
Scalable Convex Multiple Sequence Alignment via
Entropy-Regularized Dual Decomposition

Jiong Zhang† Ian E.H. Yen‡ Pradeep Ravikumar‡ Inderjit S. Dhillon†

† University of Texas at Austin ‡ Carnegie Mellon University

Abstract

Multiple Sequence Alignment (MSA) is one of
the fundamental tasks in biological sequence
analysis that underlies applications such as
phylogenetic trees, profiles, and structure
prediction. The task, however, is NP-hard,
and the current practice resorts to heuris-
tic and local-search methods. Recently, a
convex optimization approach for MSA was
proposed based on the concept of atomic
norm [23], which demonstrates significant
improvement over existing methods in the
quality of alignments. However, the convex
program is challenging to solve due to the
constraint given by the intersection of two
atomic-norm balls, for which the existing al-
gorithm can only handle sequences of length
up to 50, with an iteration complexity sub-
ject to constants of unknown relation to the
natural parameters of MSA. In this work,
we propose an accelerated dual decomposition
algorithm that exploits entropy regulariza-
tion to induce closed-form solutions for each
atomic-norm-constrained subproblem, giving
a single-loop algorithm of iteration complex-
ity linear to the problem size (total length of
all sequences). The proposed algorithm gives
significantly better alignments than existing
methods on sequences of length up to hun-
dreds, where the existing convex program-
ming method fails to converge in one day.

1 Introduction

The Multiple Sequence Alignment (MSA) problem
considers finding the alignments between a collection

Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2017, Fort Laud-
erdale, Florida, USA. JMLR: W&CP volume 54. Copy-
right 2017 by the author(s).

of sequences, which serves a fundamental tools for
many applications in Bioinformatics such as Phyloge-
netic analysis and Protein Structure prediction [14].
There are several formulation for the problem, includ-
ing the Sum-of-Pair objective, Star-Alignment objec-
tive and some other Phylogency-based score. However,
all of these problems are known to be NP-hard [4].

Despite the NP-hardness of MSA, there have been
numerous attempts for a tractable MSA algo-
rithm. In particular, a direct extension of dynamic-
programming-based pairwise alignment algorithm to
MSA suffers from a time complexity exponential to
the number of sequences. And traditional global op-
timization techniques for MSA only works on small
problems [5, 7, 15, 16]. The mostly used algorithms
in current practice are based on heuristics. For exam-
ple, the progressive algorithm [8] greedily aligns two
sequences at a time according to a guided tree, and
constructs the final alignment sequentially in an or-
der defined by the tree. Some other approaches, such
as Expectation Maxmimization (EM) algorithm [2],
fits probabilistic models (i.e. Profile-Hidden Markov
Model) to the sequences through a local search. How-
ever, it has been observed that the EM approach could
barely outperform progressive algorithms [6, 13].

Following a recent thread of convex relaxation ap-
proach to exemplar-based unsupervised learning [10,
24, 25], [23] proposed a convex optimization method
for MSA via atomic norm constraints [1]. The con-
vex optimization approach shows a significantly bet-
ter quality of alignments than traditional approaches.
However, since they expose the domain of the con-
vex program as the interaction of two atomic-norm
constraints with exponentially large number of atoms,
it can hardly be tackled by traditional optimization
methods. In [23], a method called Greedy Direction
Method of Multiplier (GDMM) was proposed to solve
the atomic-norm-constrained program. Although the
algorithm has guaranteed convergence to optimal solu-
tion, their experiments only demonstrate results on se-
quences of length and number no more than 50, and in
our experiment we found it can hardly scale to longer

Scalable Convex Multiple Sequence Alignment via Entropy-Regularized Dual Decomposition

sequences. Another issue of the algorithm is that its it-
eration complexity contains several constants that can
be hardly estimated from the natural parameters of an
MSA problem, so it is unclear whether in practice the
algorithm can produce a reasonable solution in finite
time.

In this paper, we propose a new algorithm for solv-
ing the convex atomic-norm formulation of MSA —
Entropy-Regularized Dual Decomposition (ERDD) .
We show that an entropy regularized problem with
single atomic-norm constraint yields a closed-form so-
lution that can be efficiently computed via a dynamic
programming algorithm, which results in a single-loop
algorithm of O(NL

√
|Σ| log |Σ|/ε) iteration complex-

ity to find ε-suboptimal alignments for N sequences of
target length L and an alphabet size |Σ|. In our exper-
iments, the proposed algorithm gives significantly bet-
ter alignments than existing methods on both real and
synthetic sequences of length up to hundreds, where
the existing convex programming method fails to con-
verge in one day.

