

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2016 Society for Industrial and Applied Mathematics
Vol. 37, No. 4, pp. 1531–1555

CLUSTERED MATRIX APPROXIMATION∗

BERKANT SAVAS† AND INDERJIT S. DHILLON‡

Abstract. In this paper we develop a novel clustered matrix approximation framework, first
showing the motivation behind our research. The proposed methods are particularly well suited
for problems with large scale sparse matrices that represent graphs and/or bipartite graphs from
information science applications. Our framework and resulting approximations have a number of
benefits: (1) the approximations preserve important structure that is present in the original matrix;
(2) the approximations contain both global-scale and local-scale information; (3) the procedure is
efficient both in computational speed and memory usage; and (4) the resulting approximations are
considerably more accurate with less memory usage than truncated SVD approximations, which
are optimal with respect to rank. The framework is also quite flexible as it may be modified in
various ways to fit the needs of a particular application. In the paper we also derive a probabilistic
approach that uses randomness to compute a clustered matrix approximation within the developed
framework. We further prove deterministic and probabilistic bounds of the resulting approximation
error. Finally, in a series of experiments we evaluate, analyze, and discuss various aspects of the
proposed framework. In particular, all the benefits we claim for the clustered matrix approximation
are clearly illustrated using real-world and large scale data.

Key words. matrix approximation, dimensionality reduction, low rank matrix approximation,
probabilistic algorithms, graph mining, social network analysis, clustering, coclustering

AMS subject classifications. 15A23, 65F50, 05C50, 91D30, 91C20, 65F30, 15A99

DOI. 10.1137/15M1042206

1. Introduction.

1.1. Motivation. A fundamental problem in numerous and diverse scientific
applications is the problem of approximating a given matrix A ∈ Rm×n by another
matrix Â of lower rank. The problem of best rank-k matrix approximation

min
rank(Â)=k

‖A− Â‖F

has been studied extensively in the literature, and it is well known that truncating
the singular value decomposition (SVD) of A solves this problem [16]. The solution
may be written

(1.1) Â = UkΣkV
T
k ,

where Uk ∈ Rm×k, Vk ∈ Rn×k are orthonormal matrices containing the left and right
singular vectors, and Σk ∈ Rk×k is a diagonal matrix with the k largest singular
values. A key property of the SVD is that it gives the means to analyze, interpret,
and understand the original data in terms of globally optimal factors. This is a direct

∗Received by the editors October 5, 2015; accepted for publication (in revised form) by P. Drineas
August 4, 2016; published electronically October 27, 2016.

http://www.siam.org/journals/simax/37-4/M104220.html
Funding: The work of the first author was supported by Vetenskapsr̊adet, 2008:7145. The

work of the second author was supported by the National Science Foundation (NSF), CCF-1320746,
CCF-1117055.
†Department of Science and Technology, Linköping University, Norrköping 601 74, Sweden

(berkant.savas@liu.se).
‡Department of Computer Science, The University of Texas at Austin, Austin, TX 78712-1188

(inderjit@cs.utexas.edu).

1531

D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/simax/37-4/M104220.html
mailto:berkant.savas@liu.se
mailto:inderjit@cs.utexas.edu

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1532 BERKANT SAVAS AND INDERJIT S. DHILLON

consequence of writing

Â = UkΣkV
T
k = σ1u1v

T
1 + · · ·+ σkukv

T
k ,

i.e., a sum of rank-1 matrices in terms of outer products between singular vectors
weighted with the corresponding singular values.

When the matrix A represents a graph, then graph partitioning and clustering
analysis reveals important structural information of the underlying data. A distinction
in the clustering analysis from the globally optimal factors in the SVD is that clusters
are local in nature.

In this paper we will present novel low rank matrix approximation methods that
incorporate the clustering information of the original data. A key feature and ben-
efit of the resulting clustering-based methods is that they preserve local structural
information.

Metric for quality based on memory usage. Relative reconstruction error
versus the rank of the approximation is an often used metric for approximation quality.
However, the main bottleneck when scaling up algorithms in applications with large
amounts of data is often memory consumption and not the rank of the approximation.
Then it becomes more interesting to consider relative error versus memory usage as a
metric for quality. In this setting, our method produces a considerably more accurate
matrix approximation with memory usage that is the same as or less than that of
the truncated SVD approximation, which is optimal with respect to rank. We will
illustrate this by considering a small example. There are a number of other benefits
as well, which will be discussed in detail later on.

Example 1.1. The karate club network [40], illustrated in the left panel of Fig-
ure 1, is a well-known network example widely used to test various network analysis
methods. The network models friendship relations between the 34 members of the
club and is represented by a symmetric matrix A ∈ R34×34 with entries aij = 1 if
nodes (members) i and j are connected, and aij = 0 otherwise.

Let VkΛkV
T
k be the best rank-k approximation of A, obtained using the spectral

decomposition,1 and calculate the relative reconstruction error

‖A− VkΛkV
T
k ‖F

‖A‖F

for k = 1, 2, . . . , 5. The memory usage (in floating point numbers) for each rank-k
approximation, accounting for symmetry, is simply 34 · k + k. The resulting approx-
imation error is plotted against memory usage in the right panel of Figure 1. In the
same figure, we have plotted the relative reconstruction errors for approximations ob-
tained with our method based on partitioning the graph into three clusters (details
given later). The clustering is shown in Figure 1 and obtained using spectral graph
partitioning [10, 28].

The results shown in Figure 1 are clear; approximations obtained with our method
are more accurate by a large margin than truncated spectral approximation. Observe
that the comparison is made with respect to memory consumption and not rank
of the approximation. Consider in particular the approximation error for V4Λ4V

T
4

(fourth data point); this approximation uses 140 floating point numbers and has

1For symmetric matrices the spectral factorization may be used to compute the best rank-k
approximation.

D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CLUSTERED MATRIX APPROXIMATION 1533

20 40 60 80 100 120 140 160 180
50

55

60

65

70

75

80

85

90

Memory usage (number of floating point numbers)

R
el

at
iv

e
re

co
ns

tru
ct

io
n

er
ro

r i
n

%

SVD
Our method with 3 clusters

Fig. 1. Left: The karate club network partitioned into three clusters using spectral graph parti-
tioning. Cluster affiliation is indicated by the coloring of the nodes. Right: Relative reconstruction
error versus memory consumption. We see that our method produces considerably lower recon-
struction error than the spectral approximation, which is optimal with respect to rank. Observe in
particular that the two lower data points in our method give more accurate approximations with less
memory usage than the truncated spectral approximations.

58.8% reconstruction error. Compare this with results of the third approximation
(third data point) from our method. This approximation uses 138 floating point
numbers and has 51.7% reconstruction error. A similar comparison can be made with
the rank-3 spectral approximation and the second approximation from our method.
In this case we have 65% reconstruction error using 105 floating point numbers for the
spectral solution to be compared with 61.6% reconstruction error using 86 floating
point numbers.

The algorithms we propose in this paper may be used in a wide range of appli-
cations, in particular those in information science. A few examples are information
retrieval using latent semantic indexing [11, 4], link prediction, and affiliation rec-
ommendation in social networks [26, 22, 27, 35, 34, 36, 32]. A particular interest
in network applications is to analyze network features as centrality, communicability,
and betweenness. These and similar features may be expressed as a matrix function
f(A) in terms of the network’s adjacency matrix A [17]. Often, these functions con-
tain matrix powers Ap. For small networks these powers can be computed explicitly;
however, for large scale networks, computing Ap is not practical due (mostly) to mem-
ory constraints. Low rank approximations provide the means to approximate these
quantities and scale up algorithms. Using A ≈ V DV T with V TV = I, we can employ
the approximation

Ap ≈
(
V DV T

)p
= V DpV T,

where the power of a relatively small matrix D is taken.

1.2. Contributions. There are three main contributions in this paper:
We propose a general and flexible framework for clustered matrix approximation

methods. The methods can be applied on square (symmetric and nonsymmetric) and
rectangular matrices and involve four steps: (1) a clustering or coclustering step so
that the rows and columns of a given matrix are partitioned into a number of groups;
(2) reordering the rows and columns according to cluster affiliation and extracting
sufficiently dense blocks; (3) computing low rank approximations of these dense blocks;
and (4) combining the blockwise approximations into an approximation of the entire
matrix.

Computing truncated SVD approximations is relatively expensive, and in some
circumstances one may wish to trade off computation time against some slight loss in

D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1534 BERKANT SAVAS AND INDERJIT S. DHILLON

accuracy. Probabilistic algorithms for matrix approximation [21] give the means for
this kind of trade-off. In this paper we develop and detail the use of such algorithms in
the clustered low rank approximation framework. We also derive a few deterministic
and probabilistic approximation error bounds.

An extensive and systematic set of experiments constitute the last contribution
of this paper. Here, we investigate a number of aspects of the proposed methods
that are important from both a practical and a theoretical point of view. The exper-
iments clearly illustrate the benefits of the presented clustered matrix approximation
framework.

1.3. Outline. The outline of the paper is as follows. In section 2 we present
background material that serves as a foundation for the development of our methods.
Section 3 contains the following main contributions of this paper: development of
general clustered low rank matrix approximation methods that are applicable to both
square and rectangular matrices, and derivation of deterministic and probabilistic
error bounds. Section 4 contains an extensive set of numerical experiments that
evaluate the proposed clustered low rank approximation methods using real-world
and large scale data sets. In section 5 we present some related work. Finally, in
section 6 we present our conclusions.

1.4. Notation. Matrices will be denoted by capital roman letters, e.g., A, U , V ,
Ai, or Aij . Lowercase letters in the middle of the alphabet, e.g., i, k, m, n, will (often)
denote subscript integers. Calligraphic letters will denote sets, e.g., V. For a given
matrix U , its column space will be denoted by range(U). We define diag(A1, . . . , Ak)
as the k × k block matrix with A1 to Ak as diagonal blocks. We will use orth(X) to
denote2 an orthonormal basis for range(X). Additional notation will be described as
it is introduced.

