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Abstract

Secure facial identification systems compare an input face to a protected list of subjects.
If this list were to be made public, there would be a severe privacy/confidentiality breach.
A common approach to protect these lists of faces is to store a representation (descriptor or
vector) of the face that is not directly mappable to its original form.

In this thesis, we consider a recently developed secure identification system, Secure Com-
putation of Face Identification (SCiFI) [1], that utilizes an index-based facial vector to dis-
cretely compress the representation of a face image. A facial descriptor of this system does
not allow for a complete reverse mapping. However, we show that if a malicious user is able
to obtain a facial descriptor, it is possible that he/she can reconstruct an identifiable human
face.

We develop a novel approach to initially assemble the information given by the SCiFI
protocol to create a fragmented face. This image has large missing regions due to SCiFI’s
facial representation. Thus, we estimate the missing regions of the face using an iterative
Principal Component Analysis (PCA) technique. This is done by first building a face sub-
space based on a public set of human faces. Then, given the assembled image from the SCiFI
protocol, we iteratively project this image in and out of the subspace to obtain a complete
human face.

Traditionally, PCA reconstruction techniques have been used to estimate very small or
specific occluded regions of a face image; these techniques have also been used in facial
recognition such as through a k-nearest neighbor approach. However, in our new method,
we use it to synthesize 60% to 80% of a human face for facial identification. We explore
novel methods of comparing images from different subspaces using metric learning and other
forms of facial descriptors.

We test our reconstruction with face identification tasks given to a human and a computer.
Our results show that our reconstructions are consistently more informative than what is
extracted from the SCiFI facial descriptor alone. In addition, these tasks show that our
reconstructions are identifiable by humans and computers. The success of our approach
implies that a malicious attacker could expose the faces on a registered database.
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Chapter 1

Introduction

A large research area in computer vision is focused around facial recognition and detec-
tion. This area of study has great applications in security, as we can use facial recognition as
a form of biometric identification. An identification task is where a system compares a single
image with a list of stored images and determines if there is a close match. This process is
especially useful in surveillance for identifying terrorists, criminals, or missing people from a
single shot of their face. A simple facial recognition system can be implemented to perform
this task.

For example, Figure 1.1 outlines an application where facial identification is useful in an
airport. Airport authorities can use this system to screen dangerous personnel from being
able to board their planes. An identification system would screen passengers by checking if
their faces are listed in a suspect or “no-fly” list stored on an external server. The security
camera takes images of passengers and cross-examines them with a suspect list stored on
the server. Only the server is aware of a match and it can then notify airport authorities.
The caveat of this system is that the public often believes surveillance cameras or videos are
a violation of privacy. Most people do not want their day to day activities being recorded.
In addition, a compromised system could be used to link faces with identities through social
networking sites or any form of a profile database.

Thus, an appropriate response would be to implement cryptography in the system and
have data encrypted. Even though people are still being recorded, encryption will protect
the confidentiality of the individuals. However, by introducing cryptography, scalability and
efficiency are an immediate problem. Images can be very large depending on their resolution
and converting a continuous comparison of a face to a discrete measure for a cryptographic
algorithm will affect facial recognition accuracy. Consequently, it is not a trivial task to
integrate both of these ideas together.

The Secure Computation of Face Identification (SCiFI) [1] is a recently developed system
that attempts to combine security with facial recognition. It performs facial identification
while providing secure transmissions and facial comparisons. SCiFI allows two mutually un-
trusting parties to represent and compare facial images efficiently and securely. The SCiFI
system’s protocol performs a cross-reference of faces, while not providing any additional
information about who is being compared or what individuals are in the database. Conse-
quently, the suspect list is confidential and input faces in the system are only used to check
for matches. If a hacker or eavesdropper is able to see the system queries or obtain the
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Figure 1.1: Data flow for an identification system; e.g. at an airport. Passenger faces are
initially captured by a security camera as passengers pass through the security checkpoint.
The security camera transmits each face to the server to be compared. If the server sees a
match with any faces in its database, it notifies airport security.

suspect database, he/she would not be able to directly retrieve actual faces of people.
By design, face images are not stored directly in the SCiFI system. Rather, each face is

decomposed and then represented by a bit vector formed from an index-based model. This
model is built from a completely external public set of faces. The facial vector is a binary
encoding of facial part appearances and their relative spatial distances. When comparing
two faces, the Hamming distance is computed between them. If the distance does not exceed
a certain threshold, the faces are a match. The public faces are independent of the suspect
faces; therefore, at most, an attacker that is able to break the cryptographic protocol, could
gain information about parts that are similar to a suspect’s face. This is why reconstructing
a human face is not trivial under SCiFI. Consequently, one may ask, “Does that mean SCiFI
has completely addressed the privacy concern mentioned earlier?” We will actually show that
the privacy threat does not end here.

In fact, the problem addressed in my thesis is how a malicious party can use the learned
facial vectors to expose the faces of the subjects stored on the server or sent by the client.
Recall that the SCiFI system discards the true image of the person when it constructs the
facial vector. In addition, the facial part appearances, indexed by the face vector, only
provide information about 30% of the face; roughly 60%-80% of the actual face is never
represented. The 30% of the face that is represented is also not humanly recognizable,
because it’s a collection of other people’s facial parts. Thus, reconstructing a humanly
identifiable face requires more work than merely breaking the secure protocol. However, we
will show that this task is not impossible. In particular, we will describe a reconstruction
algorithm that will result in a “police sketch” quality image that resembles the original face.

However, our reconstruction is useless, unless facial vectors can be obtained. It can be
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shown that the SCiFI system is not secure should one of the parties acts arbitrarily [2]. By
submitting a series of ill-formed vectors, an attacker can retrieve an entire facial vector from
the database or learn the client’s input facial vector. The basic premise of the attack is that
the malicious party sends facial vectors with only certain bits set to the server and analyzes
their Hamming distances. Slowly, the malicious party can learn bit-by-bit the facial vector
stored on the server or sent by the client. This attack is possible because the protocol does
not distinguish between well-formed facial vectors (from actual faces) and arbitrary vectors.
It is important to point out that with merely the cryptographic attack, the facial vector does
not provide enough information to learn the original person’s face. It requires an additional
facial reconstruction step to obtain recognizable faces.

In this thesis, I introduce an approach to reconstruct a human face from a facial vector of
an attacked SCiFI protocol. The main idea of this approach is to assemble a fragmented face
from SCiFI’s facial representation, and then use this image as the base image for “hallucinat-
ing” and reconstructing a human face using a PCA technique. The proposed reconstruction
technique can be divided into two stages. The first stage is done offline and is mainly pre-
processing of the public database of faces used to build the SCiFI facial representations. The
second stage is the actual facial reconstruction process and is done online after obtaining the
facial vector.

During the online stage, the first step of reconstruction is to retrieve the corresponding
parts and spatial values from the actual public database identified in the facial vector. This
is done by examining the facial vector and locating which bits are set. The next step is to
construct a fragmented “patch face”, which combines the indexed patches of facial features
and spatial distances from the public database. At this step, the attacker has an image
that loosely resembles a human face. However, since different parts from different faces are
assembled in the image, it is very difficult to identify any individual. The faces will look
very abstract at the end of this procedure.

Finally, we estimate the missing regions of the reconstructed face (that is, those not
covered by the facial fragments defined by the SCiFI representation) using a subspace re-
construction technique. This will estimate the missing regions of our fragmented “patch
face”. In some prior face recognition work, this type of reconstruction is done to estimate a
small occluded area such as eyes hidden from sunglasses. However, our technique assumes
that the face will have roughly 60% to 80% occlusion. Thus, our results will show that with
significantly less facial information we can still assemble recognizable human faces.

Given the context of the SCiFI protocol, our reconstructions illustrate the possibility of a
privacy breach. They serve as a visual extension of the SCiFI attack. However, reconstruct-
ing human faces or facial features is highly valuable in other contexts as well. Reconstruction
can be used to fill in occluded areas (e.g. image artifacts), damaged image regions, and to
validate the effectiveness of facial representations. With a secure facial identification task,
which is the setting for this thesis, successfully reconstructing a face reveals that security
should not rely on the face representation.

Since reconstruction will often be lossy, it is important to properly evaluate the recon-
struction results against multiple measures. To evaluate our facial reconstruction approach,
we perform three types of tests. Our first test is a direct comparison of our facial recon-
struction and the original input face image. This test analyzes the relative reconstruction
error, as opposed to several simpler baselines. The second test has a computer rank real
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Figure 1.2: From a break in the SCiFI protocol, a facial vector is extracted. Then the facial
vector is used to index into the database, looking up the appearance and spatial components.
These components are combined to form a fragmented patch face. Using the patch face as
the initial reconstruction point, we run our reconstruction algorithm to synthesize a final
face image. The contribution of this thesis is to develop and demonstrate a full working
system to exploit the security break to automatically generate an image of a face on the
server that was intended to remain private.

human faces compared to a single reconstructed face. This test shows that a computer can
match reconstructed faces to their true face. Our final test reveals how humans evaluate our
reconstructions. This test requires a person to rank human faces according to how closely
they resemble a human reconstruction. Furthermore, our results will demonstrate that the
automatically reconstructed images can be humanly recognizable, suggesting the significance
of our visual reconstruction.

Our results show that our reconstruction algorithm returns a reconstructed face with
much closer resemblance to the original face than just the “patch face” alone or a random
face constructed by the system. This shows the privacy concern if a facial vector is to be
revealed. Our human subjects were able to successfully match the reconstructed faces with
their original face. Thus, if a confidential list of faces were to be publicly exposed, our results
show that people could be successfully identified; again, this could result in major privacy
problems.