2 Multiple Sequence Alignment

A sequence is defined as a string of characters from an
alphabet Σ, augmented with start symbol ∗ and end
symbol #. Let Σ̂ = Σ ∪ {∗,#}. Given two sequences
x1 ∈ Σ̂l1 , x2 ∈ Σ̂l2 of length l1 and l2, we define an
alignment from x2 to x1 to be a path of state transi-
tions. At each state (i, j) ∈ S = [l1]× [l2], we can take
one of the three types of transition T : S 7→ S

TM (i, j) = (i+ 1, j + 1), i ≤ l1 − 1, j ≤ l2 − 1

TI(i, j) = (i+ 1, j), i ≤ l1 − 1

TD(i, j) = (i, j + 1), j ≤ l2 − 1

known as matching, insertion and deletion. An align-
ment is a series of transitions that starts with initial
state (1, 1) and ends with state (l1, l2), where where
x1[1] = x2[1] = ∗ and x1[l1] = x2[l2] = #. To evaluate
an alignment, we assign each alignment a = {ti}l

′

i=1 a
score by:

D(a;x1, x2) =
∑
t∈a

d(t;x1, x2).

where d(t;x1, x2)’s value is determined by whether T
is a match, insert or delete transition:

d(t;x1, x2) =

dI , t ∈ TI
dD , t ∈ TD
dM , t ∈ TM , x1[i+ 1] 6= x2[j + 1]
0 , otherwise.

(1)
Here dI , dD and dM are penalties associated with in-
sertion, deletion and mismatch respectively. The pair-

Figure 1: State transition paths for Pairwise and Mul-
tiple Sequence Alignment.

wise sequence alignment problem aims to find an align-
ment of minimal loss: a∗ = argminD(a;x1, x2). This
can be solved via a dynamic programming algorithms,
such as Smith-Waterman or Needleman-Wunsch, in
O(l1l2) time.

For the problem of aligning multiple sequences, things
get complicated. There are a number of ways to de-
fine an MSA problem. In this work, we consider the
formulation known as MSA with Consensus or Star
Alignment. Given a set of N sequences D = {xn}Nn=1,

each sequence is of length ln and define l =
∑N
n=1 ln

to be the total length. In our setting, we aim to find a
single consensus sequence z∗, together with its align-
ments to the data sequences a∗ = {a∗n}Nn=1 such that
the sum of alignment losses is minimized.

(z∗, a∗) = argmin
z,a

N∑
n=1

D(an;xn, z) (2)

This objective function is known as Star Alignment
score, indicating that we are looking for the hidden
centroid of a star, whose tips are our observations.
Note another popular setting is the Sum of Pairs (SP)
objective, which looks at the sum of pairwise alignment
costs between data sequences. Both the Star and SP
alignment are proved to be NP-hard [4].

3 Convex Relaxation

In this section we introduce the atomic-norm based
convex relaxation of (2) proposed in [23]. Recall that
we let every sequence starts and ends with special sym-
bols ∗ and # respectively. Thus we define the set of
all sequences with length limit L as:

ZL =

z ∈ Σ̂l

∣∣∣∣∣∣
l ∈ [L]

z[1] = ∗, z[l] = #
z[m] ∈ Σ, 2 ≤ m ≤ l − 1

which specifies our search space of the consensus se-
quence z∗, as illustrated as an path from left to right

Jiong Zhang†, Ian E.H. Yen‡, Pradeep Ravikumar‡, Inderjit S. Dhillon†

on the top surface of the cube in Figure 2. Then we
define the ambient space that can be used to charac-
terize any alignment between two sequences. Suppose
we are dealing with a data of N sequences and we want
to find the consensus sequence with length bounded by
L. For a data sequence x of length T , we define the
ambient space through constructing a directed acyclic
graph (DAG) G = (V,E). We denote a vertex v by a
tuple: v = (t, l, d) ∈ [T] × [L] × Σ̂ where t, l indicate
the reading position on t-th character of x and l-th
character of z with z[l] = d. The set of vertexes V is
then defined as:

V =
{

(t, l, d)
∣∣∣t ∈ [T], l ∈ [L], d ∈ Σ̂

}
as illustrated as a cube in Figure 2. Then we define the
set of possible transitions E = EI∪ED∪EM ⊂ V ×V ,
representing insertion (EI), deletion (ED) and match-
ing (EM) respectively. Figure 2 (left) gives the idea
of the transition space and detailed definition can be
found in appendix. We connect all the transitions in E
with an weight of {0, 1} and define the ambient space
associated with sequence xn asMT = {0, 1}|E|. Recall
that an alignment is a series of insertion, deletion and
matching transitions that takes initial state (1, 1) and
ending state (T, l) with l ≤ L. Then we can observe
that if we have a path from(1, 1, ∗) to (T, l∗,#):

(1, 1, ∗)→ (t1, l1, d1)...→ (ti, li, di)→ ...→ (T, l∗,#)

then this path can determine uniquely a consensus se-
quence with z[li] = di as well as an alignment a be-
tween z and x. Let ST be the set of all such paths, we
define our alignment space AT ⊂ MT by assigning 1
on transitions included in the path:

AT =

{
m ∈MT

∣∣∣∣ a ∈ ST ,
m[e] = I(e ∈ a),∀e ∈ E

}
as illustrated in Figure 2 as a path inside the cube.
Now consider all data sequences {xn}Nn=1 with lengths
{Tn}Nn=1. The whole ambient space, and alignment
space, is the span of all such spaces associated with
{Tn}Nn=1:

M = ⊗Nn=1MTn ; A = ⊗Nn=1ATn

Now if given W ∈ A ⊂ M, we actually have N
alignments respectively between xn and z∗n for all the
xn in data. Since problem (2) asks us to find a single
consensus z∗ = z∗1 = z∗2 = ... = z∗N , we need to impose
another constraint on W . To do this, we define the
consensus space P. Given any sequence z ∈ ZL, we
define the subspace P (z) ⊂

⋃N
i=1E

(i) associated with
z to be all the transitions consistent with sequence z:

P (z) =

{
(t1, l1, d1)→ (t2, l2, d2)

∣∣∣∣ z[l1] = d1

z[l2] = d2

}

Figure 2: Transition space (left) and consensus se-
quence z ∈ ZL (right) with atomic sets P and A.

then the consensus space is defined as the union of
subset of M supported on such subspaces:

P =
⋃
z∈ZL

{W ∈M|Supp(W) ⊆ P (z)} (3)

Now we can define the MSA problem as a minimization
problem in the ambient space, with both alignment
and atom constraints:

min
W∈M

〈D,W 〉

s.t. W ∈ A
W ∈ P.

(4)

where the penalty object D ∈M is constructed by as-
sociating each transition with a penalty parameter, re-
fer to appendix for detailed fefinition. It is easy to ob-
serve that given such two constrains, W can uniquely
determine a consensus sequence z∗ and its alignment
with all data sequences from {xn}Nn=1, which is all we
asked for in Star-alignment problem. Using this one
can easily construct a convex relaxation of the MSA
problem as:

min
W∈Conv(M)

〈D,W 〉

s.t. W ∈ Conv(A)

W ∈ Conv(P).

(5)

where the notation Conv(S) means the convex hull of
atoms in set S. Note the domain Conv(A)∩Conv(P)
in (5) gives a looser relaxation than the direction con-
vex relaxation Conv(A ∩ P). However, the relaxation
given by the latter is as difficult as the NP-hard prob-
lem (4) since one can always find an integer solution
at a corner of Conv(A∩P), giving an integer solution
W ∈ A ∩ P that contradicts the NP hardness of (4).
On the other hand, (5) is tractable and permits quite
efficient algorithm as we show in section 4.

Scalable Convex Multiple Sequence Alignment via Entropy-Regularized Dual Decomposition

4 Entropy Regularization and
Accelerated Dual Decomposition

In this section, we propose an algorithm that efficiently
solves (5) via a variant of Dual Decomposition method.
In particular, we show how the technique of entropy-
based dual smoothing [12] can elegantly simplifies an
atomic-norm constrained problem into the problem of
computing marginal probability of a transition under
a distribution of atoms.

4.1 Dual Decomposition

Since handling two atomic-norm constraints at the
same time is hard, one can use Dual Decomposition
technique to decouple (5) into two subproblems, each
involving only one constraint. By strong duality, we
obtain the following equivalent formulation of (5):

max
Y ∈MR

min
W1,W2∈MR

〈D,W1〉+ 〈W1 −W2, Y 〉

s.t. W1 ∈ Conv(A)

W2 ∈ Conv(P).

(6)

here MR := Conv(M). Let IS(W) be the indicator
function of set S that takes value 0 if W ∈ S and ∞
otherwise. Denoting

L1(W1, Y) = 〈D + Y,W1〉+

N∑
n=1

IConv(ATn)(W
(n)
1)

L2(W2, Y) = −〈Y,W2〉+ IConv(P)(W2),

the dual objective function

G(Y) := min
W1,W2

L1(W1, Y) + L2(W2, Y)

is non-smooth and hard to optimize for a solution of
moderate precision. In [23], a standard Augmented
Lagrangian technique is used to obtain a smooth dual
objective. However, it results in quadratic subprob-
lems that require iterative methods to solve. [23]
proposed a single-loop algorithm—Greedy Direction
Method of Multiplier (GDMM)—that alternates be-
tween one non-drop step of a Frank-Wolfe method in
the primal and a gradient ascent step in the dual. They
showed an O(1/ε)-type iteration complexity for the al-
gorithm, but only subject to constants (i.e. Pyramidal
Widths of Conv(A), Conv(P) and Hoffman constant)
of unknown relation to the natural parameters N , L
and |Σ|.

4.2 Entropy Regularization & Acceleration

This section describes a more efficient variant of dual
smoothing method via entropy regularization, which
yields closed-form solutions for each primal subprob-
lem of single atomic-norm constraint.

Algorithm 1 W
(n)∗
1 = argmin

W
(n)
1
Lµ1 (W1, Y).

Input: Y (n) ∈MTn
, Output: W

(n)
1 ∈MTn

Initialize by ones W+,W− ∈MTn ,Ξ = 0
for e = v1 → v2 ∈ E(n) in BFS order do

W+[e] = FlowIn(v1,W
+)× exp(−D[e]−Y (n)[e]

µ)
end for
Ξ =

∑
e:e transits to an END stateW

+[e].
Reverse all edges in graph.
for e = v2 → v1 ∈ E(n) in BFS order do

W−[e] = FlowIn(v2,W
−)× exp(−D[e]−Y (n)[e]

µ)
end for
for e = v1 → v2 ∈ E(n) in any order do

W
(n)
1 [e]= FlowIn(v2,W

−)×W+[e])/Ξ.
end for
(FlowIn(v,W) :=

∑
e:v′→v∈E

W [e])

