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Surface and underwater ocean vessels have a need to quickly and accurately detect 

and identify sound patterns for species monitoring, obstacle avoidance, or 

identification of other vessels. This can be done by transforming audio into 

spectrogram images and processing them with convolutional neural network (CNN) 

models, taking advantage of recent advancements in image classification. While 

CNNs can achieve high classification performance over ideal data, recent work has 

shown that image classification models are susceptible to adversarial attacks, 

nearly-imperceptible image perturbations that significantly degrade model accuracy, 

precision, and recall. This project investigates the capabilities of a publicly available 

CNN, AlexNet, on a binary classification problem to detect whale presence from 

single-channel audio. The audio samples are Fourier transformed into a power 

spectral density array and up-sampled to fit the model dimensions of AlexNet, 

achieving ~93% accuracy. The trained models were then tested with perturbed 

images from multiple white-box attacks (with access to model output and model 

gradients during inference), and black-box attacks (with access to only model 

output). These attacks severely degraded the performance of the models. To combat 

this, various data preprocessing-based defenses were proposed and implemented, 

along with combinations of defenses. It was found that targeted, computationally 

intensive defenses improved accuracy significantly, while universal, cheaper defenses 

such as low-pass filtering could generalize better, defending against multiple types of 

attacks. Future work would involve expanding our models to classify multiple species 

of marine mammals and generating more realistic attacks on the raw audio. 



 

I. Introduction 
Underwater acoustical identification is a critical 

requirement in multiple fields such as species 

protection and population monitoring. This task 

requires large amounts of audio data to be analyzed 

and classified accurately, a difficult and time-

consuming effort for human scientists. Instead, neural 

networks can be utilized to classify such audio data 

automatically to a high degree of accuracy without 

much human intervention. 

In recent years, image classification neural 

networks have greatly improved. In order to take 

advantage of these existing optimized, high-

performance network models, audio samples are 

converted into power spectral density (PSD) 

spectrograms which relate signal strength to 

frequency and time.  

Spectrograms are then fed through convolutional 

neural networks (CNNs). A CNN is a deep neural 

network designed to effectively work on images. The 

first few layers convolve pixels together, reducing the 

size within each layer while retaining and extracting 

abstract features in two-dimensional layers before 

flattening to one dimension and determining a final 

confidence value.  

Despite their strength, CNNs are vulnerable 

adversarial attacks: small, targeted, and nearly 

unpredictable disruptions to input images that cause 

the network to misclassify the input1. Adversarial 

attacks can be classified into two main styles: white-

box attacks in which the attacker is granted full 

access to the model, and black-box attacks that only 

access a model’s inputs and outputs. A third 

classification, grey-box, is a catch-all to describe 

attacks which require some additional information 

beyond a true black-box attack, such as the model’s 

certainty of prediction. Figure 1 visualizes the 

spectrum onto which these attacks fall.2 

 
These attacks disrupt neural networks from 

successfully learning and generalizing the task, but 

there are multiple proposed defenses against 

adversarial disruption. Two styles of defense are 

outlined in this paper: incorporating adversarial 

images in the training process and introducing a lossy 

transformation on all images entering the model in 

order to filter small perturbations. 

 

II. Classifier 

A. Dataset 
The binary whale dataset that is used to train and test 

the model comes from the Cornell buoy North 

Atlantic Right Whale set.3 This set consists of 30000 

labelled samples and ~54000 testing samples without 

publicly released labels that were used for the 

Bloodhound black box attack. 

The spectrograms used by the model are 

generated by converting the provided 2 second audio 

clips into a grayscale PSD spectrogram array using 

the Fast Fourier Transform. Decibel scaling was 

performed on the audio strength output values while 

linear frequency scaling was preserved due to 

apparent noise increase when converted to 

logarithmic scale. 

The spectrogram values are z-score normalized 

to standardize across samples and saved as raw 

NumPy arrays of shape 100x55 rather than an image 

to preserve data without decreasing the signal-to-

noise ratio. The data loader then upscales into a 

224x224 “image” array to fit the dimension 

requirements of the models used for training and 

testing. 