In this thesis, I focus on describing how to reconstruct a face from obtained SCiFI facial
vectors. Figure 1.2 outlines the workflow of the problem I address. The thesis is organized
as follows: In Chapter 2, I cover related work to facial recognition, secure identification,
and reconstruction. In Chapter 3, I provide background information on the SCiFI system,
its facial representation, and a brief outline of the cryptographic attack. In Chapter 4, I
introduce my approach to perform reconstruction. In Chapter 5, I describe our experiments
and provide an analysis of our results. Finally, in Chapter 6 and 7, I provide a discussion
and a few closing remarks.
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Chapter 2

Related Work

There has been a lot of work done involving human faces, such as facial recognition,
modeling, and reconstruction. We will discuss some of the relevant work and its applications
to our work.

2.1 Modeling Human Faces

Modeling human faces is fundamental to facial recognition. We cover an array of differ-
ent approaches used to model faces in this section. We focus on those general techniques
most relevant to our representation. The body of work on facial models in general is quite
extensive, and we refer to Zhao and Chellappa and references therein for more background
[3].

One class of models is called holistic, and these models utilize the entire face for repre-
sentation. Eigenfaces are a holistic approach that has been shown to be fairly effective in
facial recognition [4]. Eigenfaces are a direct application of Principal Component Analysis
(PCA). A face subspace is created from the eigenvectors of the covariance matrix of a face
database. Every face in the database can be represented by a vector of weights. Now, given
an input face, one projects this image into the face space to obtain weights for this image. By
simply comparing the weights of a new image to the weights of the faces in the database, a
identification task can be done. We will use a variation of the PCA technique to build a face
space and perform reconstruction. However, in contrast to the classic Eigenfaces technique,
our goal is reconstruct human faces from a SCiFI facial vector, and we do this by using PCA
to estimate regions of missing facial information.

More sophisticated models than Eigenfaces are Active Shape Models (ASM) [5] and their
extensions, Flexible Apperance Models (FSM) [6] and Active Appearance Models (AAM)[7].
ASM are much more flexible and robust than Eigenfaces, for they introduce the idea of
analysis through synthesis. Both FSM and AAM try to account for textural variations
in addition to shape. For example, the AAM combine a shape variation (i.e. ASM) and
an appearance variation model into one; given a new face the AAM work on generating a
synthetic example of the input. This idea of splitting the appearance and shape into two
separate components is utilized by SCiFI. By separating these components, it simplifies the
face representation and allows the algorithm to make reliable “shape-free” comparisons of
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appearance.
A very powerful area in modeling utilizes 3-D Morphable models. These models can be

used to generate 3-D faces from photographs [8]. A very common application of these models
is to build natural looking faces that are not grounded by a real world face. This is related
to our work, for we also want to reconstruct a very natural human face from our extracted
facial vector. However, we are strictly constrained to the fact that our face must resemble
the true face. That is, where as synthesis with morphable models aim to create new human
faces, our aim is to more specifically depict a humanly recognizable face from a compact
deprived encoding.

The SCiFI system that we focus on in this thesis utilizes a part-based model to form an
index-based face representation. Part-based models represent faces as collection of images
or fragments corresponding to different parts of the face. Since these models split up the
representation of the face into different parts, they can be easily turned into index-based
models if the parts are fixed. Li and Wechsler use part-based models for face recognition
using boosting and transduction [9]. They propose the idea of an impostor trying to hide
or occlude parts of his/her face to fool an identification system. However, there are certain
parts of the face that will remain unchanged, and these parts can be utilized for successful
identification. Since the SCiFI system is aimed to be used in security, this helps motivate
the usage of a part-based model. However, since not every part of the faced is captured,
there are major pitfalls when trying to map back to the original image (e.g. missing facial
regions).

One form of part-based models that have been shown to be useful in facial recognition is
utilizing pictorial structure representations [10]. A pictorial structure representation models
an object by a deformable configuration. An object is considered a match after minimiz-
ing an energy function that measures both an appearance match cost and a deformation
cost. Pictorial structures can be used to detect faces and human bodies in novel images
[11]. The idea of minimizing a match and deformation cost is very useful in the context
of lossy reconstruction. When assembling a part-based model’s face representation, min-
imizing deformation can be helpful in identifying where parts should be placed. For our
work, appearance and spatial information is encoded inside the facial vectors. However, the
facial encoding does not provide the optimal way of combining the appearance and spatial
information to form a “patch face”.

2.2 Secure Facial Recognition

Facial recognition is a large field in computer vision and is a very successful area in
image analysis. Essentially, there are three tasks (1) detection, (2) feature extraction, and
(3) identification and/or verification [3]. Our work here is related to the third task and
specifically, secure identification.

Combining security with facial recognition is a difficult task, for there are two major
problems that arise. The first problem is that facial recognition systems want to match
similar inputs, for no two images of a face are going to be exactly the same. This is a
problem in cryptography, since cryptographic algorithms require two inputs to be exactly
the same. Thus, there are works attempting to solve this problem that introduce the idea of
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“fuzzy” schemes [12, 13]. Now, given similar image inputs, one can map them to the same
result.

Another problem is that the current state-of-the-art facial recognition algorithms often
employ continuous representations of faces. This is a problem for cryptographic algorithms
that utilize discrete values. Converting a continuous representation to a discrete one will
affect facial recognition accuracy. There has been work done with secure facial recognition
algorithms utilizing Eigenfaces [14, 15]. The Eigenfaces are essentially quantized, enabling
cryptography to be applied to facial representations. Although these systems have been
shown to be effective in securely recognizing faces, they also require large amounts of com-
putation to query the system for face matches. The usage of Eigenfaces implies that every
pixel must be used, and with higher image resolutions, there is a facial recognition accuracy
and time complexity trade off. SCiFI differs from these proposed systems, since it compactly
represents a face using a 900-bit vector, independent of the face resolution [1]. In addition,
SCiFI’s facial representation allows for simple match detection by comparing the Hamming
distance of two face vectors. In our work, we will show how to utilize this representation to
reverse engineer face images.

2.3 Reconstructing Occluded Regions of Faces

One major problem that face recognition systems encounter are facial occlusions. These
can range from glasses, hair, or even some external object blocking a part of a person’s face.
Thus, how to remove occlusions or work around them is an interesting problem in computer
vision. For our task, we can treat missing regions of a person’s face as being damaged or
occluded. There has been a fair amount of work dealing with removing occlusions.

There has been work done on removing eyeglasses from facial images [16]. They first
isolate the region and then use recursive PCA to synthesize the eyes of the face without
glasses based on the surrounding information. This is very similar to how we will perform
our reconstruction. PCA on a morphable face model has also been explored [17]. One catch
with this approach is the lack of precision of the displacement between the input face and the
reference face. There are other similar techniques of reconstruction centered around using
PCA for reconstruction [18, 19, 20].

The reconstruction techniques that have been previously done have been fairly successful.
However, whereas in all previous such methods a real image is the true source, in our case
the source is a fragmented reconstruction itself, computed from a fairly course binary face
encoding. In addition, our reconstructions are estimating 60%-80% of missing facial infor-
mation as opposed to very specific and small occluded regions such as where eyeglasses lie.
These two issues make our reconstruction task significantly more challenging. In addition,
our task of sketching faces based on a security break is novel, and has compelling practical
implications.
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Chapter 3

The Secure Computation of Face
Identification (SCiFI)

In this chapter, we provide an overview of the SCiFI system including a description of
the SCiFI’s facial representation, a high-level overview of the protocol, and a brief outline
on how facial vectors can be obtained by a malicious participant in the system.

3.1 System Overview

The SCiFI system [1] is comprised of two parties, a client and a server. The server stores
a list of faces and the client inputs a single face into the system. The goal of the system is to
securely test whether the face input by the client is present in the server’s list. The typical
setting has the server’s list comprised of faces of suspects or criminals, while the client inputs
a face of a passerby from a surveillance camera.

The face acquired by the client might be from a person in the database; however, in
general these faces will not match exactly. Thus, the SCiFI identification algorithm must be
robust enough to match different photographs of the same person’s face. In addition, SCiFI
aims to do the matching computation while preserving the privacy of both the client and
the server. This requires that neither the server nor the client learn any information. The
only exception to this is that the server will learn if the client’s input matches a face in the
server’s list.

3.2 Face Representation

In order to perform the secure computation, the SCiFI system uses a discrete represen-
tation of each face that easily lends itself to the necessary cryptographic protocols. Each
face is deconstructed into a standard set of facial features. We can think of these features
as individual facial features, such as the nose, mouth, and eyes. For each facial feature, the
system establishes a set of typical examples of that feature based on an unrelated public
database Y . For example, there might be a set of 20 noses that are considered representative
of most faces.
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This set of typical examples is referred to as the vocabulary for a specific feature, and each
individual typical example is referred to as a word in the vocabulary. In actuality, the SCiFI
system achieves more accurate results by breaking an input face into a large number of small
features that do not necessarily correspond to key facial landmarks such as the center of an
eye. However, for simplicity, we will continue to refer to each facial feature as representing
some feature (part) in the original face.

For each feature in the input face, the most similar word is selected from the vocabulary
corresponding to that feature. Arranging these words in a spatial configuration similar to
the input will produce an output similar to the original face. In order to match the spatial
configuration of the input face, the representation also keeps track of the distance of each
input feature from the center of the face. Thus, the final face representation is comprised of
two parts: the set of features in the vocabulary that are most similar to each feature, and
the approximate distance of each feature from the center of the face.

Formally, let p be the number of facial features, or parts, selected for the representation
of each face. For some input face, I, let the set of features representing I be {I1, . . . , Ip}. In
the facial representation, two pieces of information will be kept for each Ii, for all 1 ≤ i ≤ p.
The first part of the representation, the appearance component, will contain the words most
similar to each patch Ii, and the second part of the representation, the spatial component
will contain information about the distance of each patch Ii from the center of the face. The
full face representation has the form s = (sa, ss), where sa is the appearance component and
ss is the spatial component. Each component will be a collection of p sets.

