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Abstract

We propose to model relative attributes1 that capture
the relationships between images and objects in terms
of human-nameable visual properties. For example, the
models can capture that animal A is ‘furrier’ than an-
imal B, or image X is ‘brighter’ than image B. Given
training data stating how object/scene categories re-
late according to different attributes, we learn a rank-
ing function per attribute. The learned ranking func-
tions predict the relative strength of each property in
novel images. We show how these relative attribute pre-
dictions enable a variety of novel applications, includ-
ing zero-shot learning from relative comparisons, auto-
matic image description, image search with interactive
feedback, and active learning of discriminative classi-
fiers. We overview results demonstrating these applica-
tions with images of faces and natural scenes. Overall,
we find that relative attributes enhance the precision of
communication between humans and computer vision
algorithms, providing the richer language needed to flu-
idly “teach” a system about visual concepts.

Introduction
Traditional visual recognition approaches map low-level im-
age features directly to object category labels. Recent work
proposes models using visual attributes. Attributes are prop-
erties observable in images that have human-designated
names and are typically shared across object categories (e.g.,
‘striped’, ‘four-legged’). They are valuable as semantic cues
in various problems. Researchers have shown their impact
for strengthening facial verification (Kumar et al. 2009),
object recognition (Wang, Markert, and Everingham 2009;
Wang and Mori 2010; Branson et al. 2010), generating de-
scriptions of unfamiliar objects (Farhadi et al. 2009), and to
facilitate “zero-shot” transfer learning (Lampert, Nickisch,
and Harmeling 2009).

Problem: Most existing work focuses wholly on attributes
as binary predicates indicating the presence (or absence) of
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1This paper is an invited follow-up to our previous pa-
per (Parikh and Grauman 2011b). Here we provide an overview of
a broad variety of applications of the proposed relative attributes.

(a) Smiling (b) ? (c) Not smiling

(d) Natural (e) ? (f) Manmade

Figure 1: Binary attributes can be a restrictive way to de-
scribe images. While it is clear that (a) is smiling, and (c)
is not, the more informative description for (b) is via rela-
tive attributes: he is smiling more than (a) but less than (c).
Similarly, scene (e) is less natural than (d), but more so than
(f). Our main idea is to model relative attributes via learned
ranking functions, and then demonstrate their impact on a
variety of applications involving human-machine commu-
nication: zero-shot learning, generating image descriptions,
improved image search, and active learning of classifiers.

a certain property in an image. This may suffice for part-
based attributes (e.g., ‘has a head’) and some binary proper-
ties (e.g., ‘spotted’). However, for many attributes, not only
is this binary setting restrictive, but it is also unnatural. For
instance, it is not clear if in Figure 1(b) Hugh Laurie is smil-
ing or not; people are likely to respond inconsistently in pro-
viding the presence or absence of the ‘smiling’ attribute for
this image, or of the ‘natural’ attribute for Figure 1(e).

Indeed, we observe that relative visual properties are a se-
mantically rich way by which humans describe and compare
objects in the world. They are necessary, for instance, to re-
fine an identifying description (“the ‘rounder’ pillow”), or to
situate with respect to reference objects (“‘brighter’ than a
candle; ‘dimmer’ than a flashlight”). Furthermore, they have
potential to enhance active and interactive learning—for in-
stance, offering a better guide for a visual search (“find me
similar shoes, but ‘shinier’.”).

Invited paper to appear in the Proceedings of AAAI 2012, Sub-Area Spotlights Track for Best Papers.



Proposal: In this work, we propose to model relative at-
tributes. As opposed to predicting the presence of an at-
tribute, a relative attribute indicates the strength of an at-
tribute in an image with respect to other images. For exam-
ple, in Figure 1, while it is difficult to assign a meaningful
value to the binary attribute ‘smiling’, we could all agree on
the relative attribute, i.e. Hugh Laurie is smiling less than
Scarlett Johansson (a), but more than Jared Leto (c). In ad-
dition to being more natural, we show how relative attributes
offer a richer mode of communication, thus allowing access
to more detailed human supervision (for recognition tasks)
and guidance (for interactive tasks such as image search).