Subproblem 1. The minimization of L1(W1, Y)
w.r.t. W1 can be separated into n independent sub-
problems:

min
W

(n)
1

〈D(n),W
(n)
1 〉

s.t. W
(n)
1 ∈ Conv(An)

(7)

for n ∈ [N], where An := ATn
. Since W

(n)
1 ∈

Conv(An), we can express W
(n)
1 as

W
(n)
1 =

∑
aj∈An

cjaj

where cj ≥ 0,
∑
j

cj = 1. Let d
(n)
j = 〈D(n), aj〉 and

y
(n)
j = 〈Y (n), aj〉. We can augment (7) with a negative

entropy term µ
∑
aj∈An

cj log cj to obtain the follow-

ing augmented version of (7):

min
cj :aj∈An

∑
j:aj∈An

(d
(n)
j + y

(n)
j)cj + µ cj log(cj)

s.t. cj ≥ 0,
∑

j:aj∈An

cj = 1
(8)

Since the negative entropy is strongly convex with
parameter µ, the augmented objective (8) ensures the
smoothness of its convex conjugate with parameter
1/µ. Intuitively, the entropy regularization enforces
the solution of each subproblem (7) to be smoothed
as a distribution over all possible alignments aj ∈ An
instead of a single best alignment a∗ ∈ An. This
speeds up the communication among sequences in
order to reaching a consensus. By the KKT condition
of (8), one can derive the following closed-form
solution

Jiong Zhang†, Ian E.H. Yen‡, Pradeep Ravikumar‡, Inderjit S. Dhillon†

Algorithm 2 W ∗2 := argminW2
Lµ2 (W2, Y).

Input: Y ∈M, Output: W2 ∈M
Initialize p+, p− ∈ [L]× Σ̂× Σ̂ by zeros.
Compute edge weights y ∈ [L]× Σ̂× Σ̂ through (17)
Compute p+, p− from y via (19), (20) respectively.
Compute Ξ using (21) or (22)
for i ∈ [N], e : (t1, l1, d1)→ (t2, l2, d2) ∈ E(i) do

W
(i)
2 [e] =

{
0 , if Y (i)[e] ≤ 0
p+(l2,d1,d2)×p−(l2,d1,d2)

y(l2,d1,d2)×Ξ , o.w.

end for

c∗j =
exp(

−dj−yj
µ)∑

aj∈A
exp(

−dj−yj
µ)

. (9)

to be a distribution over aj ∈ An. Then for each

transition e ∈ E, one can compute W
(n)
1 [e] as:

W
(n)
1 [e] =

∑
aj∈An:aj [e]=1

c∗j , (10)

that is, the marginal probability that the align-
ment passes transition e. While the summation
in (9), (10) involve exponentially large number of
terms, the marginal probabilities can be computed ef-
ficiently using dynamic programming technique simi-
lar to Forward-Backward algorithm [18] in O(|Σ̂|LTn)
time, as we detail in Algorithm 1.

Subproblem 2. Similarly, forW2 ∈ Conv(P), it can
be expressed as

W2 =
∑

j:pj∈P
δjpj , (11)

and since for any zk ∈ ZL there is a p∗j (zk) with
Supp(pj) ⊆ P (zk) that minimizes 〈−Y, pj〉 by setting

pj(zk)[e]∗ = I(Y [e] > 0)I(e ∈ P (zk)) (12)

where I(·) ∈ {0, 1} is the indicator function. The min-
imization w.r.t. W2 can be expressed as

min
bk≥0

∑
k:zk∈ZL

−ŷkbk

s.t.
∑

k:zk∈ZL

bk = 1
(13)

where ŷk = 〈Y, p∗j (zk)〉. The augmented version of
(13):

min
bk≥0

∑
k:zk∈ZL

−ŷkbk + µbk log bk

s.t.
∑

k:zk∈ZL

bk = 1
(14)

Algorithm 3 ConvexMSA-ERDD

Input: Data {xn}Nn=1, L (upper bound on sequence
length), µ and constant M := 3NL|Σ|/(2µ).
Output: W1,W2 ∈M
Initialize θ0 = 1 and Y , Z ∈M with zeros.
Construct penalty tensor D ∈M
for t = 1, 2, do
Y := (1− θt)Z + θtY

W
(i)
1 := argmin

W
(i)
1
Lµ1 (W

(i)
1 , Y (i)), for i ∈ [N].