To define the appearance component, we first establish a part vocabulary for all p features.
For the ith part, we define a vocabulary V i = {V i

1 , . . . , V
i
N}, where, for all 1 ≤ i ≤ p, V i

is the set of N prototypical features for the ith part. The appearance component sa is a
collection of p sets {sa1, . . . , sap}, where each set sai ⊆ {1, . . . , N} contains n elements. Each
subset sai represents the indices of the n words in V i that are most similar to the feature Ii.

The spatial component is defined analogously to the appearance component. In order
to create a discrete facial representation, we define a set of typical quantized distances from
the center of the face for each part. This set of distances can be determined using the same
database that was used to establish the part vocabularies. Namely, for the ith part, we define
Di = {Di

1, . . . , D
i
Q}, where for all 1 ≤ i ≤ p, Di is the set of Q bins of quantized distance for

the ith part. The spatial component ss is a collection of p sets {ss1, . . . , ssp}, where each set
ssi ⊆ {1, . . . , Q} contains z elements. Each subset ssi represents the indices of the z quantized
distance bins in Di that are closest to the distance between Ii and the center of the face.

The appearance and spatial encodings described above will be used in Section 4.1.1 in
the offline stage of our reconstruction technique. Notice that although this discrete facial
representation is easily adaptable to a cryptographic system, it is fairly lossy. Not every part
of a person’s face is being represented by the p parts. In addition, since SCiFI does not use
the actual face patch from each image for its appearance vocabulary, it is not possible to
regenerate the exact face. The generalization of this technique will force any reconstructed
image to be an approximation of the original face. However, this representation is shown
to be fairly effective in facial recognition [1], and two faces can be easily compared through
the Hamming distance between their respective binary encodings, as we will explain in the
following section.
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Figure 3.1: This figure illustrates a SCiFI facial vector s = (sa, ss). There are p appearance
and spatial sections, each with N and Q bits in each section respectively. For each sai and
ssi , there are only n and z bits set to 1 respectively.

3.3 Comparing Faces

Using the definition of the face representation, we can define a distance metric for the
difference between two faces. SCiFI uses this distance metric to decide whether two input
faces match. In particular, if the distance between two faces is beneath a certain threshold,
SCiFI will consider them to be a match.

The distance metric is defined as a series of symmetric difference operations over the sets
in the appearance and spatial components. Formally, it can be measured by the difference
between two input faces, s = (sa, ss) and t = (ta, ts), by taking

D(s, t) =

p∑
i=1

(|sai ∆tai |+ |ssi∆tsi |),

where the symmetric difference between two sets, A∆B = (A ∪ B) \ (A ∩ B). In the case
where s = t, this value is clearly 0. As the two sets differences increase, likewise D(s, t)
increases.

Since SCiFI actually represents s and t using a binary vector representation, each face
is represented by an l = (Np + Qp)-bit binary vector, with a weight of np + zp (bits set
to 1). Suppose we wished to convert s to its l-bit binary vector w. Each set sai in s is
represented by wa

i , an N -bit binary incidence vector of weight n. The value of each bit j
in wa

i is 1 if and only if j ∈ sai . Likewise, each set ssi in s is represented by ws
i , a Q-bit

binary incidence vector of weight z, where the value of each bit j in ws
i is 1 if and only if

j ∈ ssi . In other words, each set sa,si is equivalent to a list of the positions of all the 1’s in
the corresponding vector wa,s

i . Figure 3.1 provides a visualization of a SCiFI facial vector
s = (sa, ss). As indicated in the figure, only the closest n and z bits are set for each sai and
ssi as described above. The final facial representation w ∈ {0, 1}l is just the concatenation

13



Figure 3.2: This figure illustrates the standard SCiFI protocol at a high level, not the
malicious attack. Hd(w,w

i) is the Hamming distance between two facial vectors w and
wi. ti is the threshold that will indicate if the match is found for wi. The server will
utilize the output to do additional processing depending on the results (e.g. notify systems
administrator of matches).

of all these vectors w = wa
1 · · ·wa

N · ws
1 · · ·ws

Q.
In this new representation, given two faces s and t, represented by the vectors w and

w′, respectively, the value of D(s, t) can be computed as the Hamming distance between w
and w′. This holds because the size of the symmetric difference of any two sets is equivalent
to the Hamming distance between their incidence vectors. The simplicity of computing the
Hamming distance between two bit vectors allows SCiFI to compare two faces very quickly
and feasibly.

3.4 High-Level SCiFI Protocol

Given this facial representation and how to compare faces, we will now describe the
general concept of the face identification protocol. Figure 3.2 provides a visual aid. We will
not cover the cryptographic details of the protocol. However, this information can be found
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in the original SCiFI paper [1].
In the original paper, the authors show that their protocol can be slightly adjusted to

have either the client or server learn if matches exist in the private database. We will consider
the case where the server is learning the matches. The input to the SCiFI protocol will be
a single binary face vector, w = (w0, . . . , wl−1), from the client and a list of M face vectors,
w1, . . . , wM , from the server, where wi = (wi

0, . . . , w
i
l−1) for i = 1, . . . ,M . Each face vector

is an l-bit binary string, formatted as described above. The server will also input a set of
values t1, . . . , tM , where ti is the threshold for the database vector wi.

A different threshold, ti, is learned for each wi, because this will improve recognition
accuracy and security. Given the set of M faces on the server, two images do not share the
same variances. Depending on the appearance of the individual and picture taken, some
may have lower or higher thresholds. The system may want to allow a looser matching for
an individual that changes their appearance frequently. On the other hand, a subject that
is fairly static in appearance may have a stricter matching threshold. Also, the threat of the
individual, could also be a factor in estimating the thresholds. A few approaches to learn the
individual thresholds are proposed by the SCiFI authors that are not necessary important
for our main work.

Now, given the inputs from the client and server, the server begins to compute the
Hamming distance between w and each wi. This is done through homographic encryption.
Next, the server and client will use a multiple input oblivious transfer to learn if there is a
match for each of the server’s M faces. After determining all matches, the server’s output
is a set of indices of matched face vectors. Depending on the result, the output can be sent
from the sever to the appropriate process (e.g. system administrator). At the end of the
protocol, the server will have learned the indices of all the matching faces while the client
will learn nothing.

The authors of SCiFI [1] provide a proof of the security of their protocol. The crypto-
graphic attack described in the following section illustrates how a malicious participant can
abuse information learned about facial vector matches.

3.5 Cryptographic Attack

Following the introduction of SCiFI, our collaborators Michael Gerbush and Brent Water
devised an attack on SCiFI that can allow one to obtain a facial encoding vector (w) that
was meant to remain private [2]. The attack on the SCiFI protocol relies on the fact that a
malicious adversary is able to input vectors of any form, not just vectors that are properly
formatted [2]. In fact, a malicious adversary could give any vector as input to the protocol.
We briefly outline the attack assuming a malicious server with one single vector. The server’s
vector is actually never sent to the client, but it can be shown that the same attack technique
could be done by the client with a small amount of added complexity [2].

The main idea of this attack is to learn bit-by-bit the client’s vector through the output
of a match or no match. Let us assume the client’s vector is w = (w0, . . . , wl−1). Now, we
will provide a procedural view of the attack.

A malicious server can add any vector, wi, to its suspect list, and choose each correspond-
ing threshold value, ti, arbitrarily. First, the server inputs the vector (1, 0, . . . , 0), with a 1 in
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the first position and zero everywhere else. Next, the protocol comparing w and (1, 0, . . . , 0)
is ran as usual, with the server learning whether a match is detected.

By learning whether a match was detected, the server will actually be learning information
about the first bit, w1, of the client’s input. We know that the input client vector must be a
valid face vector, so it will have weight exactly p(n+z). This creates two distinct possibilities
in the outcome of the protocol,

• w1 = 1: In this case, the two input vectors will not differ in the first position. Therefore,
they will only differ in the remaining p(n+z)−1 positions where w is nonzero. Hence,
we know that Hd = p(n+ z)− 1, where Hd is the Hamming distance between the two
vectors.

• w1 = 0: In this case, the two input vectors will differ in the first position. In addition,
they will differ in all of the p(n + z) remaining places where w is nonzero. Hence, we
know Hd = p(n+ z) + 1.

Taking advantage of these two possible outcomes, the malicious server can fix the thresh-
old t1 = p(n + z). Then, if a match is found with the client’s input vector, it must be
the case that Hd = p(n + z) − 1 ≤ p(n + z), so w1 = 1. If a match is not found, then
Hd = p(n + z) + 1 > p(n + z), so w1 = 0. Thus, the malicious server can learn the first bit
of the client’s input [2].

Clearly, this attack can be extended to learn all of the l bits of the client’s input. The
server will simply input,

wi
j =

{
1 if i = j

0 otherwise.

Then, if the server sets all ti = p(n + z), the entire client vector can be determined by
comparing a database of size M = l.

Although we have portrayed this attack from the perspective of the server, it can be
shown that this attack can be adapted for the client as well [2]. In the client case, it would
be learning the confidential faces on the server. In does not matter if the facial vectors are
obtained from the client or server, because both indicate a breach in the security of the faces.
In the next chapter, we will describe how an attacker can use any learned facial vector to
perform facial reconstruction, extending the consequences of this attack.
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Chapter 4

Approach

This chapter describes the main algorithm of my thesis: how we reconstruct a recognizable
human face from the bit vector extracted by the cryptographic attack on the SCiFI system.
Our visualization method consists of two major components. The first is the offline stage
that builds the facial vocabulary and face subspace from the public database. This stage is
followed by the online stage that assembles a human face and is done only after a face vector
is obtained.