How can we learn relative properties? Whereas traditional
supervised classification is appropriate to learn attributes
that are intrinsically binary, it falls short when we want to
represent visual properties that are nameable but not cate-
gorical. Our goal is instead to estimate the degree of that
attribute’s presence—which, importantly, differs from the
probability of a binary classifier’s prediction. To this end,
we devise an approach that learns a ranking function for
each attribute, given relative similarity constraints on pairs
of examples (or more generally a partial ordering on some
examples). The learned ranking function can estimate a real-
valued rank for images indicating the relative strength of the
attribute presence in them.

The proposed ranking approach accounts for a subtle but
important difference between relative attributes and conceiv-
able alternatives based on regression or multi-way classifi-
cation. While such alternatives could also allow for a richer
vocabulary, during training they could suffer from similar
inconsistencies as binary attributes. For example, it is more
difficult to define and perhaps more importantly, agree on,
“With what strength is he smiling?” than “Is he smiling more
than she is?”. Thus, we expect the relative mode of supervi-
sion our approach permits to be more natural and consistent
for human labelers.

Contributions: Our main contribution is the idea to learn
relative visual attributes. We demonstrate the benefits of the
enhanced human-machine communication offered by rela-
tive attributes on four novel applications: (1) zero-shot learn-
ing from relative comparisons, (2) image description in ref-
erence to example images or categories, (3) image search
with relative relevance feedback, and (4) active training of
discriminative classifiers using feedback. Through compar-
isons to several strong baselines using image datasets of
scenes and faces, we show that relative attributes result in
superior performance on all applications.

Related Work
We review related work on visual attributes, other uses of
relative cues, and methods for learning comparisons.

Binary attributes: Learning attribute categories allows
prediction of color or texture types (Ferrari and Zisser-
man 2007), and can also provide mid-level cues for ob-
ject or face recognition (Lampert, Nickisch, and Harmeling
2009; Wang and Mori 2010; Kumar et al. 2009). Moreover,

the semantics intrinsic to attributes enable zero-shot trans-
fer (Lampert, Nickisch, and Harmeling 2009; Wang, Mark-
ert, and Everingham 2009; Russakovsky and Fei-Fei 2010),
or description and part localization (Farhadi et al. 2009;
Farhadi, Endres, and Hoiem 2010; Wang and Forsyth 2009).
Rather than manually define attribute vocabularies, some
work aims to discover attribute-related concepts on the
Web (Rohrbach et al. 2010; Berg, Berg, and Shih 2010), ex-
tract them from existing knowledge sources (Wang, Mark-
ert, and Everingham 2009; Branson et al. 2010) or discover
them interactively (Parikh and Grauman 2011a). In contrast
to our approach, all such methods restrict the attributes to be
categorical (and in fact, binary).

Relative information: Relative information has been ex-
plored in vision in a variety of ways. Stemming from the mo-
tivation of limited labeled data, Wang, Forsyth, and Hoiem
use explicit similarity-based supervision such as “A serval
is like a leopard” or “A zebra is similar to the cross-walk in
texture” to share training instances for categories with lim-
ited or no training instances (2010). Unlike our approach,
that method learns a model for each object category, and
does not model attributes. In contrast, our attribute mod-
els are category-independent and transferrable, enabling rel-
ative descriptions between all classes. Moreover, whereas
that technique captures similarity among object categories,
ours models a general ordering of the images sorted by the
strength of their attributes, as well as a joint space over mul-
tiple such relative attributes.

Kumar et al. explore comparative facial attributes such
as “Lips like Barack Obama” for face verification (2009).
These attributes, although comparative, are also modeled
as binary classifiers and are similarity-based as opposed to
an ordering. Gupta and Davis and Siddiquie and Gupta use
prepositions and adjectives to relate objects to each other
for more effective contextual modeling and active learning,
respectively (2008; 2010). In contrast, our work involves
relative modeling of attribute strengths for richer human-
machine communication.