W2 := argminW2
Lµ2 (W2, Y)

Y := Y − (W1 −W2)/(Mθt)
Z := (1− θt)Z + θtY

θt+1 =

√
θ4t +4θ2t−θ

2
t

2
end for

has the closed-form solution

b∗k =
exp(ŷkµ)∑

k:zk∈ZL

exp(ŷkµ)
. (15)

by examining the KKT condition. Combining (15)
with (12), we obtain

W ∗2 [e] = I(Y [e] > 0)
∑

k:e∈P (zk)

b∗k. (16)

Although it involves a summation over exponentially
many terms, we can use a variant of the forward-
backward algorithm to compute the marginal (prob-
ability) weight in O(|Σ|2L + |Σ|LT) time, where T =∑N
n=1 Tn. In particular, define the score on each tran-

sition y ∈ [L]× Σ̂× Σ̂ as

y(l, d1, d2) =
∑

e∈H(l,d1,d2)

I(Y [e] > 0)

µ
(17)

where H(l, d1, d2) = {(·, l, d1) → (·, ·, d2) ∈ E}.
Then we can use this score in the forward-backward
algorithm to evaluate (16) for each transition e =
(t1, l1, d1)→ (t2, l2, d2) as

W2[e] =
p+(l2, d1, d2)× p−(l2, d1, d2)

y(l2, d1, d2)× Ξ
I(Y [e] > 0)

(18)
where p+, p− ∈ [L]× Σ̂× Σ̂ are recursively defined as:

p+(l, d1, d2) =

{
ey(l,d1,d2)

∑
r∈Σ

p(l − 1, r, d1) , l > 1

ey(l,d1,d2)I(d1 = ∗) , l = 1

(19)

p−(l, d1, d2) =

{
ey(l,d1,d2)

∑
r∈Σ

p(l + 1, d2, r) , l < L

ey(l,d1,d2)I(d2 = #) , l = L

(20)

Scalable Convex Multiple Sequence Alignment via Entropy-Regularized Dual Decomposition

and Ξ is the normalizer, which can be computed by
either of the followings:

Ξ =
∑

l∈[L−1]

∑
d1∈Σ̂

p+(l, d1,#) (21)

Ξ =
∑
d2∈Σ̂

p−(1, ∗, d2). (22)

Algorithm 2 sketches the overall procedure.

Accelerated Gradient Method. Let Lµ1 (c, Y) and
Lµ2 (b, Y) denote the entropy-regularized objectives (8)
and (14) respectively. The dual objective can be de-
rived explicitly as

Gµ(Y) := min
W1

Lµ1 (W1, Y) + min
W2

Lµ2 (W2, Y)

= µ log(
∑

j:aj∈A
exp(

−dj − yj
µ

)) + µ log(
∑

k:zk∈ZL

exp(
ŷk
µ

))

where dj = 〈D, aj〉, yj = 〈Y, aj〉 and ŷk = 〈Y, p∗j (zk)〉.
By Danskin’s theorem, we have

∇YGµ(Y) = W ∗1 (Y)−W ∗2 (Y). (23)

Notice that Gµ(Y) is the sum of two partition func-
tions, so its second derivative takes the form of [22, 26]

∇2
YGµ(Y) =

1

µ

(
CovA[aj] + CovZL

[p∗j (zk)]
)

(24)

where CovA[.] and CovZL
[.] denote the covariance ma-

trices w.r.t. distributions defined by the potential
functions exp(−(dj + yj)/µ), aj ∈ A and exp(ŷk/µ),
zk ∈ Zk respectively.

To apply the Accelerated Gradient Method [11, 21] to
maximize the dual objective, we need the Lipschitz-
continuous constant M of ∇YGµ(Y) (i.e. the max-
imum eigenvalue of ∇2

YGµ(Y)), which can be com-
puted as the product of number of variables and an
upper bound Mdiag on its diagonal element:

‖∇2Gµ(Y)‖ ≤ NL(2|Σ|+ 1)

µ
Mdiag ≤

3NL|Σ|
2µ

= M

where Mdiag = 1/2 since each diagonal element is the
sum of variances of two independent Bernoulli Ran-
dom variables. Algorithm 3 summarizes the overall
procedure. In the next section, we show that, by a
careful selection of µ, Algorithm 3 enjoys an O(1/ε)
iteration complexity with explicit constants to achieve
ε suboptimality.

5 Convergence Analysis

The analysis has three steps. First, we bound the dif-
ference between the origianl objective G(Y) and its

augmented version Gµ(Y) as a function of µ. Then
we show the iteration complexity of Algorithm 3 de-
pends on the smoothness constant parametrized by µ.
Finally, we show there is a choice of µ that gives the
desired result.

Theorem 1 (Smooth Approximation). For any Y ∈
R|M|, we have

Gµ(Y) ≤ G(Y) ≤ Gµ(Y)+µ

(
log |ZL|+

N∑
n=1

log |An|

)

where
∑N
n=1 log |An| ≤ 2NL log |Σ| and log |ZL| ≤

L log |Σ|.

Proof. The second inequality is true because

Gµ(Y) := min
b,c
Lµ1 (c, Y) + Lµ2 (b, Y)

≤ min
b,c
L1(c, Y) + L2(b, Y) = G(Y),

where the inequality is due the non-positivity of aug-
mented term. The first inequality is true because

Gµ(Y) := min
b,c
Lµ1 (c, Y) + Lµ2 (b, Y)

≥ min
b,c
L1(c, Y) + L2(b, Y)

+ min
b,c
−µ

N∑
n=1

∑
j:aj∈A

cj log
1

cj
− µ

∑
k:zk∈ZL

bk log
1

bk

≥ G(Y)− µ(

N∑
n=1

log |An|)− µ log |ZL|,

where the last step is by Jensen’s inequality.