4.1 Offline Processing

The first stage of the proposed approach is done before the SCiFI system has exchanged
any messages. Recall from Section 3.2 that the face images used to create the fragment
vocabularies should come from an external database Y , which can be completely unrelated
to the people registered in the server’s list. All faces are normalized to a canonical size, and
the positions of landmark features (i.e., corners of the eyes) are assumed to be given. Such
alignment is necessary to ensure meaningful part descriptors for the SCiFI system and for
the creation of our face subspace. In practice, the positions could either be marked manually
by an operator (as in [1]), or detected automatically with existing techniques from computer
vision. After properly assembling the public database, we create an appearance and spatial
vocabulary for the face representation (Section 3.2) and build a face subspace. Figure 4.1
gives a high level view of what is done in the offline stage, and we next explain each step in
detail.

4.1.1 Face Part Vocabulary

After marking the landmarks for each face in the public face database, we extract patches
to assemble the appearance vocabulary. We also calculate the distances between all of the
landmarks and the center of the face to obtain spatial information. This information tells us
where facial features lie relative to the center of the face. Throughout this section, we use
the same notation introduced in Chapter 3.
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Figure 4.1: The figure shows the three major parts of the Offline Processing stage. At the
top of the figure, we build a public face database. Here we show five landmarks indicated by
red boxes on each person’s face. The red boxes and their centers serve as windows to build
the appearance (bottom left) and spatial vocabularies (bottom middle). The whole faces are
also used to build the face subspace (bottom right).

Representative Appearance Vocabulary

For each face in the database Y , a patch is extracted from the face using a fixed window
centered at each of the landmarks. The window is proportional to the size of the face, and
two windows of different features may potentially overlap. These patches will be used to
form the appearance vocabulary. Figure 4.2 gives an example of 10 landmark points, the
patch windows, and the patches being extracted from a single image in Y . Note this will be
done to each image in Y .

After extracting the patches from each face of Y , we must isolate N prototypical images
to form a representative vocabulary for each of the p facial parts. This means we only want
N words for each part vocabulary as opposed to p|Y | words for each V i. Formally, we
construct V i = {V i

1 , . . . , V
i
N}, where each V i

j denotes the j-th prototypical image patch for
the i-th face part. Thus, we use an unsupervised clustering algorithm to quantize the space
of facial patches to form the actual part vocabulary.

Clustering will enable us to build a vocabulary for each facial feature such that each of
its words captures a set of unique characteristics. By reducing the size of the vocabulary,
we mitigate the computation time of mapping a face to a facial vector and it also provides a
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Figure 4.2: This figure shows the extraction of the appearance patches and spatial distances
from a single face in the public database Y . For each of the p parts, a patch is extracted
and a spatial vector is calculated anchored at the nose (center of the face). These patches
and spatial information will go into forming the appearance and spatial vocabularies.

more general set of vocabularies to represent Y . Figure 4.3 shows an example of 8 different
facial parts and a small subset of each of their respective vocabularies.

Various representations can be used to perform clustering. We consider two representa-
tions, Histogram of Oriented Gradient (HOG) [21] and normal pixel intensities; both facial
representations provide different benefits.

Using the actual patch’s pixel intensities is a simple approach that compares two images
pixel by pixel. This approach stays true to the original image and does not compress any
of the original data. However, there can be a lot of variation in illumination, scale, facial
expressions, or rotation between two images. Consequently, when comparing two images
of the same person, it is possible that they can be far apart at the pixel level. Thus, it is
common to represent faces using alternate representations that capture the gradient of pixel
intensities and other general features such as HOG.

Comparing HOG descriptors is a more robust measure of two images, because HOG uses
local spatial pooling of gradients, which gives some tolerance to small shifts and rotations.
HOG computes a histogram of gradient directions by dividing an image into small connected
regions. Therefore, by creating HOG descriptors of each patch, we can potentially cluster
patches more effectively when there are inconsistent settings. Figure 4.4 shows a comparison
of two clustering results of the left eye patches using normal pixel intensities versus using
a HOG descriptor. We can see that using normal pixel intensities really focuses on the
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Part 1 Part 2

Part 3 Part 4

Part 5 Part 6

Part 7 Part 8

Figure 4.3: This figure shows 6 different prototypical words from 8 different facial parts
used to assemble an appearance vocabulary. Each word is the closest patch to its respective
centroid from K-means, which is applied to all extracted patches from the public database
Y . We can see that the patches are targeted around one facial feature, so it would take a
very large amount of features to completely cover an entire face.

dark and light regions of each patch. Thus, some patches in the same cluster may actually
look quite different. On the other hand, HOG ignores the actual pixel values 1 by 1 and
tries to group similar eyes regardless of pixel intensities as seen on the right. We test both
representations in our experiments.

Representative Spatial Vocabulary

Similar to the appearance vocabulary, we also build a spatial vocabulary. Distances are
measured from the i-th facial feature’s landmarks to the nose of the input face. We want to
quantize the distances again using a unsupervised clustering algorithm to define a general
vocabulary. In this case, the traditional Euclidean distance can be used as the measurement.
For each part we obtain a distance vocabulary Di = {Di

1, . . . , D
i
Q}, where each Di

k denotes
the k-th quantized distance bin for the i-th face feature’s landmarks. Figure 4.2 illustrates
how the spatial words are measured on the face.

In addition to the vector magnitudes or distances, we also store a set of p unit displace-
ment or angles relative to the face center, O = {o1, . . . , op}. For each face in Y , we extract
the angle of the previously extracted 2-D vector anchored from the image’s center position to
that instance’s i-th facial part. Then oi can be found by averaging all such angles to obtain oi,
for i = 1, . . . , p. This information is needed to estimate the placement of each reconstructed
patch in conjunction with the distance vocabulary indices coming from the recovered facial
vector. It is important to note that this information is not explicitly a part of the SCiFI
protocol, but it does not provide an unfair advantage to visualization. The database’s faces
are public in this preprocessing step; thus, anyone could compute this information. This is
the last piece of information we need to assemble the part vocabularies.

4.1.2 Constructing a Face Subspace

After computing the vocabularies, we use Y to construct a generic face subspace. As
has been long known in the face recognition community [22, 4, 23], the space of all face
images occupies a lower-dimensional subspace (or manifold) within the space of all images.
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Normal Pixel Intensities HOG

Figure 4.4: This figure compares the results from clustering with normal pixel intensities
(left) versus using HOG descriptors (right) of the left eye patch. Each row is a different
cluster. The patches are sorted by their closeness to their cluster centroid going from left to
right on each row. The normal pixel intensity clusters tend to only focus on the intensities
of the patches, while the HOG descriptor tends to group together patches with similar
characteristics with less dependency on their pixel intensities.

This fact can be exploited to compute low-dimensional image representations using Principal
Component Analysis (PCA) or some other dimensionality reduction technique. The resulting
subspace ensures that the directions of most variation among the face exemplars are captured
well, but with a much more compact description than the original set of pixels. While often
used to perform nearest-neighbor face recognition (e.g., see the original Eigenface approach
proposed in [4]), we aim to exploit a face subspace in order to “hallucinate” the portions of
a reconstructed face not covered by any of the p patches.

Prior to creating the subspace from the face images in Y , we want to ensure proper
alignment among the faces. We want to align the faces so that when we are calculating the
variances, corresponding parts are being evaluated together. For example, we do not want a
nose and a eye to be lined up. In order to align the faces, we must compute anchor points.
We want the corresponding landmarks to be changed such that they are centered at these
points. Good anchor landmarks would be the nose, eyes, and the corners of the mouth, for
they are typically labeled accurately and will not warp the images too much when they are
being aligned.

We use an affine transformation as our alignment technique. We calculate the average
location of three landmark points of the faces in Y . These average landmark points will be
the reference anchors. We can then form a transformation matrix that will warp the original
image such that its three specific landmark points correspond with the anchor points we just
defined. Using a transformation matrix, a specific affine transformation is applied to each
image. The transformation comprises of a linear transformation and a translation for each
face. Figure 4.5 shows examples of faces after they have been transformed. Notice that not
all faces need major warping, but some images are far from the average landmark points.
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Small Transformation Large Transformation

Figure 4.5: Illustration of the affine transformation. The left image is the original image and
the right is after the affine transformation. The X markers indicate the real feature landmark
points, and the + markers indicate the average landmark points for images in Y . Notice in
the right image the red markers are now centered over the target features. The first column
shows examples that do not require a major transformation, and the second column shows
images that are far from the average anchor points. This automatic alignment step ensures
the subspace model is more consistent.

Now that the faces are aligned, we can begin to build our face subspace. Formally, let
the aligned face images in Y consists of a set of F vectors y′1, . . . , y

′
F , where each y′i is formed

by concatenating the pixel intensities in each row of the i-th image. If each original image
is a d× d matrix, this means each y′i ∈ Zd2 .

Next, we compute the mean face µ = 1
F

∑F
i=1 y

′
i, and then center the original faces by

subtracting the mean from each one. Let the matrix Y contain those centered face instances,
where each column is an instance: Y = [y1, . . . , yF ] = [y′1 − µ, . . . , y′F − µ]. Principal
component analysis (PCA) identifies an ordered set of F orthonormal vectors u1, . . . ,uF

that best describe the data by capturing the directions with maximal variance. By this
definition, the desired vectors are the eigenvectors of the covariance matrix C computed on
Y , that is, the eigenvectors of C = 1

F

∑F
i=1 yiy

T
i = Y Y T , sorted by the magnitude of their

associated eigenvalues. The top K eigenvectors define a K-dimensional face subspace, for
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K < d2.1 This concludes our preprocessing and we are now ready to do the actual face
reconstructions.