Learning to rank: Learning to rank has received exten-
sive attention in the machine learning literature (Joachims
2002; Cao et al. 2007; Liu 2009), for information retrieval
in general and image retrieval in particular (Jain and Varma
2011; Hu, Li, and Yu 2008). Given a query image, user pref-
erences (often captured via click-data) are incorporated to
learn a ranking function with the goal of retrieving more
relevant images in the top search results. Learned distance
metrics (e.g., (Frome et al. 2007)) can induce a ranking on
images; however, this ranking is also specific to a query im-
age, and typically intended for nearest-neighbor-based clas-
sifiers. Our work learns a ranking function on images based
on constraints specifying the relative strength of attributes,
and the resulting function is not relative to any other image
in the dataset. Thus, unlike query-centric retrieval tasks, we
can characterize individual images by the strength of the at-
tributes present, which we show is valuable for recognition,
search, and description applications.
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Figure 2: Distinction between learning a wide-margin rank-
ing function (right) that enforces the desired ordering on
training points (1-6) , and a wide-margin binary classifier
(left) that only separates the two classes (+ and−), and does
not necessarily preserve a desired ordering on the points.

Learning Relative Attributes
We first present our approach for learning relative attributes,
and then demonstrate how relative attributes enable several
novel applications.

We are given a set of training images I = {i} represented
in Rn by feature vectors {xi} and a set of M attributes A =
{am}. In addition, for each attribute am, we are given a set
of ordered pairs of images Om = {(i, j)} and a set of un-
ordered pairs Sm = {(i, j)} such that (i, j) ∈ Om =⇒
i � j, i.e. image i has a stronger presence of attribute am

than j, and (i, j) ∈ Sm =⇒ i ∼ j, i.e. i and j have
similar relative strengths of am. We note that Om and Sm

can be deduced from any partial ordering of the images I in
the training data with respect to strength of am. Either Om

or Sm, but not both, can be empty.
We adapt the formulation proposed in (Joachims 2002)

to learn M ranking functions rm(xi) = wT
mxi. We use a

quadratic loss function together with similarity constraints,
leading to the following optimization problem:

minimize
(

1
2
||wT

m||22 + C
(∑

ξ2ij +
∑

γ2
ij

))
(1)

s.t. wT
m(xi − xj) ≥ 1− ξij ;∀(i, j) ∈ Om (2)

|wT
m(xi − xj)| ≤ γij ;∀(i, j) ∈ Sm (3)

ξij ≥ 0; γij ≥ 0, (4)

where C is the trade-off constant between maximiz-
ing the margin and satisfying the pairwise relative con-
straints. We solve the above primal problem using New-
ton’s method (Chapelle 2007). While we use a linear rank-
ing function in our experiments, the above formulation can
be easily extended to kernels.

This learning-to-rank formulation learns a function that
explicitly enforces a desired ordering on the training images;
the margin is the distance between the closest two projec-
tions within all desired (training) rankings. In contrast, if one
were to train a binary classifier, only the margin between the
nearest binary-labeled examples would be enforced; order-
ing among examples beyond those defining the margin is ar-
bitrary. See Figure 2. Our experiments confirm this distinc-
tion does indeed matter in practice, as our learned ranking

function is more effective at capturing the relative strengths
of the attributes than the score of a binary classifier (i.e., the
magnitude of the SVM decision function). In addition, train-
ing with comparisons (image i is similar to j in terms of at-
tribute am, or i exhibits am less than j) is well-suited to the
task at hand. Attribute strengths are arguably more natural
to express in relative terms, as opposed to requiring absolute
judgments in isolation (i.e., i represents am with degree 10).

In the following, we introduce four novel tasks enabled
by the learned relative attributes: (1) zero-shot learning with
relative relationships, (2) generating image descriptions, (3)
using relative relevance feedback in image search, and (4)
providing relative feedback to a classifier.

For each task, we show example results on two datasets:
(1) the Outdoor Scene Recognition (OSR) Dataset (Oliva
and Torralba 2001) containing 2,688 images from 8 cat-
egories (such as highway, mountain, forest, etc.), which
span 6 attributes (such as ‘natural’, ‘open’, ‘perspective’,
etc.), and (2) a subset of the Public Figure Face (PubFig)
Database (Kumar et al. 2009) containing 772 images from 8
identities, which span 11 facial attributes (such as ‘chubby’,
‘smiling’, ‘masculine looking’, etc.) As image features, we
use the texture-based gist (Oliva and Torralba 2001) and
color histograms. To train the relative attributes, we specify
how the categories relate in terms of their datasets’ respec-
tive attributes (e.g., forests are more ‘natural’ than highways;
Scarlett is ‘younger’ than Clive; see (Parikh and Grauman
2011b) for details).