2. Preliminaries. The methods we develop in this paper rely on a number of
concepts: efficient graph clustering; bipartite graph coclustering; low rank matrix
approximations; and stochastic methods for low rank matrix approximations. In this
section we will introduce these concepts and related background that is necessary to
develop and present our framework.

2.1. Graph clustering and bipartite graph coclustering. A key step in the
algorithms we develop is to extract (local) structural information of a given matrix.
By considering a square m×m matrix A = [aij] as a graph’s adjacency matrix, we can
obtain (structural) cluster information by partitioning the graph’s vertices. Formally,
a graph G = (V, E) is characterized by a set of vertices V = {ν1, . . . , νm} and a set of
edges E = {eij | νi, νj ∈ V}. Elements aij represent the edge weighs eij . If there is no
edge between νi and νj , then aij = 0. The clustering problem amounts to partitioning
the vertices V into c disjoint sets V1, . . . ,Vc. Extensive research has been conducted
to develop the theory [39, 20, 31, 37, 28, 13, 18, 38] (to mention a few) and efficient
graph clustering software packages such as GRACLUS [13] and METIS [1]. In modern
applications, it is common that the number of vertices is large, giving rise to massive
(sparse) adjacency matrices.

From now on, we assume that we can partition the graph and obtain c disjoint sets
V1, . . . ,Vc, with mi = |Vi|. Without loss of generality, we can assume that vertices in

2For X with full column rank we may use the QR factorization X = QR = [Q1 Q2][R1
0

] and set
orth(X) = Q1.D

ow
nl

oa
de

d
11

/0
7/

16
 to

 1
28

.8
3.

63
.2

0.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CLUSTERED MATRIX APPROXIMATION 1535

Fig. 2. Left: Spy plot of the clustering structure of the arXiv condensed matter collaboration
network [23]. The graphs contains 21,363 vertices and 182,628 edges. 79.8% of the edges are within
the ten diagonal blocks. Right: Spy plot of the coclustering structure of the Notre Dame bipartite
graph between 81,823 movies and 94,003 actors [3]. The associated matrix has 1,016,127 nonzeros,
and 83.4% of the nonzeros are contained within the ten diagonal blocks.

V1, . . . ,Vc are sorted in strictly increasing order. Then the matrix will have the form

(2.1) A =

A11 · · · A1c

...
. . .

...
Ac1 · · · Acc

 ,
where each diagonal block Aii is an mi×mi matrix that may be considered as a local
adjacency matrix for cluster i. The off-diagonal mi ×mj blocks Aij contain the set
of edges between vertices belonging to different clusters.

A graph consisting of c disconnected components will give a perfect clustering.
The resulting block partitioning of A will contain nonzero elements only in the diag-
onal blocks Aii. In a realistic scenario, however, with a graph forming good clusters
most of the edges will be contained within the diagonal blocks Aii, while the off-
diagonal blocks Aij will only contain a small fraction of the edges.3 An example of
block partitioning revealing the underlying cluster structure of a graph is given in the
left panel of Figure 2. In section 4.2 and Table 1 we give a more detailed presentation
regarding clustering structure in the data.

Similarly, a rectangularm×nmatrixB = [bij] may be used to represent a bipartite
graph. Consequently, coclustering [12, 43] may be used to extract corresponding
structural information. Formally, a bipartite graph G = (R, C, E) is characterized by
two sets of vertices, R = {r1, . . . , rm} and C = {c1, . . . , cn}, and a set of (undirected)
edges, E = {eij | ri ∈ R, cj ∈ C}. The elements bij represent the edge weights eij
and, if bij = 0, then there is no edge between ri and cj . Assuming we partition R into
r row clusters and C into c column clusters, the coclustering will yield disjoint row sets
R1, . . . ,Rr and disjoint column sets C1, . . . , Cc. Again, without loss of generality, we

3We would like to remark that not all graphs contain natural clusters, but many graphs are
clusterable to some extent [25, 24]. This is the case for graphs arising in many real-world applications.

D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1536 BERKANT SAVAS AND INDERJIT S. DHILLON

may rearrange the row and column vertices according to cluster affiliation to obtain

(2.2) B =

B11 · · · B1c

...
. . .

...
Br1 · · · Brc

 ,
where block Bij contains edges between row vertices of Ri and column vertices of Cj .
The right panel of Figure 2 shows the coclustering structure of a bipartite graph. It is
clear here as well that the diagonal blocks are much denser than off-diagonal blocks.

We would like to remark that the coclustering methods in [12, 43] result in the
same number of clusters for R as well as for C. However, a straightforward modi-
fication4 can be employed to obtain different numbers of clusters in R and C. Al-
ternatively, the block structure in (2.2) may be extracted by casting the problem
as a regular graph partitioning problem. One may either consider the (symmetric)
adjacency matrix

(2.3)

[
0 BT

B 0

]
of the bipartite graph G or form symmetric similarity matrices A1 = BBT and A2 =
BTB, and subsequently apply regular graph partitioning algorithms on these matrices
to obtain independent row and column clusterings.

2.2. Probabilistic methods for low rank matrix approximation. In re-
cent years, randomized algorithms have been employed for computing low rank ma-
trix approximations [21, 15, 7, 29]. These algorithms have several benefits: they
produce remarkably good results; they are simple to implement; they are applicable
on large scale problems; and they have theoretical bounds for the approximation er-
rors. The algorithms use randomness to construct a matrix Y that approximates a
low-dimensional dominant subspace of range(A).

For a given m×n matrix A and a target rank k in the approximation, probabilistic
methods generate an n × (k + p) standard Gaussian matrix5 Ω, where p is a small
oversampling parameter (typically set to 5–10). Multiplying A with the random
matrix Ω, we obtain Y = AΩ. Subsequently an orthonormal basis is calculated by
Q = orth(Y). These steps are presented in Algorithm 1. The corresponding low
rank approximation is given by A ≈ Â = QQTA. By computing the SVD of QTA =
W̄ Σ̄V̄ T we get Â = (QW̄)Σ̄V̄ T ≡ Ū Σ̄V̄ T, which approximates the truncated SVD
of A. We will now present two theorems that bound the norm of the approximation
error ‖A − Â‖ = ‖(I − QQT)A‖ deterministically and in expectation due to the
randomized nature of the algorithm. In section 3.3 we will present generalizations of
these theorems within our clustered low rank approximation framework.

Let the full SVD of A be given by

(2.4) A = UΣV T = [U1 U2]

[
Σ1 0
0 Σ2

] [
V T

1

V T
2

]
,

where the singular values of A are partitioned into Σ1 = diag(σ1, . . . , σk) and Σ2 =
diag(σk+1, . . . , σn). The matrices U and V are partitioned accordingly. Introduce

4For example, by running the k-means algorithm independently and with a different number of
clusters on the two blocks of equation (12) in [12].

5“Standard Gaussian matrix” refers to a matrix with entries that are i.i.d. and normally dis-
tributed with zero mean and standard deviation of one.

D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CLUSTERED MATRIX APPROXIMATION 1537

Algorithm 1 Randomized range finder [21].

Input: An m× n matrix A, target rank k, oversampling parameter p ≥ 1.
Output: An orthonormal m × (k + p) matrix Q that approximates the (k + p)-

dimensional dominant subspace of range(A).
1: Generate an n× (k + p) random matrix Ω.
2: Compute Y = AΩ.
3: Compute Q = orth(Y).

also

(2.5) Ω1 = V T
1 Ω and Ω2 = V T

2 Ω

for a given n×(k+p) matrix Ω. We have the following deterministic and probabilistic
bounds.

Theorem 2.1 (see [7, Lem. 4.2]). Let us be given an m × n matrix A, a target
rank k, and oversampling parameter p > 1. For a given n× (k+p) matrix Ω compute
Y = AΩ. Let PY be the orthogonal projector onto range(Y). Let the SVD of A be
as in (2.4), and let Ω1, Ω2 be as in (2.5). Assume that Ω1 has full rank. Then the

approximation error is bounded as ‖(I − PY)A‖2∗ ≤ ‖Σ2‖2∗ + ‖Σ2Ω2Ω†1‖2∗, where ‖ · ‖∗
denotes either the spectral norm or the Frobenius norm, and Ω†1 is the pseudoinverse
of Ω1.

Theorem 2.2 (see [21, Thms. 10.5 and 10.6]). Let Ω be an n× (k+ p) standard
Gaussian matrix. With the notation as in Theorem 2.1 we have

E‖(I − PY)A‖F ≤
(

1 +
k

p− 1

)1/2

‖Σ2‖F ,

E‖(I − PY)A‖2 ≤
(

1 +

√
k√

p− 1

)
‖Σ2‖2 +

e
√
k + p

p
‖Σ2‖F ,

where e is the base of the natural logarithm.

A simple but important modification to step 2 in Algorithm 1, namely, to compute
Y = (AAT)qAΩ with integer q > 0, gives a considerable improvement in the low rank
approximation, in particular when the decay of the singular values of A is slow. The
introduced power parameter q is small and usually q . 3. The modification with
powers of AAT is closely related to the power or subspace iteration; see [21, Alg. 4.3]
and [5, sec. 3.3.5].

3. Clustered low rank matrix approximations. The main goal of this sec-
tion is to develop a framework for memory efficient matrix approximations that pre-
serve important structural information of the data. In section 3.1, we initiate our
presentation by extending the clustered low rank approximation of square matrices
(graphs) [30] to rectangular matrices (bipartite graphs). The extension is straight-
forward and will serve as a foundation for the content of sections 3.2 and 3.3.

3.1. Diagonal dense block structure. Let the matrix A ∈ Rm×n have the
following c× c block structure:

(3.1) A =

A11 · · · A1c

...
. . .