Theorem 2 (Convergence of Accelerated Gradient).
Let Ȳ be the set of optimal solutions of

G∗µ := max
Y ∈R|M|

Gµ(Y).

Algorithm 3 has

G∗µ −Gµ(Y t) ≤ ε , for t ≥
√
MR2

ε
, (25)

where R = minȲ ∈Ȳ ‖Ȳ ‖.

Proof. The proof of this result can be found in, for
example, Corollery 1 of [21].

Corollary 1 (Iteration Complexity). Let G∗ be the
optimal objective value of problem (5). By setting µ =

ε
4NL log |Σ| , Algorithm 3 has

G∗ −G(Y (t)) ≤ ε. , for t ≥
NLR

√
12|Σ| log |Σ|
ε

.

Jiong Zhang†, Ian E.H. Yen‡, Pradeep Ravikumar‡, Inderjit S. Dhillon†

(a) (b) (c)

(d) (e) (f)

Figure 3: Iteration history of ConvexMSA-GDMM and ConvexMSA-ERDD on data sets of increasing scale
(from left to right). y-axis is the relative objective (f − f∗)/f∗ achieved by the best (rounded) solution obtained
from beginning up to the current iterate, where f∗ is the best objective achieved among all methods. (a)(d)
are iteration and time plots on Syn00 dataset (N = 10, T̄ = 30), (b)(e) are results on Syn04 dataset (N = 50,
T̄ = 100), and (c)(f) are results on bicoid-3 dataset (N = 15, T̄ = 551).

Proof. With the choice of µ, we have

M = 3N2L2|Σ| log |Σ|/(ε/2).

By Theorem 2, for t ≥ NLR
√

12|Σ| log |Σ|
ε , Algorithm 3

has

Gµ(Y (t)) ≥ G∗µ − ε/2 ≥ Gµ(Y ∗)− ε/2

for some dual optimal solution Y ∗ of (5). Then

G(Y (t)) ≥ Gµ(Y (t)) ≥ Gµ(Y ∗)− ε/2 ≥ G(Y ∗)− ε

by Theorem 1 and the choice of µ.

Note the iteration complexity in Corollary 1 is linear to
NL because the MSA objective (5) (alignment cost)
is growing with NL. To achieve a ε̂ suboptimality
in average cost per character, one would require the
scaled objective 1

NL 〈D,W 〉 to reach ε̂ tolerance, giving

an iteration complexity of
R
√

12|Σ| log |Σ|
ε̂ .

6 Experiments

In the experiments we evaluate the compared algo-
rithms through two measures of the alignment qual-
ity: Sum-of-Pair(SP) score and Star Alignment(Star)

score. Given the consensus ancestor sequence z∗ and
each data sequence’s alignment a∗i with z∗, the Star
score is computed exactly as our objective (2). The SP
score is the sum of all pairwise penalties among data
sequences over all aligned characters. In the evalua-
tion, the three penalty parameters (dI ,dD,dM) are set
to 1.
To produce synthetic datasets of evolutionary struc-
ture, a standard TKF1 evolutionary models are used
[19, 20]. Given an ancestor sequence, the TKF1 model
has each link between two characters independently
evolve with insertion, deletion and substitution mod-
eled by Poisson Process of rates α, β and γ respec-
tively. Five synthetic datasets are generated and used
in the experiments, in which number of observations N
varies from 10 to 80, average sequence length L̄ varies
from 30 to 150 and mutation rates α, β, γ lie between
0.005 to 0.05. We also evaluate different methods on
5 real datasets with N up to 853 (HIV) and average
length up to 550 (bicoid-3).
We compare our algorithm with the GDMM algorithm
proposed in [23] that solves exactly the same objec-
tive function (5) as our method, as well as five widely
used solvers in Bioinformatics community. Their short
names are listed as follows:

Scalable Convex Multiple Sequence Alignment via Entropy-Regularized Dual Decomposition

Table 1: [SP score/Star score] achieved by MSA solvers on synthetic datasets. Information of data includes:
number of sequences N , ancestor sequence length L and number of insertion, deletion and substitutions in total
(I,D,M). The penalty connected with all three kinds of mutation is set to be 1. Numbers marked with *
indicates that it failed to converge in 6 hours and the best-performing intermediate rounding result is reported.

Syn00 Syn01 Syn02 Syn03 Syn04
N=10, L=30 N=30, L=50 N=30, L=50 N=80, L=150 N=50, L=100

(I=3, D=2, M=4) (12, 11, 7) (19, 18, 9) (116, 131, 84) (240, 255, 170)
ClustalOmega 311/47 3295 / 126 6671/274 115446/1725 62491/1749
Kalign 88/10 1440 / 51 2003/71 37484/486 57703/1389
T-coffee 99/12 1031 / 36 1492/53 29059/374 44784/1102
MAFFET 87/10 1196 / 42 1856/66 38062/497 41798/971
MUSCLE 87/10 1060 / 37 1649/59 32565/422 37441/856
ConvexMSA-GDMM 79/9 863/30 1285/45 29069/378∗ 28254/614∗

ConvexMSA-ERDD 78/9 863/30 1285/45 25702/330 27932/602
Ground Truth 78/9 863/30 1285/45 25702/330 27932/602