Applications
We now introduce our approach to incorporate relative at-
tributes for four different applications.

Zero-Shot Learning From Relationships
Consider N categories of interest. For example, each cat-
egory may be an object class, or a type of scene. Dur-
ing training, S of these categories are ‘seen’ categories for
which training images are provided, while the remaining
U = N − S categories are ‘unseen’, for which no training
images are provided. A set of M relative attributes are pre-
trained. The U unseen categories are described relative to
one or two seen categories for a subset of the attributes, i.e.,
unseen class c(u)

j can be described as c(s)i � c
(u)
j � c

(s)
k for

attribute am, or c(s)i � c
(u)
j , or c(u)

j � c
(s)
k , where c(s)i and

c
(s)
k are seen categories. For example, one could describe the

unseen bear class as ‘furrier’ than giraffes and ‘bigger’ than
dogs. During testing, a novel image is to be classified into
any of the N categories.

Predicting the real-valued rank of all images in the train-
ing dataset I using the M relative attributes allows us to
transform xi ∈ Rn → x̃i ∈ RM , such that each image
i is now represented as an M -dimensional vector x̃i in-
dicating its rank score for all M attributes. We now build
a generative model for each of the S seen categories in
RM . We use a Gaussian distribution, and estimate the mean
µ

(s)
i ∈ RM and M ×M covariance matrix Σ(s)

i from the
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Figure 3: Relative attributes allow the system to learn novel
categories using statements about how they relate to previ-
ously seen categories.

ranking-scores of the training images from class c(s)i , so we
have c(s)i ∼ N (µ(s)

i ,Σ(s)
i ), for i = 1, . . . , S.

The parameters of the generative model corresponding to
each of the U unseen categories are selected under the guid-
ance of the input relative descriptions. See Figure 3. In par-
ticular, given an unseen category c(u), we employ the fol-
lowing: If c(u)

j is described as c(s)i � c(u)
j � c(s)k , where c(s)i

and c(s)k are seen categories, then we set them-th component
of the mean µ(u)

jm to 1
2 (µ(s)

im + µ
(s)
km). If c(u)

j is described as

c
(s)
i � c(u)

j , we set µ(u)
jm to µ(s)

im− dm, where dm is the aver-

age distance between the sorted mean ranking-scores µ(s)
im’s

of seen classes for attribute am. It is reasonable to expect
the unseen class to be as far from the specified seen class as
other seen classes tend to be from each other. Similarly, if
c
(u)
j is described as c(u)

j � c(s)k , we set µ(u)
jm to µ(s)

im + dm. If

am is not used to describe c(u)
j , we set µ(u)

jm to be the mean
across all training image ranks for am and them-th diagonal
entry of Σ(u)

j to be the variance of the same. In the first three

cases, we simply set Σ(u)
j = 1

S

∑S
i=1 Σ(s)

i .
Given a test image i, we compute x̃i ∈ RM indicating

the relative attribute ranking-scores for the image. It is then
assigned to the seen or unseen category that assigns it the
highest likelihood:

c∗ = argmax
j∈{1,...,N}

P (x̃i | µj ,Σj) . (5)

From a Bayesian perspective, our approach to setting the
parameters of the unseen categories’ generative models can
be considered to be priors transferred from the knowledge
of the models for the seen categories. Under reasonable pri-
ors, the choice of mean and covariances correspond to the
minimum mean-squared error and maximum likelihood es-
timates. Related formulations of transfer through parameter
sharing have been studied in (Fei-Fei, Fergus, and Perona
2003) and (Stark, Goesele, and Schiele 2009) for learning
shape-based object models with few training images, though
no prior models consider transferring knowledge based on
relative comparisons, as we do here.