4.2 Online Facial Reconstruction

After building the appearance and spatial vocabularies, the SCiFI protocol can be exe-
cuted. We now assume a malicious attacker has used the attack outlined in Section 3.5 to
obtain a facial vector from the system. We will show that the attacker can reverse engineer
a patch face representing the individual using the indices from the vector. Then using our
reconstruction technique, the attacker can estimate the missing regions of the face and return
a identifiable human face. Figure 4.6 provides an outline of the second stage of our visual
reconstruction.

4.2.1 Finding Best Matching Patches

After building our vocabulary from the public dataset Y , we have the appearance vocab-
ularies V 1, . . . , V p, the spatial vocabularies D1, . . . , Dp, and the displacement angles O (all
of which we will use to compute patch face reconstructions), and a face subspace defined by
u1 . . . ,uK (which we will use to compute full face reconstructions).

Now we can define how to form what we call the “patch face” reconstruction. The
cryptographic attack summarized in Section 3.5 produces a facial vector, which is a binary
encoding specifying n selected appearance vocabulary words in sa, and z selected distance
vocabulary words in ss, for each of the p facial parts. This encoding essentially specifies
the indices into the public vocabularies V 1, . . . , V p, D1, . . . , Dp, revealing which prototypical
appearances (and distances) were most similar to those that occurred in the original coded
face.

Thus, we retrieve the corresponding quantized patches and distance values for each part,
and map them into an image buffer. To reconstruct the appearance of a part i, we take
the n quantized patches and randomly select one of them, since the code does not reveal
which among the n was the closest. With the spatial information for part i, we average the z
distance values. We place the patch into the buffer relative to its center, displaced according
to the direction oi and the amount given by the recovered quantized distance bin. For
example, if n = 4 and sai = {1, 3, 7, 19}, we look up the patches stored as {V i

1 , V
i
3 , V

i
7 , V

i
19},

and randomly select one. Then, if z = 2, and the associated distances are ssi = {4, 10}, we
place that averaged patch’s center at 1

2
(Di

4 +Di
10) in the direction indicated by oi, where the

buffer’s center is at the origin. We repeat this for i = 1, . . . , p in order to get the patch face
reconstruction.

After we obtain such a patch face, we can normalize the face to help smooth out the
pixel intensities. Recall that the images can easily have changes in illumination when taken
in uncontrolled settings; thus, normalization can help make the images more uniform. In
addition, we are more concerned with the facial characteristics, such as the curvature of the

1Note that when F < d2, there are only F − 1 nonzero eigenvalues and correspondingly F − 1 meaningful
eigenvectors; they can be efficiently computed without directly decomposing the full d2 × d2 covariance
matrix (see [4]).
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Figure 4.6: This figure is an overview of the online face reconstruction procedure. Given a
facial vector from the system, we look up each of the patches that were representative of this
face. We can then construct a patch face. Using the patch face as the initial input, we then
iteratively project into the face space to synthesize a complete human face.

eyes, rather than skin tone. Normalization is done by dividing each pixel by the mean of
the entire patch face. The left image in Figure 4.7 shows an example of the raw patch face
reconstruction, and the right shows the normalized version.

Not Normalized Normalized

Figure 4.7: Illustration of a patch face. The left image is the original patch face. The right
image is the patch face after it has been normalized. Under close examination, we can see the
teeth of the left image are much brighter than all the other pixels in the image. In addition,
the right eye and right mouth patches are a few shades darker than the other side of the
face. The normalized patch face is much smoother and does not have these discrepancies.

This procedure uses all the information available in the encoding to reverse the SCiFI
mapping. We necessarily incur the loss of the original quantization that formed the vocabu-
laries; that is, we have mapped the patches to their “prototypical” appearance. In fact, the
designers of the SCiFI algorithm intentionally designed the encoding to reflect an intuitive
police-sketch quality description, which is not faithful to every pixel of the original input,
but instead reveals its visual relationship to a set of typical appearances found in the data.
As we show in the results, this is generally not a perceptual loss; however, at this point
the patch faces are very fragmented and not necessarily identifiable. Our next section will
explain the final step of reconstruction that will smooth out the rough facial appearance and
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Figure 4.8: This figure illustrates the iterative PCA technique. The input is the patch face
and the output is a fully reconstructed face. As the algorithm iterates, regions of the patch
face are filled in, and with more iterations the face becomes clearer.

synthesize a complete human face image.

4.2.2 Principal Component Analysis - Based Face Reconstruction

The second stage of our reconstruction approach estimates the remainder of the face
image based on the constraints given by the initial patch face (see images in Figure 4.7).
Note that while these regions are outside of the original SCiFI representation, we can exploit
the structure in the generic face subspace to hypothesize or estimate values for the remaining
pixels. Related uses of subspace methods have been explored for dealing with partially
occluded images in face recognition—for example, to reconstruct a person wearing sunglasses,
a hood, or some other strong occlusion before performing recognition [16, 18, 19, 17, 20]. In
our case, we want to reconstruct portions of the face we know are missing, with the end goal
of creating a better visualization for a human observer or a machine recognition system.

To this end, we adopt a recursive PCA technique presented in [20], where it is shown to
compensate for an occluded eye region within an otherwise complete facial image. We first
initialize the result with an aligned version of our patch face reconstruction. This can be done
by using the same affine transformation technique and anchor points described in Section
4.1.2. We want this patch face to have the corresponding alignment as the public faces in Y
used to form the subspace. We then iteratively project in and out of the subspace computed
using the public faces (see Sec. 4.1) to form the reconstructed face; each projection is adjusted
with our known patches. Relative to experiments in [20], our scenario makes substantially
greater demands on the hallucination, since about 60%-80% of the total face area has no
information and must be estimated. Figure 4.8 gives a sketch of this technique.

Given a novel face x, we can project it onto the top K eigenvectors (the so-called “eigen-
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Figure 4.9: Illustration of the iterative PCA reconstruction process. After initializing with
the patch face reconstruction (leftmost image), we iteratively refine the estimate using suc-
cessive projections onto the face subspace. Iterations shown are t = 0, 5, 100, 500, and
1000.

faces” [4]) to obtain its lower-dimensional coordinates in the face space. Specifically, the i-th
projection coordinate is:

wi = uT
i (x− µ), (4.2.1)

for i = 1, . . . , K. The resulting weight vector w = [w1, w2, . . . , wK ] specifies the linear
combination of eigenfaces that best approximates (reconstructs) the original input:

x̂ = µ+
K∑
i=1

wiui (4.2.2)

= µ+Uw, (4.2.3)

where the i-th column of matrix U is ui. Simply reconstructing once from the lower-
dimensional coordinates may give a poor hallucination in our case, since many of the pixels
have unknown values (and are thus initialized at an arbitrary value of 0).

However, by bootstrapping the full face estimate given by the initial reconstruction with
the high-quality patch estimates, we can continually refine the estimate using the face space.
This works as follows: Let x0 denote the original patch face reconstruction. Then, define
the projection at iteration t as

wt = UT (xt − µ), (4.2.4)

the intermediate reconstruction at iteration t+ 1 as

x̃t+1 = µ+Uwt, (4.2.5)

and the final reconstruction at iteration t+ 1 as

xt+1 = ωxt + (1− ω)x̃t+1, (4.2.6)

where the weighting term ω is a binary mask the same size of the image that is 0 in any
positions not covered by an estimate from the original patch face reconstruction, and 1 in the
rest. We cycle between these steps, stopping once the difference in the successive projection
coefficients is less than a threshold: max

(
|wt+1

i − wt
i|
)
< ε. See Figure 4.9 for a visualization

of the intermediate face estimates during this procedure.
After we have successfully completed the iterative PCA procedure, we apply a a few filters

to help smooth out the images. Since we are estimating such a large amount of missing
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facial regions, certain information can lose clarity, such as the definition of the mouth or
nose. Thus, we apply a sharpening filter to help bring out the edges that were blurred. This
is the final step in our reconstruction technique.

Given the attack proposed in Section 3.5, the main contribution of this thesis is to use
the obtained facial vector to reconstruct a human face image. Figure 4.10 is an outline of
the stages we have described in this chapter. We divide our reconstruction approach into
two major stages: Offline and Online. The Offline stage builds the appearance and spatial
vocabularies and the face subspace that are necessary for the following stage. The next stage
is the Online stage; it is the heart of our reconstruction approach. It begins with assembling
a fragmented patch face from the course encoding of the binary facial vector, and finally this
stage concludes with using an iterative PCA technique that estimates the missing regions of
the patch face.

In the next chapter, we will describe the different datasets we used to simulate our
reconstruction process, and four evaluations that test the quality and impact of our facial
reconstructions.

27



Offline Stage - Preprocessing

1. Build Face Part Vocabulary - Public Database Y

• For each face image in Y , extract patches, spatial distances, and angles from the
p identified parts or landmarks to build prototypical vocabularies.

• Use unsupervised clustering to define the prototypical words for the appearance
and spatial vocabularies.

– Appearance Vocabulary - N prototypical words per V i, 1 ≤ i ≤ p

– Spatial Vocabulary - Q prototypical words per Di, 1 ≤ i ≤ p

– Unit Displacements - one displacement or angle per oi, 1 ≤ i ≤ p

2. Construct Face Subspace

• Align faces in Y by performing an affine transformation on each face in Y to
anchor reference landmarks.

• For each face image in Y , turn each image into a vector y′i ∈ Zd2 .

• Compute the covariance matrix of aligned Y , C = Y Y T

• Select the top K eigenvectors of C to define K-dimensional face subspace.

Online Stage -Reconstruction from Facial Vector

1. Finding Best Matching Patches

• Lookup the n appearance and z spatial words for each of the p parts set in the
facial vector.