Table 2: MSA algorithms tested on real datasets. Datasets are characterized by number of sequences N and
average length L̄. Parameter setting is same as experiments on synthetic datasets. Numbers marked with *
indicates that it failed to converge in 24 hours and the best-performing intermediate rounding result is reported.

copA antizyme mir92 bicoid-3 HIV-FE
(N, L̄)=(17, 90) (13, 57) (33, 79) (15, 550) (853, 51)

ClustalOmega 2886/241 1041/123 17461/830 19667/1741 2339340/3662
Kalign 2611/208 834/94 16356/740 17025/1490 2332265/3654
T-coffee 2384/199 814/90 15520/713 16248/1394 N/A
MAFFET 2358/198 838/95 16020/736 17848/1582 N/A
MUSCLE 2363/199 854/98 15611/725 16448/1423 N/A
ConvexMSA-GDMM 2424/185∗ 838/95∗ 15684/652∗ 15566/1261∗ 2412452/3625∗

ConvexMSA-ERDD 2340/180 782/85 15120/648 15536/1250 2322991/3625

• CLUSTAL-OMEGA [17]: a popular progressive
alignment algorithm.

• Kalign [9]: A MSA method based on Wu-Manber
string-matching algorithm.

• MAFFT [7]: A progressive algorithm that uses
heuristics based on FFT.

• MUSCLE [3]: A method based on iterative local
refinements.

• T-COFFEE [15]: an algorithm generating pair-
wise alignment libraries to guide MSA.

• Convex-GDMM: the GDMM algorithm [23].

• Convex-ERDD: the proposed Algorithm 3.

For ConvexMSA-GDMM[23] inner iteration for sub-
problem 1 is set between 1 and 20 and for sub-problem
2 is set to be 1. The initial stepsize is set to 0.15 for
ConvexMSA-ERDD, and the coefficient of the entropy
regularizer µ is chosen from the range [0.0001, 0.001].

Figure 3 shows the iteration history of ConvexMSA-
ERDD and GDMM, from which we can make several
observations. First, despite the sensitivity that ERDD

shows w.r.t. the choice of µ, it actually achieves over-
all better result than that of GDMM. Second, large
µ makes convergence of ERDD faster but with less
precision. GDMM algorithm generally costs several
times more iterations for getting similar performance
of ERDD.

From table 1 and 2, it can be observed that
ConvexMSA-ERDD succeeded to discover the ground
truth alignment solution in all synthetic datasets. Be-
sides this, ConvexMSA-ERDD also has very good scal-
ability, with respect to both N and L. Note that even
though ConvexMSA-GDMM achieves similar precision
in some of the small datasets, it fails to converge in rea-
sonable time(24 hours)on large datasets such as bicoid-
3 and HIV-FE.

Acknowledgements I.D. acknowledges the support
of NSF via CCF-1320746, IIS-1546452, and CCF-
1564000. P.R. acknowledges the support of ARO
via W911NF-12-1-0390 and NSF via IIS-1149803, IIS-
1320894, IIS-1447574, and DMS-1264033, and NIH via
R01 GM117594-01 as part of the Joint DMS/NIGMS
Initiative to Support Research at the Interface of the
Biological and Mathematical Sciences.

Jiong Zhang†, Ian E.H. Yen‡, Pradeep Ravikumar‡, Inderjit S. Dhillon†

References

[1] V. Chandrasekaran, B. Recht, P. A. Parrilo, and
A. S. Willsky. The convex geometry of linear in-
verse problems. Foundations of Computational
mathematics, 12(6):805–849, 2012.

[2] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchi-
son. Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge
university press, 1998.

[3] R. C. Edgar. Muscle: multiple sequence align-
ment with high accuracy and high throughput.
Nucleic acids research, 32(5):1792–1797, 2004.

[4] I. Elias. Settling the intractability of multiple
alignment. Springer, 2003.

[5] C. Gondro and B. Kinghorn. A simple genetic al-
gorithm for multiple sequence alignment. Genet-
ics and Molecular Research, 6(4):964–982, 2007.

[6] K. Karplus and B. Hu. Evaluation of protein
multiple alignments by sam-t99 using the bal-
ibase multiple alignment test set. Bioinformatics,
17(8):713–720, 2001.

[7] K. Katoh, K.-i. Kuma, H. Toh, and T. Miyata.
Mafft version 5: improvement in accuracy of mul-
tiple sequence alignment. Nucleic acids research,
33(2):511–518, 2005.

[8] M. A. Larkin, G. Blackshields, N. Brown,
R. Chenna, P. A. McGettigan, H. McWilliam,
F. Valentin, I. M. Wallace, A. Wilm, R. Lopez,
et al. Clustal w and clustal x version 2.0. Bioin-
formatics, 23(21):2947–2948, 2007.

[9] T. Lassmann and E. L. Sonnhammer. Kalign–
an accurate and fast multiple sequence alignment
algorithm. BMC bioinformatics, 6(1):1, 2005.

[10] D. Malioutov, A. Kumar, and I. E. Yen. Large-
scale submodular greedy exemplar selection with
structured similarity matrices. In Proceedings
of the Thirty-Second Conference on Uncertainty
in Artificial Intelligence, pages 507–516. AUAI
Press, 2016.