We note that if one or more images from the unseen cate-
gories were subsequently to become available, our estimated
parameters could easily be updated in light of the additional
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Figure 4: Zero-shot learning performance as fewer attributes
are used to describe the unseen categories.

evidence. Furthermore, our general approach could poten-
tially support more specific supervision about the relative
relationships, should it be available (e.g., bears (unseen) are
significantly more furry than cows (seen)).

Whereas the status quo for training object recognition
systems is to rely on labeled image exemplars alone, the
proposed approach seamlessly integrates top-down human
knowledge about how the object categories relate in seman-
tic terms. Our zero-shot learning setting is more general than
the model in (Lampert, Nickisch, and Harmeling 2009), in
that the supervisor may not only associate attributes with
categories, but also express how the categories relate along
any number of the attributes. We expect this richer represen-
tation to allow better divisions between both the unseen and
seen categories, as we demonstrate in the experiments.

We compare our zero-shot approach to two baselines: a
Direct Attribute Prediction (DAP) model (Lampert, Nick-
isch, and Harmeling 2009), which uses binary attribute de-
scriptions for all categories, and a “score-based relative at-
tribute” (SRA) model, which follows our method except it
replaces rank values with binary classifier output scores. It
is a stronger baseline than DAP, as it has the same benefits
of the generative modeling of seen classes and relative de-
scriptions of unseen classes as our approach.

Figure 4 shows the per-class recognition accuracy on the
OSR and PubFig datasets as we decrease the number of at-
tributes used to describe the unseen category during training.
Note that the number of attributes used to describe the seen
categories during training remains the same. The accuracy
of all methods degrades; however, the approaches using rel-
ative attributes (SRA and ours) decay gracefully, whereas
DAP suffers more dramatically. This illustrates how each at-
tribute conveys stronger distinguishing power when used rel-
atively. Our improved performance over SRA demonstrates
the benefits of learning a ranking function to model relative
attributes as opposed to continuous scores predicted by a bi-
nary classifier.

For implementation details and results analyzing the per-
formance of the proposed approach when varying the num-
ber of unseen categories as well as the amount and quality
of supervision, please see (Parikh and Grauman 2011b).

Describing Images in Relative Terms
As a second task, we employ relative attributes to automat-
ically generate textual image descriptions. The goal is to be



More natural than inside a city, but less 
natural than a highway 

More open than street, but less open than coastMore open than street, but less open than coast

Has more perspective than a highway, but less 
perspective than inside a city

Younger than Clive Owen, but Older than 
Scarlett Johansson

Bushier eyebrows than Zac Efron but Less bushyBushier eyebrows than Zac Efron, but Less bushy 
eyebrows than Alex Rodriguez

Rounder face than Clive Owen, but Less round 
face than Zac Efron

Figure 5: Example descriptions generated by our method for
two images. Relative attributes offer more precise descrip-
tions than are possible with categorical properties—which
for these examples would only state that the scene “is not
natural; is not open; has perspective” (top), or the face “is
not young; has bushy eyebrows; is round”.

able to relate any new example to other images according to
different properties—whether its class happens to be famil-
iar or not.

During training, we are given a set of training images
I = {i}, each represented by a feature vector xi ∈ Rn and a
pre-trained set ofM attributesA = {am}. We evaluate these
attributes on all training images in I . Given a novel image j
to be described, we evaluate all learned ranking functions
rm(xj). For each attribute am, we identify two reference
images i and k from I that will be used to describe j via
relative attributes. To avoid generating an overly precise de-
scription, we wish to select i and k such that they are not
very similar to j in terms of attribute strength. However, to
avoid trivial descriptions, they must not be too far from j,
either. Hence, we select i and k such that i � j and j � k in
strength of am, and 1

8

th of the images in I lie between i and
j, as well as between j and k. In the case of boundary condi-
tions where no such i or k exist, i is chosen to be the image
in I with the least strength of am, and k is set to the image
in I with the highest strength of am. The image j can then
be described in terms of all or a subset of the M attributes,
relative to any identified pairs (i, k). While more elaborate
analysis of the dataset distribution—and even psychophysics
knowledge of the sensitivity of humans to change in differ-
ent attributes—could make the selection of reference images
more effective, we employ this straightforward technique as
a proof-of-concept and leave such analysis for future work.