...
Ac1 · · · Acc

 ,D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1538 BERKANT SAVAS AND INDERJIT S. DHILLON

Fig. 3. Graphical comparison between the clustered matrix approximation A ≈ Ū S̄V̄ T in (3.3)
using c = 3 and a regular truncated SVD approximation in (1.1). The memory usage in Ū and V̄
is restricted only to the diagonal (shaded) blocks.

where Aij ∈ Rmi×nj . For a square matrix the block partitioning is given from a clus-
tering of the associated graph. If A is rectangular, the block partitioning is obtained
by coclustering the associated bipartite graph. We assume for both cases that the
diagonal blocks Aii are much denser in terms of nonzero entries than the off-diagonal
blocks Aij , as in Figure 2. In section 3.2 we will generalize this to block partitionings
where off-diagonal blocks may also be dense. Compute low rank approximations of
the diagonal blocks using the truncated SVD6

(3.2) Aii ≈ Âii = UiΣiV
T
i with rank(Aii) = kii, and i = 1, . . . , c.

We can then construct an approximation of A as

(3.3) A ≈ diag(U1, . . . , Uc)

S11 · · · S1c

...
. . .

...
Sc1 · · · Scc

diag(V1, . . . , Vc)
T ≡ Ū S̄V̄ T,

where Sij = UT
i AijVj . This choice of S̄ yields the optimal approximation of A in

the least squares sense for the given orthonormal Ū = diag(U1, . . . , Uc) and V̄ =
diag(V1, . . . , Vc). For example, with c = 3 clusters we obtain

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 ≈
U1 0 0

0 U2 0
0 0 U3

S11 S12 S13

S21 S22 S23

S31 S32 S33

V1 0 0
0 V2 0
0 0 V3

T

.

Observe that off-diagonal blocks are approximated as well: Aij ≈ UiSijV
T
j . These

approximations are probably not good since they use Ui and Vj that capture informa-
tion from diagonal blocks. This, however, is not a problem since off-diagonal blocks
contain little information. In the ideal case we would have Aij = 0, and this is almost
the case for matrices from many real-world applications. We will also address this in
the next section. Figure 3 shows a graphical illustration of the structure of the clus-
tered low rank approximation using three clusters in comparison with the structure
of the regular truncated SVD.

All steps in the process are described in Algorithm 2.
For cases with a small number of clusters c and small to moderate kii, most of

the memory usage in the clustered matrix approximation is consumed by Ū and V̄ .

6Clearly, if Aii are symmetric, then the spectral factorization should be used in this step.

D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CLUSTERED MATRIX APPROXIMATION 1539

Algorithm 2 Clustered matrix approximation with diagonal block structure.

Input: A, number of clusters c, and ranks k11, . . . , kcc.
Output: Ui, Vj , Sij for i, j = 1, . . . , c.

1: Partition A into c× c blocks by using a clustering or coclustering algorithm.
2: Reorder rows and columns of A according to their cluster belonging in order to

obtain a matrix with a block structure as in (3.1).
3: Compute low rank approximations of the diagonal blocks according to (3.2).
4: Set Sii = Σi and compute Sij = UT

i AijVj when i 6= j to obtain S̄.

Fig. 4. Left: Cluster structure of a rectangular matrix (bipartite graph) with 10 row clusters
and 6 column clusters that are obtained independently. Right: Clustering of a matrix (graph) into
7 clusters. In both panels there is more than one dense block in a block row or block column.

In such cases it makes little sense to set some or all off-diagonal Sij = 0 in order
to achieve additional memory savings. However, for cases with a large number of
clusters c and large ranks kii the memory consumption of S̄ may become a significant
fraction of the total memory usage. This might motivate setting some off-diagonal
Sij = 0. Observe that setting all Sij = 0 in (3.3) would result in only approximating
the diagonal blocks Aii, and in effect discarding all off-diagonal Aij .

3.2. Nondiagonal dense block structure. Analysis of clustering results re-
veals structure of the data in terms of dense diagonal blocks, but often dense off-
diagonal blocks are revealed as well. A more general kind of block structure is re-
vealed when coclustering the rows and columns of a rectangular matrix independently,
in particular when using a different number of row and column clusters. Both of these
scenarios are illustrated in Figure 4.

The aim now is to construct a low rank matrix approximation A ≈ Ū S̄V̄ T that
contains structural information and can be stored efficiently. Using block diagonal
Ū = diag(U1, . . . , Ur) and V̄ = diag(V1, . . . , Vc), we can achieve both of these goals.
In order to preserve the structure of the data, we must allow for all (sufficiently)
dense blocks in the block partitioning to contribute to the approximation. Thus,
every Ui must contain column space contribution from all the dense blocks in the
ith block row and, similarly, every Vj must contain row space contribution from all
the dense blocks in the jth block column. Clearly, these requirements are fulfilled

D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1540 BERKANT SAVAS AND INDERJIT S. DHILLON

for the approximation in (3.3). In the following, we will determine orthonormal Ui

and Vj , leading to orthonormal Ū and V̄ . As a consequence we can calculate S̄ with
matrix multiplications only. However, with small changes, it is possible to formulate
the entire process with blocks Ui and Vj that are not orthonormal.

3.2.1. Specific example. Partition a matrix A into a 3× 4 block structure

(3.4) A =

[A11] A12 [A13] A14

A21 A22 A23 [A24]
A31 [A32] [A33] A34

 .
Assume that blocks A11, A13, A24, A32, A33 (explicitly in brackets in (3.4)) are consid-
ered to be dense. Introduce the set S = {(1, 1), (1, 3), (2, 4), (3, 2), (3, 3)} with pairwise
integers that indicate the dense blocks. We will compute low rank approximations

(3.5) Aij ≈ Âij = UijΣijV
T
ij , with rank(Aij) = kij , (i, j) ∈ S,

and use them to obtain a clustered low rank approximation of the form

A ≈

U1 0 0
0 U2 0
0 0 U3

S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

V1 0 0 0
0 V2 0 0
0 0 V3 0
0 0 0 V4

T

≡ Ū S̄V̄ T,

where the Ui and Vi are orthonormal and the Sij are determined in an optimal least
squares sense. Using results from (3.5) we compute or set

U1 = orth([U11 U13]), U2 = U24, U3 = orth([U32 U33])

to obtain Ū , and similarly blocks of V̄ are given by

V1 = V11, V2 = V32, V3 = orth([V13 V33]), V4 = V24.

Observe that all dense blocks directly contribute information to the approximation:
U1 contains information from both A11 and A13; U3 contains information from both
A32 and A33; V3 contains information from both A13 and A33. Given U1, U2, U3, and
V1, . . . , V4, optimal Sij are obtained, as previously, with Sij = UT

i AijVj .

Remark 3.1. Observe that one may consider computing, e.g., U1 from a single
SVD of [A11 A13] instead of two separate SVDs of A11 and A13, respectively. This
alternative approach, however, does not necessarily take into account the structure of
the data that we want to preserve. For example, an SVD approximation of [A11 A13]
may contain contributions only from A11. The procedure we presented above will
always extract a certain amount of information from A11 and a certain amount of
information from A13, thus preserving the inherent clustering structure of the data.

3.2.2. General description. We will now state the clustered low rank approx-
imation with arbitrary r and c. Let an m × n matrix A be partitioned into r × c
blocks,

(3.6) A =

A11 · · · A1c

...
. . .

...
Ar1 · · · Arc

 .D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CLUSTERED MATRIX APPROXIMATION 1541

Let S denote a set with pairwise indices that specify the dense blocks of A. Each
Aij with (i, j) ∈ S will make a direct contribution in the approximation of A. We
introduce Ri = {(i, ci,1), . . . , (i, ci,|Ri|)} with dense block indices from the ith block
row, and similarly Cj = {(rj,1, j), . . . , (rj,|Cj |, j)} with dense block indices from the
jth block column. Clearly, it holds that S = ∪iRi = ∪jCj . Prescribe now the ranks
kij and compute low rank approximations

(3.7) Aij ≈ Âij = UijΣijV
T
ij , (i, j) ∈ S, with rank(Âij) = kij

using the truncated SVD. The next step is to compute blocks in Ū = diag(U1, . . . , Ur)
and V̄ = diag(V1, . . . , Vc) according to

Ui = orth([Uici,1 · · · Uici,|Ri|
]), where (i, ci,1), . . . , (i, ci,|Ri|) ∈ Ri,(3.8)

Vj = orth([Vrj,1j · · · Vrj,|Cj |j
]), where (rj,1, j), . . . , (rj,|Cj |, j) ∈ Cj .(3.9)

The clustered approximation then takes the form A ≈ Ū S̄V̄ T or, in block form,

(3.10)

A11 · · · A1c

...
. . .

...
Ar1 · · · Arc

 ≈ diag(U1, . . . , Ur)

S11 · · · S1c

...
. . .

...
Sr1 · · · Src

diag(V1, . . . , Vc)
T.

The blocks of S̄ are determined by Sij = Σij when (i, j) ∈ S and Sij = UT
i AijVj

otherwise. The blockwise approximations become Aij = UiSijV
T
j for all i and j.

The entire process is described in Algorithm 3. It is clear that (3.10) generalizes the
clustered matrix approximation with diagonal blocks in section 3.1.

Algorithm 3 Clustered matrix approximation with nondiagonal block structure.

Input: A, number of row clusters r, number of column clusters c,
Output: Block matrices that form the clustered low rank approximation: U1, . . . , Ur,

V1, . . . , Vc, and Sij with i = 1, . . . , r and j = 1, . . . , c.
1: Partition A into r × c blocks using a clustering or coclustering algorithm.
2: Determine the dense blocks Aij and store their indices (i, j) in S.
3: Determine ranks kij in the low rank approximations of Aij for (i, j) ∈ S.
4: Compute low rank approximation using the truncated SVD according to (3.7).
5: Compute the diagonal blocks in Ū = diag(U1, . . . , Ur) and V̄ = diag(V1, . . . , Vc)

according to (3.8) and (3.9), respectively.
6: Set Sij = Σij when (i, j) ∈ S and compute Sij = UT

i AijVj otherwise.