• For each part i, randomly select a returned appearance word, average the spatial
words, and use the displacement angles to assemble the “patch face”

• Normalize the pixel intensities of the “patch face”

2. Principal Component Analysis - Based Reconstruction

• Align the patch face using affine transformation with the same anchor reference
landmarks as before.

• Run iterative PCA algorithm on “patch face” until convergence

• Sharpen the images to refine and restore lost details

Figure 4.10: This is an outline of the two stages to our facial reconstruction approach.
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Chapter 5

Experiments and Results

The underlying goal of these experiments is to show that our reconstructed faces are
recognizable and can be used to compromise the confidentiality of the facial vectors. We
perform three types of experiments and a qualitative analysis to evaluate the effectiveness
of our facial reconstruction approach. The first experiment is to test the reconstruction
quality compared to the original face. Our second experiment tests how a computer would
rank real faces to our reconstructed face; in other words, how well does the computer think
our reconstruction resembles the original face? The last experiment focuses on how humans
interpret our reconstructions. This is an important test, because it evaluates the significance
of a privacy breach leaking out to the public. Thus, these three tests focus on different
aspects of our reconstruction.

In this chapter we will describe the two datasets that we use to test our facial reconstruc-
tions, our methodology, our implementation details, and then our results.

5.1 Databases

We use two databases of face images, PUT[24] and Facetracer[25]. Figure 5.1 gives an
example of a face from each dataset.

5.1.1 PUT Face

We experiment with the publicly available PUT Face dataset[24], since it contains an-
notated face examples with 30 landmark markings, which is identical to the SCiFI system
parameters. This dataset is comprised of high-resolution images of 100 individuals with
varying controlled poses relative to the camera. Each image is provided with a manually
annotated face bounding box, and up to 30 landmark points corresponding to positions of
facial features (such as eye corners, mouth corners, and nose). We manually pruned the
dataset for frontal faces in order to be consistent with SCiFI. Since state-of-the-art face de-
tectors in computer vision work well with frontal faces (e.g. [26]), this is a reasonable way
to scope the data. After omitting any examples that lacked any of the 30 landmark points,
we are left with 83 total individuals and 205 images in our dataset. Figure 5.2 provides
examples of faces from the PUT dataset. The lack of diversity in the dataset can make it
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PUT Face Facetracer

Figure 5.1: These two images are examples of faces from the two datasets. The left image is
from PUT and there are 30 landmarks present. The right image is from Facetracer with 10
landmarks present.

harder for even humans to distinguish between the people. However, since the images were
taken under a controlled setting, we can see that there is better alignment among the faces,
which is helpful for creating our face subspace. In addition, the high resolution helps with
clarity and capturing fine details.

5.1.2 Facetracer

The Facetracer[25] dataset is a highly diverse set of 15,000 face images. The image
quality is not as good as PUT, but there are many more individuals to train from. Each
face in Facetracer has 6 landmark points provided with the dataset, and we estimate 4 more
landmark points. We estimate the nose by finding the center point among the labeled eyes
and mouth. Then, we add three more points, the center of the mouth and the two nostrils’
sides. We estimate the nostrils sides by assuming they are not too far from the nose and
manually analyze our guessed distances. The center of the mouth is the midpoint between the
two mouth corner landmarks. Again, we take only the frontal faces in the dataset, in order
to be consistent with SCiFI. We take a more unsupervised approach in pruning Facetracer
because of its sheer size. Since faces that are frontal are going to be fairly symmetric, we try
to find faces with unsymmetrical landmarks by determining the distances among different
landmarks. We also remove all images with small children and images with resolutions less
than 150 × 150, because they can have ambiguous features. There are 307 female and 394
male images or 701 images in the entire dataset, and there are roughly 600 unique individuals
in total. Figure 5.3 provides examples of faces from the Facetracer dataset. We can see that
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Figure 5.2: Here we have 30 examples of images in the PUT dataset. It is apparent that PUT
is not very diverse. There are very few women subjects and most of the other individuals
are Caucasian males.
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Figure 5.3: Here we have 30 examples of images in the Facetracer dataset. It is apparent
that Facetracer is a diverse dataset, for it is comprised of images from various races and
genders.
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there is certainly a diverse set of individuals in the dataset, which helps to provide a rich
vocabulary. However, as opposed to PUT, we can see that the faces are not taken under the
same control settings (e.g lighting conditions, face orientation/pose). This makes alignment
and normalization among images more difficult.

5.2 Methodology

In each experiment, we take care to ensure that a novel “test” face belongs to an indi-
vidual that is not present in the data used for the public collection Y , which builds both
the vocabularies and face subspace. To do this, but still allow maximal use of the data, we
perform multiple folds for each experiment, each time removing a test individual and rebuild-
ing the vocabularies and subspace with images only from the remaining individuals. This
constraint is important to avoid giving our reconstruction algorithm any unfair advantage
that it would not have in a real application.

Our approach takes the binary facial vector as input, which in practice would be the data
extracted during a SCiFI attack. Thus, for all experiments, we generate the facial vectors to
perform our reconstruction. This is fairly simple given the labeled landmark points of every
face in both datasets. For each landmark point of a given face image, we simply crop out a
patch to be the same size as the the ones extracted to form the appearance vocabularies. In
addition, we also compute the distance from each landmark and the nose (center) landmark.
Now, we find the n closest appearance words and the z closest spatial words as defined by
the SCiFI facial representation (Section 3.2). As described in Section 4.1.1, we can either
use HOG descriptor or regular pixel intensities to determine this ranking. Therefore, we test
both methods in our experiments. To be consistent, if we cluster with HOG, we also rank
the vocabulary words with HOG. We do the same with the raw pixel intensities.

5.3 Implementation Details

In this section, we will provide implementation details, such as the number of landmarks
and the vocabulary size of our facial reconstruction approach, for both datasets.

PUT We crop out only the face regions from each image (i.e., removing torsos), and rescale
them all to a canonical size (811 × 812). Although PUT provides us with 30 landmark
points, we only use 24 of these points. This is because 6 of these points lie on the edge of
the face and have a lot more noise (including hair and earrings). Consequently, we have
the 24 landmarks as a facial part, so that gives us p = 24. For each landmark/part, we
extract a patch that is 10% of the canonical face scale. We convert each patch into a
HOG descriptor and use k-means clustering on the descriptors and distances to quantize the
respective spaces. Following [1], we let each appearance vocabulary have N = 20 words, each
distance vocabulary have Q = 10 words, and each encoding use n = 4 words for appearance
and z = 2 for distances. This means that each of the 24 parts on a face is represented by
four appearance patches and two quantized distances. Figure 5.4(b) shows an example of
PUT appearance vocabularies used in our approach.
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(a) Facetracer Male appearance vocabulary where p = 10 and N = 40.

(b) PUT Faces appearance vocabulary where p = 24 and N =
20.

Figure 5.4: Example appearance vocabularies for each dataset. (a) is formed from the
Facetracer dataset and (b) is formed from the PUT dataset. Each row is a different part and
each column is a prototypical word in the vocabulary. We can see a fairly clear distinction
between the diversity of the prototypical words for the two datasets, where Facetracer is
more diverse.
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When computing the face subspace, we further reduce the resolution of the faces by
25%, to minimize computational costs. We use K = 194 eigenfaces based on analyzing
the eigenvalues to determine how many eigenvectors would represent 95% of the variance in
the data. Finally, we run the PCA algorithm with ε = .0001 and a maximum number of
2000 iterations. (We did try other values, and saw similar results for much fewer maximum
iterations.) Each reconstruction is computed very quickly; on average, it takes about five to
ten seconds and converges within 1500 iterations.

Facetracer We also crop these images and rescale them to a canonical size of (200× 200).
The images have a much lower resolution than PUT, but they are more diverse. As such,
let each appearance vocabulary have N = 40 words, each distance vocabulary have Q = 10
words, and each encoding use n = 4 words for appearance and z = 2 for distances. Since
Facetracer is much more diverse, we find that a larger N helps with matching characteristics
of the original face. Figure 5.4(a) shows examples of Facetracer appearance vocabularies
used in our approach.

When computing the face subspace, we are not required to reduce the resolution. K = 695
for Facetracer based on analyzing the eigenvalues to determine how many eigenvectors would
represent 95% of the variance in the data. Before we run the PCA reconstruction algorithm,
we also apply a sharpening filter to the patch face. Sharpening the patch face helps with
the Facetracer data because the resolution is so low. If we do not, some of the features may
be lost. Finally, we run the PCA algorithm with ε = .001 and a maximum number of 2000
iterations. Each reconstruction is computed very quickly; on average, it takes about three
to seven seconds and converges within 1200 iterations.

For either dataset, when we do the patch face reconstruction as described in Section
4.2.1, there are patches that overlap their neighbors. Rather than selecting a priority on
which patch should be placed over another, we simply average the overlapping pixel values
together. This is not ideal since some information is lost, but if the patch sizes are small
enough so that there is little overlap, the effect is very minimal.

5.4 Experimental Results

In this section we describe each test and analyze the results.

5.4.1 Qualitative Results

Figures 5.5, 5.6, and 5.7 display example reconstructions from the Facetracer and PUT
datasets. Figure 5.6 shows our reconstructions using only male or female faces to construct
the appearance and spatial vocabularies and the face subspace. We want to evaluate the qual-
ities of our reconstructions when we separate gender features. Across the two datasets, we
see that the reconstructed faces do form fairly representative sketches of the true underlying
faces. We emphasize that the reconstructed image is computed directly from the encoding
recovered with our cryptographic attack; our approach has no access to the original face
images shown on the far left of each triplet. The fact that the full face reconstructions differ
from instance to instance in the regions outside of the patch locations demonstrates that we
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are able to exploit the structure in the face subspace effectively; that is, the surrounding
content depends on the appearance of the retrieved quantized patches.

