CS395T: Numerical Optimization for Graphics and AI: Homework I

1 Guideline

- Please complete 6 problems out of 14 problems. It is required to choose at least one problem from each section, i.e., Linear Algebra, Probability, Geometry/Topology.
- You are welcome to complete more problems.

2 Linear Algebra

Notations. $A \succeq 0$ means A is positive semidefinite, i.e., A is symmetric and all its eigenvalues are nonnegative. ||A|| denotes the spectral norm, i.e., the maximum singular value of A. Given a symmetric matrix X, we use $\lambda_1(X) \ge \cdots \ge \lambda_n(X)$ to denote its eigenvalues in the decreasing order.

Problem 1. The exponential map for a square matrix A is given by

$$\exp(A) := \sum_{i=0}^{\infty} \frac{1}{i!} A^i.$$

Derive an explicit expression for

$$\exp\Big(\left[\begin{array}{ccc} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{array}\right]\Big).$$

Problem 2. Given a 2×2 block matrix

$$A = \left(\begin{array}{cc} A_{11} & A_{12} \\ A_{12}^T & A_{22} \end{array} \right).$$

Suppose $A \succeq 0$. Then

$$||A|| \le ||A_{11}|| + ||A_{22}||.$$

Problem 3. Let \circ be the entry-wise product operator. Namely, given two matrices $A=(a_{ij})_{1\leq i\leq n, 1\leq j\leq m}, B=(b_{ij})_{1\leq i\leq n, 1\leq j\leq m}$ Show that

$$||A \circ B|| \le ||A|| \cdot ||B||.$$

Problem 4. Given a square $X \in \mathbb{R}^{n \times n}$. We define the projection operator $\mathcal{P}_{O(m)}(\cdot) : \mathbb{R}^{n \times n} \to O(m)$ to the space of orthogonal matrix as follows

$$\mathcal{P}_{O(m)}(X) = UV^T, \quad X = U\Sigma V^T,$$

 $X = U\Sigma V^T$ is the singular value decomposition. Given a square matrix $X \in \mathbb{R}^{n \times n}$. Suppose there exists a orthogonal matrix R such that

$$||X - R|| \le \epsilon \le \frac{1}{3}.$$

Then

$$\|\mathcal{P}_{O(m)}(X) - R\| \le \epsilon + \epsilon^2.$$

Problem 5. Let $A, N \in \mathbb{R}^{n \times n}$ be two symmetric matrices. The Wely's inequality tells us that

$$|\lambda_1(A+N) - \lambda_1(A)| \le ||N||.$$

Here we are looking for a much tight bound between $\lambda_1(A+N)$ and $\lambda_1(A)$. Denote \boldsymbol{u} as the top-eigenvector of A, i.e., $\|\boldsymbol{u}\| = 1$ and $A\boldsymbol{u} = \lambda_1(A)\boldsymbol{u}$. Suppose

$$\lambda_1(A) - \lambda_2(A) \ge ||N|| + |\boldsymbol{u}^T N \boldsymbol{u}|.$$

Then

$$-|\boldsymbol{u}^T N \boldsymbol{u}| \leq \lambda_1 (A+N) - \lambda_1 (A) \leq |\boldsymbol{u}^T N \boldsymbol{u}| + \frac{\|N\|^2 - |\boldsymbol{u}^T N \boldsymbol{u}|^2}{\lambda_1 (A) - \lambda_2 (A)}.$$

3 Probability

Problem 6. Four points are chosen on the unit sphere. What is the probability that the origin lies inside the tetrahedron determined by the four points?

Problem 7. You have n > 1 numbers $0, \dots, n-1$ arranged on a circle. A random walker starts at 0 and at each step moves at random to one of its two nearest neighbors. For each i, compute the probability p_i that, when the walker is at i for the first time, all other points have been previously visited, i.e., that i is the last new point. For example, $p_0 = 0$.