[11] Y. Nesterov. A method of solving a con-
vex programming problem with convergence rate
O(1/k2). Soviet. Math. Dokl., 1983.

[12] Y. Nesterov. Smooth minimization of non-
smooth functions. Mathematical programming,
103(1):127–152, 2005.

[13] C. Notredame. Recent progress in multiple se-
quence alignment: a survey. Pharmacogenomics,
3(1):131–144, 2002.

[14] C. Notredame. Recent evolutions of multiple se-
quence alignment algorithms. PLoS Comput Biol,
3(8):e123, 2007.

[15] C. Notredame, D. G. Higgins, and J. Heringa. T-
coffee: A novel method for fast and accurate mul-
tiple sequence alignment. Journal of molecular
biology, 302(1):205–217, 2000.

[16] M. F. Omar, R. A. Salam, N. A. Rashid, and
R. Abdullah. Multiple sequence alignment us-
ing genetic algorithm and simulated annealing.
In Information and Communication Technologies:
From Theory to Applications, 2004. Proceedings.
2004 International Conference on, pages 455–456.
IEEE, 2004.

[17] F. Sievers, A. Wilm, D. Dineen, T. J. Gibson,
K. Karplus, W. Li, R. Lopez, H. McWilliam,
M. Remmert, J. Söding, et al. Fast, scalable gen-
eration of high-quality protein multiple sequence
alignments using clustal omega. Molecular sys-
tems biology, 7(1):539, 2011.

[18] C. Sutton and A. McCallum. An introduction
to conditional random fields. arXiv preprint
arXiv:1011.4088, 2010.

[19] J. L. Thorne, H. Kishino, and J. Felsenstein. An
evolutionary model for maximum likelihood align-
ment of dna sequences. Journal of Molecular Evo-
lution, 33(2):114–124, 1991.

[20] J. L. Thorne, H. Kishino, and J. Felsenstein. Inch-
ing toward reality: an improved likelihood model
of sequence evolution. Journal of molecular evo-
lution, 34(1):3–16, 1992.

[21] P. Tseng. On accelerated proximal gradient meth-
ods for convex-concave optimization. gradient
methods for convex-concave optimization. SIAM
Journal on Optimization, 2008.

[22] M. J. Wainwright and M. I. Jordan. Graphical
models, exponential families, and variational in-
ference. Foundations and Trends R© in Machine
Learning, 1(1-2):1–305, 2008.

[23] I. E. Yen, X. Lin, J. Zhang, P. Ravikumar, and
I. S. Dhillon. A convex atomic-norm approach to
multiple sequence alignment and motif discovery.
In ICML., 2016.

[24] I. E. Yen, D. Malioutov, and A. Kumar. Scal-
able exemplar clustering and facility location via
augmented block coordinate descent with column
generation. In Proc. AISTATS, 2016.

[25] I. E.-H. Yen, X. Lin, K. Zhong, P. Ravikumar, and
I. S. Dhillon. A convex exemplar-based approach
to mad-bayes dirichlet process mixture models. In
ICML, pages 2418–2426, 2015.

[26] K. Zhong, I. E.-H. Yen, I. S. Dhillon, and P. K.
Ravikumar. Proximal quasi-newton for computa-
tionally intensive l1-regularized m-estimators. In
Advances in Neural Information Processing Sys-
tems, pages 2375–2383, 2014.

Scalable Convex Multiple Sequence Alignment via Entropy-Regularized Dual Decomposition

7 Appendix A: supplement definitions

In this section we give some detailed definitions of vari-
ables used in section 3. Recall that in the ambient
space to characterize the alignment between any two
sequences is defined through the graph G = (V,E)
where V = [T]× [L]×Σ̂. The edges E = EI∪ED∪EM
are defined through V . In particular:

EI =

(t, l, d)→ (t+ 1, l, d)

∣∣∣∣∣∣
t ∈ [T − 1],
l ∈ [L],

d ∈ Σ̂

ED =

(t, l, d1)→ (t, l + 1, d2)

∣∣∣∣∣∣
t ∈ [T],

l ∈ [L− 1],

d1, d2 ∈ Σ̂

EM =

(t, l, d1)→ (t+ 1, l + 1, d2)

∣∣∣∣∣∣
t ∈ [T − 1],
l ∈ [L− 1],

d1, d2 ∈ Σ̂

These edges represent the action of insertion, deletion
and matching while we are aligning two sequences. By
assigning {0, 1} to each edge we are actually saying if
we are taking this action in alignment process or not.
Similarly, by assigning penalty weights to each edge
we can add our preference to each action. Given a
sequence xn ∈ Σ̂Tn , the penalty associated with edge e
is defined as:

d(e;x) =

dI , e ∈ EI
dD , e ∈ ED
dM , e ∈ EM , xn[t+ 1] 6= d2

0 , otherwise

(26)

Then we can define the penalty variable associated
with sequence xn Dxn

∈ {0, dI , dD, dM}|E|, where
Dxn

[e] = d(e;xn). Now consider all data sequences
{xn}Nn=1, then the whole penalty variable is defined
by simply stacking all Dxn together in a new dimen-
sion.