Remark 3.2. There are important aspects in the current presentation that we do
not address. For example, how does one choose the number of row clusters r and
number of column clusters c? Given this, how does one determine if a given block is
sufficiently dense? And, subsequently, what ranks kij should be used in the block-
wise SVD approximations? Different heuristics may be employed to address these
questions, and it is likely that this will depend on the end application and on the
particular way the clustered matrix approximation will be used in order to solve a
problem. It is also possible to address these tuning aspects in a more stringent way
by considering and optimizing some objective measure that involves aspects of the
clustered matrix approximation, e.g., total memory consumption and performance of
approximation in the end application. Regardless of this, we show in section 4 that

D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1542 BERKANT SAVAS AND INDERJIT S. DHILLON

even simple strategies result in considerable benefits from numerical, theoretical, and
computational points of view.

Remark 3.3. Clearly, the memory requirements for the clustered matrix approxi-
mation A ≈ Ū S̄V̄ T, which is given in block form in (3.10), depend on the dimensions
of A, the number of row and column clusters, the number of dense blocks, and the
ranks kij . It may be the case that the factors Ū , S̄, and V̄ require more memory
storage than the memory needed to store the original (sparse) matrix A. We would
like to clarify that it is not our objective to develop matrix approximations that use
less memory than the original matrix. The intention is to produce memory efficient
matrix approximations for dimensionality reduction purposes. In subsequent steps,
these matrix approximations make it possible to scale up various algorithms while
preserving important structure and information from the original matrix.

3.3. Randomized clustered matrix approximation. The methods we pre-
sented in sections 3.1 and 3.2 compute best rank-kij approximations of the dense
blocks Aij . This is not necessary since the overall approximation of A is not optimal
in terms of rank. We may in fact compute approximations using any method that fits
in the context. In particular, we may employ probabilistic algorithms. We will now
describe the randomized clustered method for the general nondiagonal dense block
structure case, and then derive bounds for the approximation error.

3.3.1. Algorithm. In Algorithm 1, an approximation of the dominant column
space of a matrix is computed. This is done by Y = AΩ, where Ω is a random Gaussian
matrix. In this scenario without clustering, Y uniquely determines the approximation
as A ≈ QQTA, where Q = orth(Y). Subsequently, an approximation to the SVD may
be computed from which the corresponding optimal row space is obtained. In other
words, given Y , both the column space and the row space of the approximation are
determined. In the clustered setting we need to adopt this relation.

Let anm×nmatrix A be partitioned into r×c blocks Aij , with dimensionsmi×nj ,
as shown in (3.6). Our aim is to construct a clustered matrix approximation A ≈
Ū S̄V̄ T, where both Ū and V̄ are block diagonal, orthonormal, and obtained using a
probabilistic approach. As previously, introduce the following sets: S containing index
pairs for all dense blocks; Ri ⊂ S with index pairs for block row i; and Cj ⊂ S with
index pairs for block column j. Introduce now Gaussian matrices Ω(ij) ∈ Rnj×(kij+pij)

with target ranks kij and oversampling parameters pij . Compute

(3.11) Yij = AijΩ
(ij) or Yij = (AijA

T
ij)

qAijΩ
(ij), (i, j) ∈ S,

where q is a small integer. By forming

Yi = [Yici,1 · · · Yici,|Ri|
], (i, ci,1), . . . , (i, ci,|Ri|) ∈ Ri, for i = 1, . . . , r,

we consider the approximation A ≈ PȲA, where Ȳ = diag(Y1, . . . , Yr) and PȲ is
the orthogonal projection onto range(Ȳ). Using Q̄ = orth(Ȳ) we can express the
approximation as A ≈ Q̄(Q̄TA). It follows that Q̄ has the same block diagonal
structure as Ȳ . However, the matrix Q̄TA, representing the associated row space, will
not have a block diagonal structure. Consequently the approximation A ≈ PȲA =
Q̄(Q̄TA) will not be memory efficient.

A block diagonal matrix for the row space of A may be obtained as follows. Using
Qij = orth(Yij), we get the approximations

Aij ≈ QijQ
T
ijAij ≡ QijZ

T
ij , (i, j) ∈ S,

D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CLUSTERED MATRIX APPROXIMATION 1543

Algorithm 4 Randomized clustered matrix approximation.

Input: A, number of row clusters r, number of column clusters c.
Output: Block matrices that form the clustered low rank approximation: U1, . . . , Ur,

V1, . . . , Vc, and Sij with i = 1, . . . , r and j = 1, . . . , c.
1: Partition A into r × c blocks using a clustering or coclustering algorithm.
2: Determine the dense blocks Aij and store their indices (i, j) in the set S.
3: Determine blockwise target ranks kij , oversampling parameters pij , and possibly

a power parameter q.
4: Generate Gaussian random matrices Ω(ij) ∈ Rnj×(kij+pij) and compute Yij ac-

cording to (3.11).
5: Compute Qij = orth(Yij) with (i, j) ∈ S.
6: Compute the row space matrices Zij = AT

ijQij with (i, j) ∈ S.
7: Compute U1, . . . , Ur and V1, . . . , Vc according to (3.12) and (3.13), respectively.
8: Compute the blocks of S̄ with Sij = UT

i AijVj for all i and j.

where Zij = AT
ijQij spans the row space of Aij . We define the probabilistic clustered

approximation to be A ≈ Ū S̄V̄ T, where orthonormal Ū = diag(U1, . . . , Ur) and V̄ =
diag(V1, . . . , Vc) are obtained from

Ui = orth([Qici,1 · · · Qici,|Ri|
]), (i, ci,1), . . . , (i, ci,|Ri|) ∈ Ri, i = 1, . . . , r,(3.12)

Vj = orth([Zrj,1j · · · Zrj,|Cj |j
]), (rj,1, j), . . . , (rj,|Cj |, j) ∈ Cj , j = 1, . . . , c.(3.13)

Then the optimal S̄ is given by Sij = UT
i AijVj for all i and j. The entire process is

presented in Algorithm 4.

3.3.2. Analysis and error bounds. The main theoretical results of this section
are Theorems 3.4 and 3.5. We will first introduce necessary variables to conduct the
analysis. Recall that S contains the set of index pairs indicating the dense blocks of
A. Let T contain all of the remaining index pairs. Clearly S and T are disjoint and
S ∪ T = {(i, j) | i = 1, . . . , r, j = 1, . . . , c}. Let each block Aij with (i, j) ∈ S have
the full SVD

(3.14) Aij = U (ij)Σ(ij)(V (ij))T = [U
(ij)
1 U

(ij)
2]

[
Σ

(ij)
1 0

0 Σ
(ij)
2

]
[V

(ij)
1 V

(ij)
2]T.

We have partitioned the SVD as in (2.4) so that Σ
(ij)
1 contains the top kij singular

values. U (ij) and V (ij) are partitioned accordingly. Introduce nj×(kij +pij) matrices
Ω(ij) and let Yij = AijΩ

(ij). Define further

(3.15) Ω
(ij)
1 = (V

(ij)
1)TΩ(ij), Ω

(ij)
2 = (V

(ij)
2)TΩ(ij), (i, j) ∈ S.

In the following analysis we will consider two different approximations. The first one
is given by

A ≈ Â = Ū S̄V̄ T ≡ Ū(ŪTAV̄)V̄ T,

or, equivalently, by considering each block separately,

(3.16) Aij ≈ Âij = UiSijV
T
j ≡ Ui(U

T
i AijVj)V

T
j ∀(i, j),

where Ū = diag(U1, . . . , Ur), V̄ = diag(V1, . . . , Vc), and Sij are computed according
to Algorithm 4. Observe that this low rank approximation is valid for all the blocks.

D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1544 BERKANT SAVAS AND INDERJIT S. DHILLON

In addition, for (i, j) ∈ S, we have low rank approximation of Aij in terms of Yij
given by

(3.17) Aij ≈ Ãij = PYij
Aij ≡ Ũ (ij)Σ̃(ij)(Ṽ (ij))T, (i, j) ∈ S,

where PYij is the orthogonal projector onto range(Yij). In (3.17) we also introduce the

SVD of Ãij . Note that approximations in (3.16) are valid for all blocks, while those

in (3.17) are valid only for the dense blocks. It is clear that range(Ũ (ij)) ⊆ range(Ui)
as well as range(Ṽ (ij)) ⊆ range(Vj) when (i, j) ∈ S. We conclude this by observing
that all dense blocks from the ith block row of A contribute to Ui, while only Aij

contributes to Ũ (ij). Similarly, all dense blocks in the jth block column contribute to
Vj , while only Aij contributes to Ṽ (ij). It follows that Âij is a better approximation

than Ãij for all (i, j) ∈ S. Now we state the first theorem.

Theorem 3.4. Let A be a given m×n matrix with an r× c block partitioning as
in (3.6). Introduce the SVDs of Aij and a partitioning of the corresponding Σ(ij) as in
(3.14). Let S be a set of pairwise indices, so that indices of at least one block from every
block row and block column are present. For (i, j) ∈ S, let kij be a target rank for Aij

and pij a corresponding oversampling parameter such that kij + pij ≤ min(mi, nj).

Introduce matrices Ω(ij) ∈ Rnj×(kij+pij), form Ω
(ij)
1 and Ω

(ij)
2 according to (3.15),

and assume each Ω
(ij)
1 has full rank. Compute the approximation Â = Ū S̄V̄ T of A

according to Algorithm 4. Then the approximation error is bounded by

‖A− Â‖2∗ ≤
∑

(i,j)∈S

(
‖Σ(ij)

2 Ω
(ij)
2 (Ω

(ij)
1)†‖2∗ + ‖Σ(ij)

2 ‖2∗
)

+
∑

(i,j)∈T

‖Aij‖2∗,

where the norm ‖ · ‖∗ denotes either the spectral or the Frobenius norm.

Proof. The proof is somewhat cumbersome but straightforward. A number of
inequalities lead to the bound. We will write those out and explain them one by one.