Problem 8. Let X be a random positive semidefinite matrix, and let A be a fixed positive definite matrix. Then, $\forall A$,

$$Pr[X \succeq A] \le Tr(E(X)A^{-1}).$$

Here $X \succeq A$ means X - A is positive semidefinite.

Problem 9. Let $x_i \in \mathbb{R}, 1 \leq i \leq n$ be independent random variables that satisfies

$$E(x_i) = 0, \quad |x_i| < 1.$$

Find the **smallest** possible constant c such that

$$Pr(|\sum_{i=1}^{n} x_i| \ge c\sqrt{n\log(n)}) \le O(\frac{1}{n^2}).$$

Problem 10. Suppose we choose a permutation π of the ordered set $N = \{1, 2, \dots, n\}$ uniformly at random from the space of all permutations of N. Let $L(\pi)$ denote the length of the longest increasing subsequence in permutation π .

- For large n and some positive constant c, prove that $E[L(\pi)] \geq c\sqrt{n}$.
- Derive a upper bound on $E[L(\pi)]$.
- Derive a concentration bound on $L(\pi)$, namely, determine $f_1(n)$ and $f_2(n)$ so that $f_1(n) \leq E[L(\pi)] \leq f_2(n)$ with high probability.

4 Geometry and Topology

Problem 11. Consider multiple points in an Euclidean space. The maximum pairwise distance is upper bounded by 2. Determine a tight bound on the radius of the enclosing ball of these points.

Problem 12. We color each edge of a maximally connected planar graph with one of three colors such that each face (triangle) has all three colors in its boundary.

- Show that a 4-coloring of the vertices implies a 3-coloring of the edges.
- Show that a 3-coloring of the edges implies a 4-coloring of the vertices.

Problem 13. Consider orthogonal matrices $R \in O(m)$, $\det(R) = -1$. Collect its diagonal entries R_{11}, \dots, R_{mm} into a vector in \mathbb{R}^m . Prove that the convex hull of these vectors is equivalent to the convex hull of points $(\pm 1, \dots, \pm 1)$ with a odd number of -1.

Problem 14. We have covered how to estimate the best rigid transformation between a pair of point clouds. Here we study the consistency of such pair-wise transformations among multiple point clouds. Consider n point clouds $\mathcal{P} = \{P_1, \dots, P_n\}$. Each point cloud consists of m points i.e., $P_i = (\boldsymbol{p}_{i1}, \dots, \boldsymbol{p}_{im}) \in \mathbb{R}^{l \times m}$, where l is the dimension of the ambient space. We assume that points $\boldsymbol{p}_{ij}, 1 \leq i \leq n$ for each fixed j are in correspondence. With this setup, we denote the optimal rigid transformation from P_i and P_j as $T_{ij} = (R_{ij}, \boldsymbol{t}_{ij})$. As we have learned in class, R_{ij} and \boldsymbol{t}_{ij} admit a close-form solution via singular value decomposition.

Now we consider the consistency of these rigid transformations among multiple point clouds. For each triple of point clouds P_i, P_j, P_k , we say the pair-wise rigid transformations $T_{ij} = (R_{ij}, t_{ij}), T_{jk} = (R_{jk}, t_{jk})$ and $T_{ki} = (R_{ki}, t_{ki})$ are consistent if $T_{ki} \circ T_{jk} \circ T_{ij} = Id$ or in other words

$$R_{ki}R_{jk}R_{ij} = I_l$$

$$R_{ki}R_{jk}\mathbf{t}_{ij} + R_{ki}\mathbf{t}_{jk} + \mathbf{t}_{ki} = 0$$
(1)

We say \mathcal{P} is regular if the pair-wise transformations are consistent among all triples $1 \leq i \leq j \leq k \leq n$. In general, if you form \mathcal{P} by sampling point clouds randomly, \mathcal{P} is not regular. So this problem is to study under what conditions \mathcal{P} is regular:

- Derive the condition for l=2, n=3 and m=3.
- Derive the sufficient conditions for other configurations of l,m, and n.