In examining the reconstructions, we notice that the quality between Facetracer recon-
structions using both males and females is slightly worse than the Facetracer reconstructions
with specific gender. This is to be expected, for reconstructing in a gender specific vocab-
ulary and face space guarantees that the specific gender’s characteristics are going to be
synthesized. There is no clear distinction on what gender has better reconstructions in Face-
tracer. On the contrary, the reconstruction of females in PUT are poorer than those of males.
This is well-explained by the gender imbalance in the PUT dataset, where only 8 of the 83
individuals are female. This biases the face subspace to account more for the masculine
variations, and as a consequence, the reconstructed faces for a female’s facial encoding tend
to look more masculine. Nevertheless, we can see that the general structure of the internal
features is reasonably preserved. Of course, in a real application one could easily ensure that
the public set Y is more balanced by gender.

The blurry nature of the full face reconstructions are also to be expected, since the sub-
space technique is sensitive to the pixel-wise alignment of all images. One could ameliorate
this effect with more elaborate subspace methods that account for both shape and appear-
ance (e.g., active appearance models [7]). In addition, a larger public dataset and finer
quantization of the vocabularies (higher Q and N) will yield crisper images. However, for
our application, even a blurry sketch is convincing, since its purpose is primarily to suggest
the identity of the recovered individual, and not to paint a perfect picture.

Comparing the face reconstructions between the Facetracer and PUT datasets, there is
definitely a certain generic look in most of the PUT reconstructions. This can be attributed
to the smaller dataset with fewer unique individuals. However, the higher resolution and
more landmark points of the PUT images also affect PUT’s reconstruction. Compared to
the Facetracer reconstructions, the reconstructions tend to be more sharper and well de-
fined. With more landmark points, the PCA technique has more information in its iterative
refinement steps. There is less information that needs to be hallucinated compared to Face-
tracer. Although the Facetracer reconstructions are not as sharp, they tend to capture more
of the facial expressions and facial features of the original face. With more data, there is a
higher chance that another person’s face shares similar qualities with the target face during
reconstruction.

We expect more refined reconstructions with higher quality datasets. However, our results
are rather quite impressive with these two datasets. Given the course binary face encoding,
we are able to reconstruct human faces of “police sketch” quality. Therefore, our qualitative
results show that our reconstruction approach is a compelling visual extension of the SCiFI
attack.

5.4.2 Quantifying Reconstruction Error

Next we quantitatively evaluate the quality of the reconstructions of each dataset. By
definition, our patch face reconstructions are as correct as possible, having only the error
induced by the quantization of the vocabularies. Thus, we focus on the relative quality of
our full face reconstructions compared to three baselines.
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Figure 5.5: This figure shows 24 qualitative reconstruction examples from the Facetracer
dataset, utilizing both males and females to build the vocabulary and subspaces. Each
triplet is comprised of the true face, patch face, and reconstructed face. It is important to
note that our reconstruction algorithm does not have access to the true face (far left image).
It is apparent that Facetracer is a diverse dataset, for it is comprised of images from various
races and genders. We can see distinct features in many of the results.
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Figure 5.6: This figure shows 24 qualitative reconstruction examples from the Facetracer
dataset, where males are reconstructed from a purely male vocabulary and male subspace;
similarly for the female reconstructions. Each triplet is comprised of the true face, patch
face, and reconstructed face. It is apparent that Facetracer is a diverse dataset, for it is
comprised of images from various races and genders. We can see distinct features in many
of the results.
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Figure 5.7: This figures shows 24 qualitative reconstruction examples from the PUT dataset.
Each triplet is comprised of the true face, patch face, and reconstructed face. It is important
to note that our reconstruction algorithm does not have access to the true face (far left
image). Most of PUT’s subjects share similar characteristics and the majority are Caucasian
males. Thus, the reconstructed faces are fairly similar as well.
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Figure 5.8: This figure shows how the quantifying reconstruction error test is designed. The
goal of this test is to show that the error between the truth face and the reconstructed face
is less than the error of the other three baselines. Therefore, the distance between the truth
face and the baselines and reconstruction face are computed to measure the error. Then by
subtracting the reconstructed face’s error from the error of the baselines, we can compute
the positive or negative agreement gain .

The first baseline is a randomly reconstructed face. We implement a method that ran-
domly selects the appearance vocabulary words and spatial words, but otherwise follows our
full face reconstruction approach to form a random face. The second baseline compares our
reconstructed face to its original patch face. The final baseline is the mean face overlaid with
our patch face. The mean face is obtained during the construction of our face subspace. This
face has very generic human face features. Figure 5.8 illustrates this experiment’s setup.

For our method and all baselines, the goal is to be as close as possible to the true original
face image. To compare our reconstruction against these baselines, we consider the distance
in the HOG [21] feature space between the reconstructed faces and the original faces. In
particular, we use a HOG descriptor with the following parameters: 16 histogram bins with a
4×4 window size. We compute the distance between our reconstructed face and the true face;
for each baseline we also compute its distance from the true face. We plot the distribution
of the agreement of the full face reconstruction method versus each of the baselines.

Figure 5.9 shows the results. Our four plots are organized as follows: each row is a differ-
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Figure 5.9: This figure shows the results of quantifying the reconstruction qualities of our
two datasets. Each row is a different dataset and each column uses a different method of
clustering and facial part matching. The boxplots in general show an increase in correlation
with the ground truth achieved by our full face reconstruction relative to the randomized
baseline (left), the initial patch face reconstruction (middle), and the mean face with patches
overlaid (right). Red center bars denote median values; boxes above and below represent
upper and lower quartile values. Values above zero indicate improvement; higher is better.
Our full face sketch produces a visualization most closely resembling the true underlying
face in each of the datasets.
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ent dataset and each column uses a different method of clustering and facial part matching
(left column uses HOG and the right column uses raw pixel intensities). In each boxplot, we
display the agreement of our method versus the randomized baseline (left), the initial patch
face reconstruction (middle), or the mean face with patches overlay (right). Each boxplot
shows the distribution of agreement across all test cases for each dataset, and any positive
value indicates that our full face reconstruction more closely resembles the true face.

Compared to the “patch face”, our approach clearly synthesizes a face closer to the true
face. This is because the “patch face” has a significant amount (60%-80%) of missing facial
information. Compared with the mean face overlaid with the patch faces, our reconstructions
are still much closer to the true face. However, since the mean face does provide a generic face
we can that this baseline is stronger than the “patch face” by itself. Now compared to the
random face, the error margin is closer between them than the other two baselines. However,
our reconstructions are still doing better than a random face. These three consistent results
show that our reconstructions are much closer to the original face than purely what is given
to us by the SCiFI facial vector alone.

5.4.3 Machine Face Recognition Experiment

The goal of this experiment is to test how well a computer can match and rank our
reconstructed face with other real faces in the database. This experiment is complemented by
a human experiment in the following subsection. We input into the computer a reconstructed
face and a database, T , of truth/original faces. The reconstructed face is synthesized through
our full facial reconstruction approach. The original face, unavailable to our reconstruction
algorithm, is also in T . Now, we have the machine rank each face in the set T from 1 to |T |
(with no ties), where the lower ranks indicate higher correlation.

In order to perform the ranking task, we have the computer compute a distance from
the reconstructed face and each of the true faces. However, there is an issue that arises
from doing a direct comparison of a true face and its reconstructed face. The two images
are in two different image spaces. Therefore, we use Information Theoretic Metric Learning
(ITML) to learn a Mahalanobis matrix, A, and use the learned Mahalanobis distance to
rank our images [27]. The Mahalanobis distance, Md, of two images x = [x1, x2, . . . , xn]t and
x′ = [x′1, x

′
2, . . . , x

′
n]t where n is the size of the image is defined as:

Md(x, x
′) =

√
(x− x′)tA(x− x′)

Figure 5.10 provides an illustration motivating learning a Mahalanobis distance. The
ITML algorithm takes in three inputs: a set of instances X, their labels Y , and a series
of similarity and dissimilarity constraints Z. Each true face and its reconstructed face are
instances in X and they are given the same label in Y . We learn the Mahalanobis matrix
using a separate training set, and then we test the learned distances on a held out test
set. For testing Facetracer, we learn a Mahalanobis matrix from 600 Facetracer instances
that were not used in our earlier experiments. These faces include images that are labeled
properly, but were excluded due to our previous strict requirements of alignment and frontal
pose. For PUT, we use a 4-fold cross-validation since our dataset is very limited.

We manually construct constraints that show that each true face is similar with its
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Figure 5.10: This figure shows how we learn the Mahalanobis distance. Initially, the truth
face and reconstructed faces are in two different image spaces, such that the corresponding
pairs of truth and reconstruction faces are not close in the Euclidean space (matrix A0).
However, using ITML, similarity constraints can be set such that corresponding truth and
reconstructed faces are close and dissimilarity constraints can be set to push away other
images. The right box shows the learned Mahalanobis distance (A) that captures these
constraints.

reconstructed face given that their Mahalanobis distance is less than an upper bound u.
Likewise, every reconstructed face is dissimilar to other reconstructed faces given that their
Mahalanobis distance is greater than a lower bound l. We found that with and without
dissimilar constraints, our results were comparable. The values of u and l are the 95th and
5th percentile distances from all the truth faces and their reconstruction pairs. The ITML
algorithm produces a metric parametrization that preserves these constraints and therefore
can better compare novel instances of reconstructed faces to their “real image” counter parts.