In addition to describing an image relative to other im-
ages, our approach can also be used to generate purely tex-
tual descriptions by describing an image relative to cate-
gories. See Figure 5. Here our method selects the categories
to compare to such that at least 50% of the images in the
category have an attribute strength larger than (less than)
that computed for the image to be described. We can qualita-
tively see that the relative descriptions are more precise and
informative than the binary ones given in the caption, which
are generated using the outputs from binary classifiers.

To quantify the quality of automatically generated de-
scriptions, we perform a human subject study that pits the
binary attribute baseline against our relative approach. Our
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Figure 6: Illustration of task in human subject study to eval-
uate how informative the proposed relative descriptions are
compared to the baseline binary descriptions.

method reports the properties predicted relative to refer-
ence images, while the baseline reports the predicted pres-
ence/absence of attributes only. The human subject must
guess which image led to the auto-generated descriptions.
To our knowledge, these are the first results to quantify how
well algorithm-generated attribute descriptions can commu-
nicate to humans.

We recruited 18 subjects, only some familiar with vision.
We randomly selected 20 PubFig and 10 OSR images. For
each of the 30 test cases, we present the subject a descrip-
tion using three randomly selected attributes plus a multiple-
choice set of three images, one of which is correct. The sub-
ject is asked to rank their guesses for which fits the descrip-
tion best. See Figure 6. To avoid bias, we divided the sub-
jects into two groups; each group saw either the binary or
the relative attributes, but not both. Further, we display ref-
erence images for either group’s task, to help subjects un-
derstand the attribute meanings.

We find that subjects are significantly more likely to iden-
tify the correct image using our method’s description—48%
vs. 34% in the first choice. This supports our claim that rela-
tive attributes can better capture the “concept” of the image
in a manner that is understandable to humans, and reinforces
their real promise for improved human-machine communi-
cation. More results can be found on the authors’ websites.

Relative Relevance Feedback in Image Search
As a third task, we propose using relative attributes to
express feedback during an interactive image search (Ko-
vashka, Parikh, and Grauman 2012). In this scenario, a user
can envision image content of interest, but needs the sys-
tem’s help to find it—for example, a graphic designer might
seek a particular kind of illustration, or a shopper may envi-
sion a product to be found online. Using keywords or even
image-based search as a starting point often does not re-
turn satisfactory results. Hence, feedback plays an important
role. The most common form is binary relevance feedback,



Query:Q y
“black shoes”

…
Initial top 
search 
results

Feedback:
“shinier than 

these”

Feedback:
“more formal 
than these” thesethan these

Refined 
top searchtop search 

results
…

Figure 7: Our model allows users to give relative attribute
feedback on reference images to refine their image search.

where the user identifies some images that are relevant and
some that are not (Rui et al. 1998).

Instead, we will use relative attributes as a mode of feed-
back where a user directly describes how high-level prop-
erties of exemplar images should be adjusted in order to
more closely match his/her envisioned target images. For
example, when conducting a query on a shopping website,
the user might state: “I want shoes like these, but more for-
mal.” Or, when searching for a suspect in a database, a wit-
ness might state: “He looked similar to this guy, but with a
broader nose.” See Figure 7.

Offline, we first learn a set of M relative attributes. At
query time, the system presents an initial set of reference
images, and the user selects among them to provide rela-
tive attribute feedback. Using the resulting constraints in the
multi-dimensional attribute space, we update the system’s
relevance function. Each image in the pool is given a rele-
vance score corresponding to the number of user specified
constraints it satisfies. The system then displays the top-
ranked set to the user. This procedure iterates using the accu-
mulated constraints until the top ranked images are accept-
ably close to the user’s target. We call the approach Whittle-
Search, since it allows users to “whittle away” irrelevant por-
tions of the visual feature space via precise, intuitive state-
ments of their attribute preferences.