‖A− Â‖2∗ = ‖A− Ū S̄V̄ T‖2∗

≤
r,c∑

i,j=1

‖Aij − Âij‖2∗ =

r,c∑
i,j=1

‖Aij − UiSijV
T
j ‖2∗(3.18)

≤
∑

(i,j)∈S

‖Aij − Ũ (ij)Σ̃(ij)(Ṽ (ij))T‖2∗ +
∑

(i,j)∈T

‖Aij − UiSijV
T
j ‖2∗(3.19)

=
∑

(i,j)∈S

‖(I − PYij)Aij‖2∗ +
∑

(i,j)∈T

‖Aij − UiSijV
T
j ‖2∗(3.20)

≤
∑

(i,j)∈S

(
‖Σ(ij)

2 Ω
(ij)
2 (Ω

(ij)
1)†‖2∗ + ‖Σ(ij)

2 ‖2∗
)

+
∑

(i,j)∈T

‖Aij‖2∗.(3.21)

1. The inequality in (3.18) is due to the block partitioning of the residual. In
the Frobenius norm case we have equality. In the following equality we have
used that Âij = UiSijV

T
j .

2. In (3.19) we split the summation into two parts: one with (i, j) ∈ S, which
corresponds to the dense Aij , and one with (i, j) ∈ T , which corresponds to

the remaining blocks. Using Âij and Ãij = Ũ (ij)Σ̃(ij)(Ṽ (ij))T, the inequality
follows from

‖Aij−UiSijV
T
j ‖∗ = ‖Aij−Âij‖∗ ≤ ‖Aij−Ãij‖∗ = ‖Aij−Ũ (ij)Σ̃(ij)(Ṽ (ij))T‖∗.

D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CLUSTERED MATRIX APPROXIMATION 1545

Recall that range(Ũ (ij)) ⊆ range(Ui) and range(Ṽ (ij)) ⊆ range(Vj).
3. In (3.20) we use the results of (3.17).
4. Finally, in (3.21) we use

|(I − PYij
)Aij‖2∗ ≤ ‖Σ

(ij)
2 Ω

(ij)
2 (Ω

(ij)
1)†‖2∗ + ‖Σ(ij)

2 ‖2∗, (i, j) ∈ S,

which is proved in [21, Lem. 4.2]. In the summation with (i, j) ∈ T we have
removed the approximating term, as the corresponding Aij blocks are not
dense and consequently should have small norms.

Given the deterministic error bound of Theorem 3.4 we can state the theorem
with respect to expected error.

Theorem 3.5. Using the notation introduced in Theorem 3.4, where now Ωij are
standard Gaussian matrices, the expected errors in the Frobenius and spectral norms
are bounded by

E‖A− Â‖F ≤

(∑
(i,j)∈S

(
1 +

kij
pij − 1

)
‖Σ(ij)

2 ‖2F +
∑

(i,j)∈T

‖Aij‖2F

)1/2

,(3.22)

E‖A− Â‖2 ≤
∑

(i,j)∈S

((
1 +

√
kij√

pij − 1

)
‖Σ(ij)

2 ‖2 +
e
√
kij + pij

pij
‖Σ(ij)

2 ‖F

)
(3.23)

+
∑

(i,j)∈T

‖Aij‖2.

Proof. Both bounds for the expected error norm follow from Theorem 3.4 and
from analysis similar to that in the proofs of Theorems 10.5 and 10.6 in [21].

We will now extend the spectral norm version of the deterministic and probabilis-
tic error bounds of Theorems 3.4 and 3.5.

Corollary 3.6. Let Yij = (AijA
T
ij)

qAijΩ
(ij) when (i, j) ∈ S with integer power

parameter q > 0 as in (3.11). Using the notation introduced in Theorem 3.4, the
following deterministic error bound holds:

‖A− Â‖22 ≤
∑

(i,j)∈S

((
‖Ω(ij)

2 (Ω
(ij)
1)†‖22 + 1

)1/(2q+1)

‖Σ(ij)
2 ‖22

)
+

∑
(i,j)∈T

‖Aij‖22.

Corollary 3.7. Using the notation introduced in Corollary 3.6 and Theorem
3.4, the following expected error bound holds:

E‖A− Â‖2 ≤
∑

(i,j)∈S

((
1 +

√
kij√

pij − 1

)∥∥∥(Σ
(ij)
2

)2q+1 ∥∥∥
2

+
e
√
kij + pij

pij

∥∥∥(Σ
(ij)
2

)2q+1 ∥∥∥
F

)1/(2q+1)

+
∑

(i,j)∈T

‖Aij‖2.

Proof. Both error bounds are direct consequences of Theorem 3.4 and [21, Thms.
9.1 and 9.2] for the deterministic bound and [21, Cor. 10.10] for the probabilistic
bound.

D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1546 BERKANT SAVAS AND INDERJIT S. DHILLON

4. Experiments and discussion. In the following series of experiments we will
compare various results of the developed framework with results from the truncated
SVD. We will focus on the following key properties, which we think are of general
importance both from a practical and a theoretical point of view: quality of the
approximation; clustering structure that is preserved in the approximation; computa-
tional efficiency in terms of memory and time; row and column subspace properties.

4.1. Data sets, algorithms, and experimental setup. The presented ex-
periments are based on the Notre Dame actors data [3], which is a bipartite graph
representing links between movies and actors from the Internet Movie Database,7 and
LiveJournal data, which is a directed social network graph representing relationships
among LiveJournal users [2, 25]. In all experiments we used the largest connected
component8 of each graph. The preprocessing resulted in a 81,823 × 94,003 matrix
with 1,016,127 nonzeros for the Notre Dame data and a 3,828,682 × 3,828,682 non-
symmetric matrix with 65,825,429 nonzeros for the LiveJournal data. In both graphs
the links are unweighted, giving all nonzero entries equal to one.

We will have three different SVD-based methods for computing approximations:
(1) regular truncated SVD; (2) Algorithm 2—clustered approximation with diagonal
block structure; (3) Algorithm 3—clustered approximation with nondiagonal block
structure. Replacing the SVD computations with the probabilistic methods described
in section 3.3 yields three more methods for computing matrix approximations. Im-
plementation of all presented algorithms is provided in this paper’s supplementary
material (local/web 11.0MB).

Given a matrix A and its low rank approximation Â = USV T, obtained by any
of the methods we have discussed, we will measure the approximation accuracy using
the relative error in the Frobenius norm,

(4.1) ‖A− Â‖F /‖A‖F =
(
‖A‖2F − ‖S‖2F

)1/2
/‖A‖F .

We see that the norm of the residual can be computed without explicitly forming Â.

4.2. Clustering properties of the data. The first step in our framework is
to partition rows and columns into disjoint sets. Let A be an m×n matrix with r× c
block structure. Let |A| denote the number of nonzero entries in A; then the fraction
of nonzeros contained in the diagonal blocks becomes φd =

∑
i |Aii|/|A|. Similarly if

S denotes the set of pairwise indices for dense blocks in the nondiagonal case, then
φS =

∑
(i,j)∈S |Aij |/|A| is the fraction of nonzero entries of A contained in all dense

blocks. We consider a block Aij to be dense if |Aij |/|A| ≥ τ , where τ is a threshold
value. Three different clusterings are performed on each data set using GRACLUS or
METIS. The Notre Dame data was clustered using the matrix in (2.3). Information
related to the clustering and introduced quantities is presented in Table 1. It is not
our intention to compare different clustering algorithms, but rather to indicate that
our framework can be used with different clustering methods and different objectives.
The particular choice of clustering algorithm will likely depend on the domain area
from which the data originates.

In the left and middle panels of Figure 5 we illustrate the dense blocks of A for
two cases from Table 1. A is structured as in (3.6). The right panel of Figure 5 shows
the fraction of nonzeros of all blocks in a 61×61 clustering of the LiveJournal matrix.

7http://www.imdb.com/
8For a bipartite graph represented by B, both BTB and BBT consist of a single component.

D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

cmapp.zip
http://epubs.siam.org/doi/suppl/10.1137/15M1042206/suppl_file/cmapp.zip
http://www.imdb.com/

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CLUSTERED MATRIX APPROXIMATION 1547

Table 1
Clustering related information. r and c are the number of row and column clusters, respectively;

φd is the fraction of nonzeros within the diagonal blocks; τ is the threshold used to determine the
dense blocks; |S| is the number of dense blocks; r× c is the total number of blocks; φS is the fraction
of nonzeros within the dense blocks; and the last column indicates the clustering method used.

Data set r = c φd in % τ in % |S| r × c φS in % Clustering
10 83.4 0.5 18 100 92.5 METIS

Notre Dame 20 75.3 0.3 45 400 90.5 METIS
30 69.4 0.2 76 900 85.8 METIS
22 76.9 0.2 37 484 84.3 GRACLUS

LiveJournal 61 69.3 0.05 134 3,761 79.3 GRACLUS
117 66.3 0.04 222 13,689 75.2 GRACLUS

0 5 10 15 20 25 30

0

5

10

15

20

25

30

76 dense blocks

Notre Dame, 30 clusters

0 10 20 30 40 50 60

0

10

20

30

40

50

60

134 dense blocks

LiveJournal, 61 clusters

134 1000 2000 3000
10−6

10−4

10−2

100

LiveJournal, 61 clusters

Blocks sorted according to number of non−zero entries

Fr
ac

tio
n

of
 n

on
−z

er
os

 in
 %

Fig. 5. Left: Dense blocks of a 30 × 30 clustering of the Notre Dame matrix using τ = 0.2.
Middle: Dense blocks in a 61 × 61 clustering of the LiveJournal matrix using τ = 0.05. Right:
Fraction of not (in descending order) of all blocks in the 61 × 61 clustering of the LiveJournal
matrix. Clearly, most blocks contain a very small fraction of nonzeros. The × mark at x = 134
indicates the last block considered to be dense.

It is clear from the shape of the curve that using a smaller threshold τ (than the one
corresponding to the × mark at x = 134) will considerably increase the number of
dense blocks, resulting in a clustered matrix approximation that will use much more
memory. Furthermore, the fact that a small number of blocks have a larger fraction
of nonzeros is an indication of structure present in the network. This structure is
preserved in the clustered low rank approximation.