Figure 5.11 shows the plots of the ranks for the ITML learned distance compared to two
baselines. Each point indicates the percentage of images ranked within the first R ranks. For
example, if R = 10, then our graph indicates the percentage of the corresponding true faces
ranked either 1, 2, ..., or 10 for every reconstructed face. The first baseline is Euclidean
distance. We can see that the learned Mahalanobis distance ranks the reconstructed face and
its corresponding true face closer than Euclidean distance. This indicates that we can learn
a better measurement between our reconstructed faces and the original images. Our second
baseline is a random ranking of each reconstruction compared to the database of true faces.
Here, we can see that our learned distance and Euclidean distance is better than randomly
selecting a rank for the corresponding true face.
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Figure 5.11: This figure shows the ranking results from the Machine Face Recognition
test. The learned Mahalanobis distance and Euclidean distance perform better than random
chance. Each plot shows the rank-R recognition rate that the reconstructed face is ranked
to its true face within in the top R rank for each face.

5.4.4 Human Experiment

The human experiment tests show how easily recognizable our reconstructions are. We
want to see how well an outside observer would recognize the synthetic faces out of context.
Therefore, we have 30 individuals take our human test. The participants are not involved
with this project and are a mix of students and non-students. We use the Facetracer with
a female vocabulary and face subspace to perform this test. For clustering and constructing
a fragmented “patch face”, we use pixel intensities as opposed to HOG [21]. We choose not
to use HOG because the qualitative results for this dataset seem to be better with the pixel
intensities. For this test, we have 30 test pages, and on each page we provide the subject with
a reconstructed face and four normal faces. We ask the user to rank the four original/truth
faces from 1 to 4 (1 being the closest) according to how close they thought the face was to
the reconstructed face. Figure 5.12 shows a screenshot from the test. This test is similar
to a police line up. We record their answers for rank number 1 and rank number 2. It is
important to note that each real face must be ranked a different value.

The results from the test are in Figure 5.13. We show the subject’s accuracy based on
only their first guess (left), or based on either of the first two guesses (right). The results
are very promising because in cases of correctly identifying the original face in one and two
attempts, random chance is 25% and 50%, respectively. The subjects did much better than
random chance, for they averaged 41% and 62% accuracy, respectively. We also include the
accuracy of a machine performing the identical task as the human subjects. We can see
the machine correctly identifies the original face in one and two attempts with 50% and
73% accuracy. The machine uses a learned Mahalanobis distance such as in Section 5.4.3.
Although the machine is not perfect, it still does far better than chance; thus, strengthening
the effectiveness of our reconstructions.

Our experiment shows that this test is not trivial. We crop out the hair, neck, and even
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Figure 5.12: This is the SCiFI Human Reconstruction human subject experiment interface.
The top row of images is the reconstructed face (repeated 4 times). The task for the tester
is to rank from 1 to 4 (1 being the best match) to how close each face in the second row is
to the first row.

ears of the individuals, which make this task very difficult. Subjects are not given much
external information to aid them in this task, and we do not have any images of men in
the multiple choice options either. In addition, when interpreting these results, one must
recall that under the SCiFI recognition system there is a lossy representation that will make
certain faces indistinguishable.

Figure 5.14 shows a table of questions and the number of correct answers associated with
the question. The significance of this table is the distribution of correct answers for each
question. The distribution is not uniform. Questions 1, 4, and 16 are almost unanimously
correctly answered, while questions 13, 17, 25 are missed most frequently. This shows us that
there are clearly good and poor reconstructions. A uniform distribution would imply our
reconstructions are all ambiguous and it was pure chance that we saw these results. Figure
5.15 shows the top and bottom most correct and most missed pairs. The left column’s images
share much more resemblance then the right column’s images. This shows the practical
importance of our facial reconstruction in providing recognizable faces that are not solely
provided by extracting a facial vector.

As shown by our qualitative results, our reconstruction does synthesize human faces from
a fragmented “patch face” assembled from the facial bit vector. This is very impressive, since
we are given a very course representation of a face that is missing a lot of information. Our
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Figure 5.13: This figure shows the accuracy with which the 30 human subjects could predict
the correct face match for 30 test cases given our algorithm’s automatically reconstructed
image. We report their accuracy when looking at their first guess only (left boxplot) or
either of their first two guesses (right boxplot). Red center bars denote median values, and
boxes above and below the red bars represent upper and lower quartile values. As one can
see, humans perform much better than random chance (green dash-line). We also included
the accuracy of a machine (purple dash-dot-line) performing the same test as the human
subjects.

quantitative results show that our reconstructions are the closest facial synthesis to their
corresponding true faces, and that the reconstructions are machine and human recognizable.
In the next chapter, we will reflect upon our approach.
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Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
One Guess 26 9 11 24 9 17 15 7 21 22 14 8 3 14 8

Two Guesses 26 17 11 26 19 19 19 14 22 23 20 12 29 29 21

Question 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
One Guess 27 5 9 18 11 17 29 11 11 7 12 16 13 11 15

Two Guesses 28 11 14 20 17 24 30 19 15 12 20 26 23 20 25

Figure 5.14: This table shows, for each question, how many participants got correctly on
their first guess or by their second guess (includes their first guess). It is important to notice
there are distinct test pages that all users do well on and others that all users do bad on.
This shows that there is agreement on what are good and bad reconstructed faces.

Highest Percentage Correct Lowest Percentage Correct

Figure 5.15: These images show the top correct and missed reconstruction tests. The left
column is the top three questions correctly answered, and the right column is the top three
questions missed.
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Chapter 6

Discussion

In this chapter, we will discuss the assumptions, strengths, and weaknesses of our ap-
proach.

Assumptions In order to perform any form of the facial reconstruction, we need to begin
with an initial face. In our approach, this face is the patch face, which is constructed from
the recovered facial vector w. Recall that the set bits are indices into the appearance and
spatial vocabularies. Therefore, we assume that the attacker would have access or be able
to assemble the exact appearance and spatial vocabularies of an implemented SCiFI system.
Obviously, if the faces used to construct these vocabularies were completely hidden, it would
be nearly impossible to assemble the patch faces. However, the real setup does require the
vocabularies to be public; this is what allows a client to form its binary code.

Given a public database of faces, we also assume that the landmark points will be auto-
matically or manually labeled for each face. In addition, the images are frontal faces only.
This implies that the person is essentially staring straight at the camera. These are not bad
assumptions, for there are various techniques to automatically find and label facial land-
marks [28, 29, 30]. Many of these systems are commercialized and are easily obtained. In
addition, most facial recognition systems train on properly oriented faces, for they provide
the most control. As indicated in Section 5.1, we manually prune many faces from Facetracer
and PUT that were not frontal or had mislabeled landmarks.

Properly identifying useful facial features for representing a face is very important. Since
the SCiFI system was not designed to reverse engineer a facial vector (facial reconstruction),
the exact facial parts may not be as important to the system. There are obviously certain
features that humans look for when they compare human faces (e.g. eyes, nose, eyebrows,
mouth); however, the SCiFI system does not pose a particular constraint on what needs
to be exactly labeled. Thus, to properly execute reconstructions and identification, it is
important for us to make sure we have landmarks in essential areas. The accuracy of these
labels will certainly affect the reconstructed results.

Strengths and Weaknesses Since the majority of the processing is done offline such as
computing the representative vocabularies and constructing the face subspace, our technique
is extremely fast in generating a reconstructed image given a facial vector. Creating a patch
face and performing the iterative PCA method for reconstruction takes at most ten seconds.
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Although the reconstruction method converges fairly quickly, the PCA technique requires
careful tuning to get faces to resemble their true identity. One major factor in successfully
using this technique is to build a large enough face space to capture many different types
of facial features; obviously, this requires a large dataset with unique individuals. The more
variations we can capture through unique faces, the more likely the reconstructed faces will
be recognizable. However, between Facetracer and PUT, we do not have an extremely large
set of training examples and the distribution between race, gender, and age are not uniform.
This certainly restricts what faces can be accurately reconstructed and biases facial features
that will tend to be synthesized.

If we analyze the patch face construction phase, there is one issue that is caused by SCiFI’s
facial representation. SCiFI’s face vectors do not indicate which of the np appearance and
zp spatial indices represent the best matches for each face part. This information may not
be important for comparing two faces, but it is very important in reconstructing them.
Therefore, our reconstructions will suffer to some degree from the inaccuracy of the patch
face. Errors can quickly compound if the patch face is not very close to the original face’s
patches. The SCiFI authors fortunately allow n and z to be parameters in the system, so
we can imagine that a SCiFI system can be tweaked to have loose (larger n and z) or tight
(smaller n and z) facial representations.

The SCiFI system certainly does not make facial reconstruction trivial, but as we have
shown it is not impossible. In fact, we have shown that given a correctly formatted facial
vector, we can synthesize human face image through our reconstruction technique. The most
impressive result of our approach is the fact that we are able to reconstruct a human face
from an extremely fragmented face (the most direct reversal of the SCiFI facial encoding).
One can imagine that if a SCiFI implementation allowed for a stronger facial representation,
i.e. a larger p or smaller n and z, our reconstructions would be more precise and refined.
Therefore, we showed that the attack of the SCiFI protocol has a greater privacy impact
than purely a stolen facial vector of bits.
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Chapter 7

Conclusion

We have presented a novel way of reconstructing images from an index-based, secure
identification system. Our work is an extension of a cryptographic attack on the SCiFI
protcol [2]. Our approach assumes that a malicious party (server or client) in the SCiFI
protcol has been able to retrieve a facial vector using the proposed attack. The retrieved
facial vector is then used to create a patch face with large missing facial regions. Finally,
using an iterative PCA technique, we synthesize the remaining facial areas. We have found
that our technique is able to reconstruct a face that is humanly identifiable. We also show
that we can have a computer rank the original/true faces and reconstructed faces using
metric learning better than using pixel to pixel comparisons. Our contributions show that
even though the SCiFI protocol indirectly protects the privacy of all faces in the system (by
not storing the original faces), an attacker can use our approach to synthesize human faces.
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