In experiments, we analyze how the proposed relative
feedback enhances image search compared to classic binary
feedback, where an SVM classifier is trained to separate
relevant from irrelevant images as marked by the user. For
each query we select a random target image and score how
well the search results match that target after feedback. We
evaluate the correlation (using use Normalized Discounted
Cumulative Gain at top K, or NDCG@K) between the full
ranking computed by our approach and a ground truth rank-
ing that reflects the perceived relevance of all images in the
pool. The metric captures not only where the target itself
ranks, but also how similar to the target the other top-ranked
images are. We form the ground truth relevance ranking by
sorting all images by their distance to the given target using
a learned distance that mimics human perception of similar-
ity; see (Kovashka, Parikh, and Grauman 2012) for details.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

amount of feedback

a
c
c
u
ra

c
y
 (

N
D

C
G

@
5
0
)

OSR

 

 

attributes
binary

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

amount of feedback

a
c
c
u
ra

c
y
 (

N
D

C
G

@
5
0
)

PubFig

 

 

attributes
binary

Figure 8: The proposed attribute feedback yields faster gains
per unit of feedback compared to a traditional binary rele-
vance feedback model.

Figure 8 shows the rank correlation results for 100
queries. These curves show the quality of all top-ranked
results as a function of the amount of feedback given in
a single iteration. For both datasets, both methods clearly
improve with more feedback. However, the precision en-
abled by our attribute feedback yields a greater “bang for
the buck”—higher accuracy for fewer feedback constraints.
We present further results using feedback from real human
subjects, and analyzing the impact of iterations and choice of
reference images in (Kovashka, Parikh, and Grauman 2012).

Relative Feedback to Discriminative Classifiers
Finally, we present an active learning scenario where a clas-
sifier incrementally collects labels for unlabeled images in
a dataset. At each iteration, the classifier conveys its pre-
dicted label for the image to the supervisor. The supervisor
confirms or rejects this prediction. Moreover, if rejected, the
supervisor provides feedback using relative attributes as to
why the classifier’s prediction is incorrect. E.g. if a classi-
fier classifies a coast image as forest, the supervisor may
say “this image is too open to be a forest image”. Hence,
all images more open than this image are very unlikely to
be forest images. See Figure 9. The classifier uses the pre-
dicted relative attribute values of all images in the unlabeled
pool, identifies the ones more open than the query image,
and uses them as negative examples for the forest category.
Hence, the supervisor’s response to one image is transferred
to many unlabeled images, in turn accelerating the training
of the classifier.

Similar to zero-shot learning, the relative attributes based
feedback alleviates the labeling burden of the supervisor,
while still allowing for discriminative learning of the clas-
sifier in any feature space. Hence, this application allows for
a marriage between powerful discriminative learning and di-
rect injection of domain knowledge on the part of the super-
visor (using means beyond labeled data).

We gather attribute-based feedback from real users on
Mechanical Turk, and compare the proposed approach to a
baseline that does not allow for attributes-based feedback.
Figure 10 shows the results. On the x-axis are the number
of iterations in the active learning process. We see that the
relative attributes feedback leads to a more effective classi-
fier with the same number of user iterations. More results
on a variety of scenarios and feature spaces can be found



I	  think	  this	  is	  a	  
forest.	  What	  do	  
you	  think	  ?	  

No,	  this	  is	  TOO	  
OPEN	  to	  be	  a	  

forest.	  

…	  

1.	  
2.	  

3.	  

Query	  

[Images	  more	  open	  than	  query]	  

Ah!	  These	  
images	  must	  
not	  be	  forests	  
either	  then.	  

Figure 9: Using relative feedback to refine classifiers.
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Figure 10: Our approach using relative attributes for active
classifier feedback (solid) outperforms the baseline (dashed)
for the same number of user iterations.

in (Parkash and Parikh 2012).

Conclusion
We introduced relative attributes, which allow for a richer
language of supervision and description than the commonly
used categorical (binary) attributes. We presented four appli-
cations: zero-shot learning based on relationships, describ-
ing images relative to other images or categories, user guid-
ance in image search, and supervisor feedback to classi-
fiers. Through experiments we have clearly demonstrated
the advantages of our idea. Overall, our work indicates
the importance of moving beyond category labels for vi-
sual recognition applications, and the promise of expanding
human-machine communication by using semantic human-
understandable visual terms.
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