4.3. Approximation quality. We will now compare quality of approximations
obtained using our framework and with truncated SVD approximations using (1.1).

LiveJournal. In Figure 6 we present results for the LiveJournal data. The left
panel shows results using Algorithm 2 for all three clustering cases from Table 1. Let
KLJ = {25, 50, 100, 150, 200}. For each clustering case we compute five approxima-
tions using kii ∈ KLJ, and in each approximation we use the same kii in all diagonal
blocks Aii. In the right panel we use Algorithm 3 with the clustering and correspond-
ing threshold values from Table 1. Again, for each clustering case we compute five
approximations using kij ∈ KLJ, and in each approximation we use the same kij for
all dense blocks. We also compute five regular truncated SVD approximations using
(1.1) with k ∈ KLJ. Each curve corresponds to a specific clustering case, and each
mark on a curve corresponds to a particular rank. Note that the x-axis in the plots
represents memory usage (in terms of floating point numbers) and not the rank of the
approximation. Clearly, clustering substantially improves the quality of the approx-
imation! Additional improvement is seen by increasing the number of clusters! We

D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1548 BERKANT SAVAS AND INDERJIT S. DHILLON

0 0.5 1 1.5 2 2.5
x 109

86

88

90

92

94

96

98

100

Number of parameters (memory)

R
el

at
iv

e
er

ro
r i

n
%

Diagonal dense block structure

svds
22 clusters w/ svds
61 clusters w/ svds
117 clusters w/ svds

0 1 2 3 4 5
x 109

86

88

90

92

94

96

98

100

Memory usage (number of floating point numbers)

R
el

at
iv

e
er

ro
r i

n
%

Non−diagonal dense block structure

SVD
22 x 22 clusters w/ SVD
61 x 61 clusters w/ SVD
117 x 117 clusters w/ SVD

Fig. 6. Relative errors for the LiveJournal matrix approximations. The left panel shows results
for the clustered low rank approximation using only the diagonal blocks, while the right panel uses a
nondiagonal dense block structure.

also see that increasing the number of clusters increases the memory usage. This is
particularly obvious for the nondiagonal clustered approximation in the right panel.
A closer examination reveals that approximations with Algorithm 2 are a bit more
memory efficient than approximations with Algorithm 3. This is to be expected since
many nondiagonal dense blocks have a relatively small fraction of nonzeros compared
to the diagonal blocks; thus approximating these “smaller” blocks with the same rank
as the “heavier” blocks is costly. On the other hand Algorithm 3 is better in terms
of preserving the structure of the original matrix. Using different ranks for different
blocks could be a better approach to finding a balance between memory usage and
desired level of structure preservation.

Notre Dame. In Figure 7 we show results of experiments for the Notre Dame
matrix. The setting is similar. In the left panel we use Algorithm 2, and in the
right panel we use Algorithm 3, with the three clustering cases from Table 1 for each
algorithm. For each clustering case we compute 10 approximations using kij ∈ KND =
{10, 20, . . . , 100}, and for each approximation we use the same kij for all dense blocks.
In truncated SVD approximations we use ranks k ∈ KR = {25, 50, 100, 150, . . . , 500}.
Also in this case, clustering significantly improves the quality of the approximation
compared to the truncated SVD approximation. Although increasing the number of
clusters does give better approximations, the benefit seems to stagnate. For example,
there is only slight improvement in Algorithm 3 (right panel) when increasing the
clustering from 20×20 to 30×30. Also in this case one may benefit by using different
ranks for different dense blocks in order to balance approximation quality, memory
consumption, and structure preservation.

4.4. Blockwise information content. We claimed previously that the trun-
cated SVD captures information from a few dominating clusters. Of course, this is
not desirable if cluster structure of the matrix is valuable. In Figure 8 we present
two experiments that validate this claim. Let A be partitioned as in (3.6). We will
investigate and compare the blockwise relative errors ‖Aij − Âij‖F /‖Aij‖F , where

Âij is obtained by either the truncated SVD or Algorithm 3.

Notre Dame. For the Notre Dame matrix we used a rank-500 truncated SVD
yielding 94.4% in relative error using about 8.8 × 107 floating point numbers (this

D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CLUSTERED MATRIX APPROXIMATION 1549

0 0.5 1 1.5 2 2.5 3 3.5 4
x 107

82

84

86

88

90

92

94

96

98

100

Memory usage (number of floating point numbers)

R
el

at
iv

e
er

ro
r i

n
%

Diagonal dense block structure

SVD
10 x 10 clusters w/ SVD
20 x 20 clusters w/ SVD
30 x 30 clusters w/ SVD

0 1 2 3 4 5 6 7 8
x 107

82

84

86

88

90

92

94

96

98

100

Memory usage (number of floating point numbers)

R
el

at
iv

e
er

ro
r i

n
%

Non−diagonal dense block structure

SVD
10 x 10 clusters w/ SVD
20 x 20 clusters w/ SVD
30 x 30 clusters w/ SVD

Fig. 7. Relative errors for the Notre Dame matrix. Left panel shows results for the diagonal
clustered approximation, and the right panel shows the nondiagonal dense block structure.

5 10 15 20 25 30 35 40 45

60

70

80

90

100

Dense blocks from the clustering

Bl
oc

k−
w

is
e

re
la

tiv
e

er
ro

r i
n

%

Non−diagonal dense block structure

SVD, rank 500
20 x 20 clusters, rank 100

20 40 60 80 100 120

60

70

80

90

100

Dense blocks from the clustering

Bl
oc

k−
w

is
e

re
la

tiv
e

er
ro

r i
n

%

Non−diagonal dense block structure

SVD, rank 200
61 x 61 clusters, rank 50

Fig. 8. Information captured from the dense blocks in a regular and clustered matrix approx-
imation. The blockwise relative error is ‖Aij − Âij‖F /‖Aij‖F for (i, j) ∈ S for the Notre Dame
matrix (left) and the LiveJournal matrix (right).

last entry is off the chart in Figure 7). Algorithm 3 uses the 20× 20 clustering from
Table 1, giving 45 dense blocks. Each dense block is approximated with a rank-100
truncated SVD, achieving about 87% in overall relative error with 6 × 107 (about
30% less memory) floating point numbers. We see in Figure 8 that the regular SVD
achieves about 90% relative error in three of the 45 dense blocks, while the relative
error for the remaining blocks is 96–100%. Algorithm 3, on the other hand, achieves
about 90% or less in relative error from all dense blocks, and mean relative error of
81%—a substantial improvement from the 98% in mean relative error for the regular
truncated SVD approximation.

LiveJournal. For the LiveJournal matrix we used a rank-200 truncated SVD
giving 97.3% in relative error with 1.5× 109 floating point numbers. In Algorithm 3
we use the 61×61 clustering from Table 1, giving 134 dense blocks. Each dense block
was approximated with a rank-50 truncated SVD. The resulting approximation gives
94% in overall relative error using 0.9× 109 (about 40% less memory) floating point
numbers. The right panel of Figure 8 shows a similar result. The regular truncated

D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1550 BERKANT SAVAS AND INDERJIT S. DHILLON

0 0.5 1 1.5 2 2.5
x 107

86

88

90

92

94

96

98

100

Memory usage (number of floating point numbers)

R
el

at
iv

e
er

ro
r i

n
%

Diagonal dense block structure

Rand. alg, q = 2
SVD
10 x 10 clusters w/ rand. alg, q = 2
10 x 10 clusters w/ SVD
20 x 20 clusters w/ rand. alg, q = 2
20 x 20 clusters w/ SVD

0 1 2 3 4 5 6
x 107

86

88

90

92

94

96

98

100

Memory usage (number of floating point numbers)

R
el

at
iv

e
er

ro
r i

n
%

Non−diagonal dense block structure

Rand. alg, q = 2
SVD
10 x 10 clusters w/ rand. alg, q = 2
10 x 10 clusters w/ SVD
20 x 20 clusters w/ rand. alg, q = 2
20 x 20 clusters w/ SVD

Fig. 9. Relative errors for the Notre Dame matrix approximations. The left panel shows results
for the clustered matrix approximation using diagonal dense block structure, while the right panel
uses a nondiagonal dense block structure.

SVD achieves good approximation for three blocks, while the remaining 131 dense
blocks are hardly approximated at all. Our method again captures a considerable
amount of information from each dense block, resulting in 92.6% mean relative error
over all dense blocks. The corresponding mean relative error for the regular truncated
SVD approximation is 99.0%.

4.5. Performance of probabilistic clustered algorithms. We will now com-
pare the performance of probabilistic clustered methods with Algorithms 2 and 3 as
well as nonclustered methods. We will experiment with the Notre Dame matrix using
the 10 × 10 and 20 × 20 clusterings from Table 1. In the left panel of Figure 9 we
use Algorithm 2 and a probabilistic version of it, in which the blockwise SVD ap-
proximations are replaced with probabilistic approximations. In the right panel we
use Algorithms 3 and 4. All clustered methods use kij ∈ KND when approximating
the dense blocks. In all probabilistic methods the power parameter q = 2. We do
not consider q = 0 as this case gives considerably higher relative errors [30]. In both
panels we also present nonclustered approximations with ranks k ∈ KR using the
truncated SVD and a corresponding probabilistic method.

Again, all clustered methods, including the probabilistic ones, give a much better
approximation than nonclustered methods. We see that the SVD-based approxima-
tions give better accuracy (lower error rate), but for a higher computational price,
as will be shown in section 4.6. However, the difference between a probabilistic and
the corresponding SVD-based approach can be made smaller by using a higher power
parameter, e.g., q = 4. The computational amount will increase slightly, but it will
still be faster than the SVD-based approach.

