig-
ure 5 shows these matrices for both binary relevance (using
both low-level and mid-level features) and relative attribute-
based feedback. We display the improvement over the base-
line approach; an improvement of 5 means that the rank is 5
percentiles better. We see that our learnt models generalize
to other datasets seamlessly. This demonstrates that what
our model is learning is truly tendencies of users, and not
specifics or biases of a dataset or the attribute predictors.

User-specific: While the primary goal of our work is to
learn user- and domain-independent models of user behav-
ior, our model naturally lends itself to learning user-specific
tendencies as well. This allows, for example, a search en-
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Figure 6: Our models can be used to learn user-specific behaviors for fur-
ther improvement in performance. (SC: scenes, FA: faces, SH: shoes)
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Figure 7: Preliminary result using multiple feedback statements on 5 query
shoe images using relative attribute-based feedback.

gine to personalize its reactions to user feedback, given the
user’s prior search history. We next conduct experiments us-
ing interactions from only one user to train our model, and
then use held-out interactions from the same user to test our
model. The target images do not overlap between the train
and test sets. Here we use 50 interactions each for train-
ing and testing, taking data from only those subjects who
provided us at least 100 interactions (averages 5.5 subjects
per dataset). For a fair comparison, we re-train the user-
independent models using 50 interactions (instead of 100).
Figure 6 shows the results. We see that learning the ten-
dencies of a specific user usually further improves search
accuracy. Unmotivated workers can add noise to our data
collected via uncontrolled real user studies on Mechanical
Turk. Results for user-specific studies can be especially sen-
sitive to this, which may explain the decline in performance
for faces with relative attribute-based feedback.
Multiple Feedback Statements: For clarity, our ap-
proach is presented and tested in the setting where a user
provides one feedback statement on one reference image in
a single iteration. However, it naturally extends to handle
multiple iterations and/or multiple statements. An example
result is shown in Figure 7. We compute the scoring func-
tion S(xi) for each statement individually, and then com-
pute the combined scoring function for multiple statements
(possibly gathered across multiple iterations) by summing
the individual scoring functions. Our approach continues to
outperform the baseline. We leave more elaborate combi-
nation strategies as future work.
Qualitative Results: Finally, Figure 8 shows example
searches for the two modes of feedback. In (a): while
searching for a target face (blue outline), the user clicks
on the reference image (black outline) and says “Not like
this”. The baseline approach identifies images most differ-



Target Candidate Reference Images "Not like"

Baseline 2 30 60 90 120 150 180 268

Proposed 2 30 60 90 120 150 180 268

(a) Binary Relevance Feedback

Target Candidate Reference Images "More shiny than"

Baseline 1 15 29 43 57 71 85 93

Proposed 1 15 29 43 57 71 85 93

(b) Relative Attribute-based Feedback
Figure 8: Real examples comparing our method to the baseline for both
modes of feedback. In each example, Top: feedback given by MTurk user
for the target image on the left. Middle: top ranked images of the baseline.
Bottom: our result. Numbers indicate ranks. Best viewed in color.

ent from the reference image to be most relevant and places
the target image at rank 833 out of 900. Our approach, on
the other hand, prioritizes images that are different enough
from the reference image (e.g. different race) but still bear
similarities to it (e.g. same gender, similar age, etc.), plac-
ing the target image at rank 268 (outlined in green). In (b):
while searching for the target pair of shoes (blue outline),
the user clicks on the reference image (black outline) and
says “What I want is shinier than this”. The existing ap-
proach [10] assumes that the shinier the shoe relative to the
reference image, the more relevant the image is. As seen
from the top ranked retrieved images in the middle row, the
baseline returns very shiny shoes. Our approach, on the
other hand, has learnt the nuances of user behavior and in-
fers that since there were shinier shoes available in the can-
didate reference images, but the user did not click on them,
what the user must want are shoes that are shinier than the
chosen reference image, but not by much. Our top retrieved
results are more like the target image than the baseline’s.
Specifically, the true target image is ranked 93 by our ap-
proach, as compared to 953 out of 1000 by the baseline.
Summary of Results: Overall, the results quite consis-
tently support our main claim: implicit cues are embed-
ded in existing forms of feedback, and they ought to be
learned and exploited for interactive image retrieval, an im-
portant problem in computer vision. Whether using tradi-
tional binary relevance feedback [4, 6, 13, 19, 22, 26] or

a more recent form of attribute feedback [10], our method
offers notable gains in search accuracy, yet requires no ad-
ditional overhead on the part of the user. Further, we have
shown that our features and learning formulation are gen-
eral enough to support both cross-domain use (i.e., implicit
cues learned with faces helps do better search for shoes) as
well as user-specific personalization.
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