
CS395T: Numerical Optimization for Graphics and AI:

Homework II

1 Guideline

• Please complete 4 problems out of 8 problems, and please complete at least one problem in the theory
session.

• You are welcome to complete more problems.

2 Programming

Each problem in this section counts as two.
Problem 1 and Problem 2. In this problem, we are interested in solving the following shape deformation
problem using various optimization techniques. As discussed in class, we consider the setup where we have
n points pi in R3 and an edge set that connects adjacent points. The rest state of each point is denoted as
prest
i . With H ⊂ {1, · · · , n} we denote the set of handles, where we want to move each pi ∈ H to their target

location hi. This is formulated as solving the following optimization problem:

minimize
p1,··· ,pn,R1,··· ,Rn

∑
j∈N (i)

‖Ri(p
rest
i − prest

j )− (pi − pj)‖2 + λ
∑
pi∈H

‖pi − hi‖2

subject to Ri ∈ SO(3), 1 ≤ i ≤ n. (1)

where N (i) denotes the neighboring vertices of vertex i in edge set E . Please apply at least two optimiza-
tion techniques (e.g., Gradient Descent, Alternating Minimization, Gauss-Newton and Newton method)
and compare their performance. Note that to turn this problem into unconstrained optimization, you are
recommended to use the parameterization

R = exp

 0 −cz cy
cz 0 −cx
−cy cx 0

 .

To generate the dataset, you can start with a 20× 20 grid and partition each cell into two triangles (so 800
triangles in total). The handles are placed at the corners of this grid and the grid center (5 handles in total).
Please test our implementations on a 100× 100 grid (20000 triangles in total).

Problem 3 and Problem 4. We are interested in finding the peaks (local maximums) of an un-normalized
density function of form

f(x) =

n∑
i=1

exp(−‖x− xi‖2

2σ2
).

This can be done by starting from each one of the data points and apply coordinate ascent to maximize the
value of the objective function f(x). Note that the objective function is highly non-convex, so there may be
multiple peaks, and it is important to start from many (or even all) of the input points.

• Euclidean space R3. In this case, the input points xi are given by points in Rd. We will test the
case where the input points sampled from a mixture of Gaussians (with 2-4 mixture components).

1



• Orthogonal matrices SO(3). In this case, the input points xi are given by rotation matrices in

SO(3). We again consider the parameterization R = exp(C), where C =

 0 −cz cy
cz 0 −cx
−cy cx 0

. The

input points are generated by sampling c = (cx, cy, cz) from a Gaussian distribution in R3. Again we
will consider 2-4 mixture components (you may choose a small variance for each mixture component).
Specifically, if we have two mixture components and use 25 samples per mixture component, then we
have n = 50.

In both cases, we please try at least two methods, e.g., Steepest Ascent, Newton Method and Quasi-Newton
Method. Matlab is preferred programming language for this assignment.

3 Theory

Problem 5. We say f is L-smooth (with constant L > 0) on X if f is continuously differentiable and
‖∇f(x) − ∇f(y)‖ ≤ L‖x − y‖ for all x,y ∈ X . Suppose f is convex and L-smooth, let x? be an optimal
solution. With γ = 1

L , the iterates of gradient descent method

xt+1 = xt − γ∇f(xt)

satisfy

f(xt)−min
x
f(x) ≤ 2L‖x0 − x?‖2

t
.

Problem 6. Given a C2 function f(x1,x2) with a global minimizer solution (x?
1,x

?
2). Suppose the Hessian

matrix
H? = Hf (x?

1,x
?
2) � 0.

Consider alternating minimization, which computes the following quantity at each iteration:

x
(k+1)
1 = argmin

x1

f(x1,x
(k)
2 )

x
(k+1)
2 = argmin

x2

f(x
(k+1)
1 ,x2) (2)

Show that for any ε > 0, there exists a converging radius r(ε) so that starting from any initial solution

(x
(0)
1 ,x

(0)
2 ), where

max
(
‖x(0)

1 − x1‖, ‖x(0)
2 − x2‖

)
≤ r(ε),

we have for k = 0, 1, · · · ,

‖x(k+1)
1 − x?

1‖ ≤
((1− κ(H?)

1 + κ(H?)

)2
+ ε
)
· ‖x(k)

1 − x?
1‖,

‖x(k+1)
2 − x?

2‖ ≤
((1− κ(H?)

1 + κ(H?)

)2
+ ε
)
· ‖x(k)

2 − x?
2‖, (3)

where κ(H?) = λmin(H?)/λmax(H?).

Problem 7. Derive similar formula for ‘high-order’ alternating minimization, which splits the variable
x = (x1, · · · ,xn). The alternating minimization formula is given by:

x
(k+1)
i = argmin

xi

f
(
x
(k+1)
1 , · · · ,x(k+1)

i−1 ,x
(k)
i ,x

(k)
i+1, · · · ,x

(k)
n

)
, 1 ≤ i ≤ n, k = 0, 1, · · · (4)

Note that for this problem, you need to write down the theorem and then the proof.

Problem 8. Let us go back to the second programming assignment and consider the mixture of Gaussian
in 1D, i.e.,

f(x) =

n∑
i=1

exp(− (x− xi)2

2σ2
).
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• If we start from all the input points xi and perform gradient ascent, do we find all the local maximums?
If the answer is Yes, please give a proof. If the answer is No, please give counter examples.

• Does the same argument hold in high dimensions?
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