4.6. Timing comparisons. In Figure 10 we present two plots with timing re-
sults using the cputime-function in MATLAB for the experiments in Figure 9. Several
observations can be made: (1) We see in both panels that increasing the number of
clusters in the SVD-based methods reduces the computational time. Thus, computing
SVDs of many small matrices is faster than computing the SVD of a single big matrix.
(2) The execution time for all probabilistic methods is considerably faster than those
of SVD-based methods. (3) There are very small timing differences in the proba-
bilistic methods when considering different numbers of clusters. (4) We would like to

D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CLUSTERED MATRIX APPROXIMATION 1551

0 0.5 1 1.5 2 2.5
x 107

0

1

2

3

4

5

6

7

8

9

10

Memory usage (number of floating point numbers)

C
PU

tim
e

in
 m

in
ut

es

Diagonal dense block structure

Rand. alg, q = 2
SVD
10 x 10 clusters w/ rand. alg, q = 2
10 x 10 clusters w/ SVD
20 x 20 clusters w/ rand. alg, q = 2
20 x 20 clusters w/ SVD

0 1 2 3 4 5 6
x 107

0

1

2

3

4

5

6

7

8

9

10

Memory usage (number of floating point numbers)

C
PU

tim
e

in
 m

in
ut

es

Non diagonal dense block structure

Rand. alg, q = 2
SVD
10 x 10 clusters w/ rand. alg, q = 2
10 x 10 clusters w/ SVD
20 x 20 clusters w/ rand. alg, q = 2
20 x 20 clusters w/ SVD

Fig. 10. Timing results corresponding to the experiments in Figure 9.

point out that these timings include the time taken by the fast clustering procedures,
which for these experiments is about two to three seconds.

4.7. Principal angles. Assume we have a truncated SVD approximation A ≈
UΣV T and a clustered approximation A ≈ Ū Σ̄V̄ T obtained with one of our methods.
It is very relevant to ask, how close is range(Ū) to range(U)? The question can be
answered by examining the singular values σi of UTŪ , since σi = cos (θi) are cosines
of the principal angles between the two subspaces [6]. In Figure 11 we present cosines
of the principal angles for several experiments on both the Notre Dame matrix (left
panel) and the LiveJournal matrix (right panel). The subspaces are close to each
other if many σi are close to one. We use the same clustering cases as previously.
Additional information for each case, e.g., relative errors and memory usage, can be
obtained from previously presented figures.

Notre Dame. For this case, U is obtained from a rank-500 truncated SVD
approximation. We have six different settings for the computation of Ū that are
specified in the figure legend. It is easy to verify that each of the following claims
brings range(Ū) closer to the range(U) in significant jumps: (1) increasing the number
of clusters; (2) increasing the rank in the blockwise approximations; and (3) using a
nondiagonal block structure instead of diagonal blocks only. For example, to verify
the third claim, compare the two green curves, or the two blue curves (color figure
available online).

LiveJournal. The situation is similar for the LiveJournal matrix. Here, we use
U from a rank-200 truncated SVD approximation. For Ū in the clustered approx-
imation we only use Algorithm 3 (nondiagonal block structure). We compute one
approximation for each clustering setting from Table 1, and in each approximation
we use kij = 50 in the blockwise approximations. From Figure 6 we see that all three
clustered approximations have about the same memory usage as a rank-100 truncated
SVD approximation. Thus, Ū uses about half the memory required for U . We observe
that in all three clustered approximations range(Ū) is very close to a 170-dimensional
subspace of range(U). Also in this case, increasing the number of clusters produces
range(Ū) that approach range(U).

Evidently, our framework produces matrix approximations of A with range(Ū)
very close to range(U), which is the dominant subspace for the columns space of A.

D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1552 BERKANT SAVAS AND INDERJIT S. DHILLON

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Cosine of principal angles (column subspace)

Notre Dame matrix

10 x 10 clusters, rank 50, D
20 x 20 clusters, rank 50, D
20 x 20 clusters, rank 50, ND
20 x 20 clusters, rank 100, D
20 x 20 clusters, rank 100, ND
30 x 30 clusters, rank 100, ND

100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Cosine of principal angles (column subspace)

LiveJournal matrix

22 x 22 clusters, rank 50, ND
61 x 61 clusters, rank 50, ND
117 x 117 clusters, rank 50, ND

Fig. 11. Left: Cosine of the principal angles for the Notre Dame matrix for six different exper-
iments. Right: Cosine of the principal angles for the LiveJournal matrix. “D” in the description
indicates diagonal dense structure, and “ND” indicates a nondiagonal dense block structure. Also
note that the x-axis for the right panel starts at 100, as all three curves are very close to 1 in the
omitted part. (Color available online.)

Consequently, the clustered matrix approximations more or less contain the truncated
SVD approximation! Experiments with V and V̄ , which approximate the row space
of A, show a similar behavior and lead to the same conclusions.

5. Related work. In a recent publication Savas and Dhillon [30] introduced a
first approach to clustered low rank approximation of graphs (square matrices) in
information science applications. Their approach has proven to perform exception-
ally well in a number of applications [34, 32, 36]. Subsequently a multilevel clustering
approach was developed in order to speed up the computation of the dominant eigen-
values and eigenvectors of massive graphs [33]. In comparison with [30], the current
presentation extends the clustered matrix approximation approach in several ways.
(1) The clustered matrix approximation with dense diagonal block structure, i.e.,
when r = c, can now be applied on rectangular matrices or bipartite graphs. (2)
For both graphs and bipartite graphs (square and rectangular matrices) we may use
a different number of row and column clusters, i.e., r 6= c, and allow for contri-
bution from off-diagonal blocks to the matrix approximation. The resulting matrix
approximation has the potential to preserve even more structural information from
the original matrix. (3) We have also developed probabilistic algorithms for the entire
clustered matrix approximation framework. In addition, we have derived several new
theoretical results with deterministic and probabilistic error bounds.

Clustering has previously been used in similar ways to obtain low rank matrix
approximations. Dhillon and Modha [14] use spherical k-means clustering on m × n
term document matrix A so that the columns (documents) of A are clustered into k
clusters. From each cluster a concept vector is derived which is later used as a basis
to obtain a low rank approximation of A. In [9, 41], similarly to [14], clustering is
used to partition either the rows or columns of an m×n matrix A. An approximation
of the data matrix A is obtained using rank-1 or rank-ki truncated SVD approxi-
mations of each row or column cluster. In Zeimpekis and Gallopoulos [41] and Gao
and Zhang [19], the authors use similar clustering strategies to extended low rank
approximation methods to clustered latent semantic indexing. In [42] dimensional-

D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CLUSTERED MATRIX APPROXIMATION 1553

ity reduction is obtained via class representatives, where a clustering of the matrix
columns is performed and from each cluster a number of representative vectors are
extracted. An orthonormal basis is computed using these representatives in order
to approximate A. In a similar setting, Zhang and Zha [45] consider structural and
perturbation analysis of truncated SVDs for column partitioned matrices. Necessary
and sufficient conditions are given in order to reconstruct the truncated SVD of the
original data matrix A from the truncated SVDs of its block-column-wise partition-
ing. Boutsidis, Sun, and Anerousis [8] use clustering for the column subset selection
problem when dealing with streaming matrix data. In a similar approach with data
sampling, Zhang and Kwok [44] present a clustered Nyström method for large scale
manifold learning applications, where the authors approximate the eigenfunctions of
associated integral equation kernels.

An important difference of our method, in comparison with the approximations
in [14, 9, 41, 45, 8], is that we cluster rows and columns simultaneously. In addition
U = diag(U1, . . . , Ur) and V = diag(V1, . . . , Vc), which are used to approximate A,
are sparse and orthogonal by construction. As a consequence of the block structure
of U and V we save in storage since only the nonzero blocks are stored. The basis
matrices in the related methods have no zero structure that allows memory storage
savings. In column subset selection methods and the Nyström method, only part of
the data is used to compute an approximation of A, but in the clustered low rank
approach all entries of A influence the approximation.

6. Conclusions. In this paper we have developed a framework for matrix ap-
proximations that preserve the important structure of the underlying data. The struc-
tural information of a matrix A is extracted by a (co)clustering algorithm that leads
to a block partitioning of A. For matrices arising from a wide range of applications,
only a small fraction of the blocks is dense, which thus contains a sufficient amount
of information. By explicitly computing approximations of all dense blocks we pre-
serve the structural (cluster) information of the data. Subsequently, we extend the
blockwise approximations to an approximation for the entire matrix A. We have
also developed a probabilistic approach within our framework that uses randomness
to compute the clustered matrix approximation. For the probabilistic algorithms we
proved deterministic and probabilistic bounds for the norm of the approximation er-
rors. The clustered matrix approximation has the form A ≈ Ū S̄V̄ T with orthonormal
and block diagonal Ū and V̄ .

Based on a series of experiments we have made a number of observations that
highlight the benefits of our framework. We conclude that, using a fixed amount
of memory, our approach produces substantially more accurate approximations than
truncated SVD approximations, which are optimal with respect to rank; our algo-
rithm is faster (all steps included) than the corresponding truncated SVD algorithm;
a block-by-block comparison reveals that, in our method, a significant amount of in-
formation is captured from all dense blocks, whereas the truncated SVD captures
information from only a few dominant blocks; in addition to higher accuracy, higher
memory efficiency, shorter execution times, and structure preservation in our method,
subspace analysis reveals that the corresponding truncated SVD approximation is al-
most entirely contained in the clustered approximation.

REFERENCES

[1] A. Abou-Rjeili and G. Karypis, Multilevel algorithms for partitioning power-law graphs, in
IEEE International Parallel & Distributed Processing Symposium (IPDPS), 2006.

D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1554 BERKANT SAVAS AND INDERJIT S. DHILLON

[2] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan, Group formation in large
social networks: Membership, growth, and evolution, in Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’06),
ACM, New York, 2006, pp. 44–54.

[3] A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286
(1999), pp. 509–512.

[4] M. Berry, Survey of Text Mining: Clustering, Classification, and Retrieval, Springer, New
York, 2003.

[5] Å. Björck, Numerical Methods in Matrix Computations, Springer, New York, 2015.
[6] Å. Björck and G. H. Golub, Numerical methods for computing angles between linear sub-

spaces, Math. Comp., 27 (1973), pp. 579–594.
[7] C. Boutsidis, M. W. Mahoney, and P. Drineas, An improved approximation algorithm for

the column subset selection problem, in Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA ’09), SIAM, Philadelphia, 2009, pp. 968–977,
doi:10.1137/1.9781611973068.105.

[8] C. Boutsidis, J. Sun, and N. Anerousis, Clustered subset selection and its applications on IT
service metrics, in Proceeding of the 17th ACM Conference on Information and Knowledge
Management (CIKM ’08), ACM, New York, 2008, pp. 599–608.

[9] V. Castelli, A. Thomasian, and C.-S. Li, CSVD: Clustering and singular value decompo-
sition for approximate similarity search in high-dimensional spaces, IEEE Trans. Knowl.
Data Engrg., 15 (2003), pp. 671–685.

[10] N. Cristianini, J. Shawe-Taylor, and J. S. Kandola, Spectral kernel methods for clustering,
in Advances in Neural Information Processing Systems 14, MIT Press, 2001, pp. 649–655.

[11] S. Deerwester, Improving information retrieval with latent semantic indexing, in Proceedings
of the 51st ASIS Annual Meeting (ASIS ’88) C. L. Borgman and E. Y. H. Pai, eds., Proc.
ASIS Ann. Meeting 25, American Society for Information Science, 1988, pp. 36–40.

[12] I. S. Dhillon, Co-clustering documents and words using bipartite spectral graph partitioning,
in Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ACM, New York, 2001, pp. 269–274.

[13] I. S. Dhillon, Y. Guan, and B. Kulis, Weighted graph cuts without eigenvectors: A multilevel
approach, IEEE Trans. Pattern Anal. Mach. Intell., 29 (2007), pp. 1944–1957.

[14] I. S. Dhillon and D. S. Modha, Concept decompositions for large sparse text data using
clustering, Machine Learning, 42 (2001), pp. 143–175.

[15] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices II:
Computing a low-rank approximation to a matrix, SIAM J. Comput., 36 (2006), pp. 158–
183, doi:10.1137/S0097539704442696.

[16] C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psy-
chometrika, 1 (1936), pp. 211–218.

[17] E. Estrada and D. J. Higham, Network properties revealed through matrix functions, SIAM
Rev., 52 (2010), pp. 696–714, doi:10.1137/090761070.

[18] M. Filippone, F. Camastra, F. Masulli, and S. Rovetta, A survey of kernel and spectral
methods for clustering, Pattern Recognition, 41 (2008), pp. 176–190.

[19] J. Gao and J. Zhang, Clustered SVD strategies in latent semantic indexing, Inform. Process.
Management, 41 (2005), pp. 1051–1063.

[20] L. Hagen and A. B. Kahng, New spectral methods for ratio cut partitioning and clustering,
IEEE Trans. Computer-Aided Design Integrated Circuits Syst., 11 (1992), pp. 1074–1085.

[21] N. Halko, P. G. Martinsson, and J. A. Tropp, Finding structure with randomness: Prob-
abilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53
(2011), pp. 217–288, doi:10.1137/090771806.

[22] J. Kunegis and A. Lommatzsch, Learning spectral graph transformations for link predic-
tion, in Proceedings of the 26th Annual International Conference on Machine Learning
(ICML ’09), ACM, New York, 2009, pp. 561–568.

[23] J. Leskovec, J. Kleinberg, and C. Faloutsos, Graph evolution: Densification and shrinking
diameters, ACM Trans. Knowl. Discov. Data, 1 (2007), 2.

[24] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, Statistical properties of com-
munity structure in large social and information networks, in Proceeding of the 17th Inter-
national Conference on World Wide Web (WWW ’08), ACM, New York, 2008, pp. 695–704.

[25] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, Community structure in large
networks: Natural cluster sizes and the absence of large well-defined clusters, Internet
Math., 6 (2009), pp. 29–123.

[26] D. Liben-Nowell and J. Kleinberg, The link-prediction problem for social networks, J. Amer.
Soc. Inform. Sci. Technol., 58 (2007), pp. 1019–1031.

D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://dx.doi.org/10.1137/1.9781611973068.105
http://dx.doi.org/10.1137/S0097539704442696
http://dx.doi.org/10.1137/090761070
http://dx.doi.org/10.1137/090771806

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

CLUSTERED MATRIX APPROXIMATION 1555

[27] Z. Lu, B. Savas, W. Tang, and I. S. Dhillon, Supervised link prediction using multi-
ple sources, in Proceedings of the 2010 IEEE International Conference on Data Mining
(ICDM), 2010, pp. 923–928.

[28] A. Y. Ng, M. I. Jordan, and Y. Weiss, On Spectral Clustering: Analysis and an Algorithm,
in Advances in Neural Information Processing Systems 14, MIT Press, 2001, pp. 849–856.

[29] V. Rokhlin, A. Szlam, and M. Tygert, A randomized algorithm for principal component
analysis, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 1100–1124, doi:10.1137/080736417.

[30] B. Savas and I. S. Dhillon, Clustered low rank approximation of graphs in information science
applications, in Proceedings of the 11th SIAM International Conference on Data Mining
(SDM), SIAM, Philadelphia, 2011, pp. 164–175.

[31] J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal.
Mach. Intelligence, 22 (2000), pp. 888–905.

[32] D. Shin, S. Si, and I. S. Dhillon, Multi-scale link prediction, in Proceedings of the 21st ACM
Conference on Information and Knowledge Management (CIKM), ACM, New York, 2012,
pp. 215–224.

[33] S. Si, D. Shin, I. S. Dhillon, and B. N. Parlett, Multi-scale spectral decomposition of
massive graphs, in Advances in Neural Information Processing Systems 27, Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, eds., Curran Associates,
2014, pp. 2798–2806.

[34] H. H. Song, B. Savas, T. W. Cho, V. Dave, Z. Lu, I. S. Dhillon, Y. Zhang, and L. Qiu,
Clustered embedding of massive social networks, in Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE Joint International Conference on Measurement and Modeling of
Computer Systems, ACM, New York, 2012, pp. 331–342.

[35] X. Sui, T.-H. Lee, J. J. Whang, B. Savas, S. Jain, K. Pingali, and I. S. Dhillon, Parallel
clustered low-rank approximation of graphs and its application to link prediction, in Lan-
guages and Compilers for Parallel Computing, H. Kasahara and K. Kimura, eds., Lecture
Notes in Comput. Sci. 7760, Springer, Berlin, Heidelberg, 2013, pp. 76–95.

[36] V. Vasuki, N. Natarajan, Z. Lu, B. Savas, and I. S. Dhillon, Scalable affiliation recommen-
dation using auxiliary networks, ACM Trans. Intell. Syst. Technol., 3 (2011), pp. 3:1–3:20.

[37] D. Wagner and F. Wagner, Between min cut and graph bisection, in Proceedings of the 18th
International Symposium on Mathematical Foundations of Computer Science (MFCS ’93),
London, UK, 1993, Springer-Verlag, Berlin, Heidelberg, pp. 744–750.

[38] J. J. Whang, I. S. Dhillon, and D. F. Gleich, Non-exhaustive, overlapping k-means, in
Proceedings of the 2015 SIAM International Conference on Data Mining (SDM), SIAM,
Philadelphia, 2015, pp. 936–944, doi:10.1137/1.9781611974010.105.

[39] Z. Wu and R. Leahy, An optimal graph theoretic approach to data clustering: Theory and
its application to image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 15 (1993),
pp. 1101–1113.

[40] W. W. Zachary, An information flow model for conflict and fission in small groups, J. An-
thropological Res., 33 (1977), pp. 452–473.

[41] D. Zeimpekis and E. Gallopoulos, CLSI: A flexible approximation scheme from clus-
tered term-document matrices, in Proceedings of the 2005 SIAM International Con-
ference on Data Mining (SDM), SIAM, Philadelphia, 2005, pp. 631–635, doi:10.1137/
1.9781611972757.75.

[42] D. Zeimpekis and E. Gallopoulos, Linear and non-linear dimensional reduction via class
representatives for text classification, in Proceedings of the Sixth International Conference
on Data Mining (ICDM ’06), IEEE Computer Society, 2006, pp. 1172–1177.

[43] H. Zha, C. Ding, M. Gu, X. He, and H. Simon, Spectral relaxation for k-means clustering, in
Advances in Neural Information Processing Systems 14, MIT Press, 2001, pp. 1057–1064.

[44] K. Zhang and J. T. Kwok, Clustered Nyström method for large scale manifold learning and
dimension reduction, IEEE Trans. Neural Networks, 21 (2010), pp. 1576–1587.

[45] Z. Zhang and H. Zha, Structure and perturbation analysis of truncated SVDs for column-
partitioned matrices, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 1245–1262, doi:10.1137/
S0895479899357875.

D
ow

nl
oa

de
d

11
/0

7/
16

 to
 1

28
.8

3.
63

.2
0.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://dx.doi.org/10.1137/080736417
http://dx.doi.org/10.1137/1.9781611974010.105
http://dx.doi.org/10.1137/1.9781611972757.75
http://dx.doi.org/10.1137/1.9781611972757.75
http://dx.doi.org/10.1137/S0895479899357875
http://dx.doi.org/10.1137/S0895479899357875

	Introduction
	Motivation
	Contributions
	Outline
	Notation

	Preliminaries
	Graph clustering and bipartite graph coclustering
	Probabilistic methods for low rank matrix approximation

	Clustered low rank matrix approximations
	Diagonal dense block structure
	Nondiagonal dense block structure
	Specific example
	General description

	Randomized clustered matrix approximation
	Algorithm
	Analysis and error bounds

	Experiments and discussion
	Data sets, algorithms, and experimental setup
	Clustering properties of the data
	Approximation quality
	Blockwise information content
	Performance of probabilistic clustered algorithms
	Timing comparisons
	Principal angles

	Related work
	Conclusions
	References