The training dataset contains a disproportionate 

number (~80%) of negative samples (no whale call 

present). This causes the model to naturally favor 

negative responses, missing a higher percentage of 

positive test samples than negative, reducing both 

precision and recall. To address this, each class was 

weighted 1/√𝑛, where n is the total number of 

species in the class. This causes the less prevalent 

positive samples to each have a stronger impact on 

the model parameters when backpropagated. The 

weighting slightly reduces the model’s accuracy from 

92.68% to 92.52%, increases recall, the proportion of 

true positives over all positive samples, from 80.16% 

to 87.40%, but reduced precision, the proportion of 

true positives over all positive predictions, from 

87.03% to 81.44% due to a higher number of false 

positives.  This brings the model’s proportions of 

positive predictions closer to negative predictions 

(Fig. 2). 

 

Figure 1: The gradient of attack types 

Figure 2: Confusion Matrices for 

Normalized Model 

Non-Normalized Normalized 



 

B. Network  
AlexNet is a smaller image-classifying CNN 

designed in 2012.4 Due to the small dataset and 

binary classes, newer and deeper networks such as 

ResNet,5 MobileNet,6 and VGG7 were found to 

memorize and overfit the data, performing poorly in 

testing and remaining brittle to attacks even after 

defensive training. 

AlexNet originally takes an input size of 

224x224x3, a square RGB image, but we alter the 

architecture to fit our grayscale spectrograms 

(224x224x1). 5 convolution layers and 3 pooling 

steps reduce the size of each layer from 224x224 

pixels (50,176 total) to a single layer of 4096 nodes. 

The complete architecture is visualized in Fig. 3.8 By 

convolving the image instead of stringing out each 

individual pixel, the information about a pixel’s 

relative location and the values of nearby pixels are 

preserved. This allows the network to view the input 

images more like a human would and learn larger 

patterns of the image instead of from each pixel 

independently. 

 

C. Addressing Data Leakage 
Data leakage occurs when the training set and testing 

set for a model have overlapping data. In our first 

tests, we neglected to set a random seed when we 

partitioned our labeled dataset into training and 

testing sections (using the k-fold split technique with 

3 folds). This caused the training script and testing 

script to have different random seeds and therefore 

select training and testing data groups independently, 

contributing to overlap. 

To address this, a seed of 42 is set for all random 

elements in our project, and the answer to the 

ultimate question of life, the universe, and everything 

becomes the answer to our data leakage problems. As 

an additional measure, a random sample of 20% of 

the labeled data is permanently partitioned in a 

separate folder as the testing dataset, and the other 

80% is used as the training dataset, similar to the hard 

partitions provided by the MNIST handwriting 

recognition dataset. Experimenting with different 

20% samples of the data showed very little change 

between tests, so we assume that a random selection 

is a representative sample, and any similarities from 

different buoys/geographical locations do not affect 

our tests.  

D. Initial Performance 
Out of the 6,000 test samples, the AlexNet model 

classifies 92.52% of the samples correctly. The 

model’s precision is 81.44%, and its recall is 87.40%. 

Our weighted model errs more towards positive 

predictions than the unweighted version, maximizing 

the number of true samples detected but classifying 

more samples as false positives. In practical 

applications like a passive monitoring system, whale 

calls would be an important rarity, so it would be 

worth sorting through a few false positives to catch 

all whale calls in the area. 

Figure 4 top shows the testing accuracy of the 

baseline model increasing over the 10 epochs of 

training, reaching 92% at epoch 10. The bottom 

shows the receiver operating characteristic (ROC) 

curve which correlates false positive and true positive 

rates of the model. An ideal model would have 0.0 

false positive and 1.0 true positive, while a random 

predictor would be represented by the black line, and 

anything below is worse than random. The area under 

the curve (AUC) from 0-1 represents the model’s 

class distinguishing ability, with the baseline at 0.97.

 

Figure 3: A visualization of the 

AlexNet Architecture  

Figure 4: Baseline performance 

accuracy and ROC curve 



 

III. Attacks 
With the model achieving high accuracy with 

standard training and testing, we perform multiple 

types of attacks against the classifier. Successful 

attacks prove the danger in relying on a classification 

model without defensive training (Fig. 6).  

 

A. White-Box 
The simplest form of adversarial perturbation, white-

box attacks require unrestricted access to a model’s 

structure and gradients. While white-box attacks 

cannot practically attack a real-world model on their 

own, they provide important information on a 

model’s robustness, and they can be fed into a 

model’s training sequence to increase dataset size and 

reduce a model’s brittleness to all attacks. 

The first attack implemented is the Fast Gradient 

Sign Method.9 In this attack, an image is passed 

through the target model to calculate the loss, and the 

loss is passed back the image, calculating the best 

change necessary in each pixel to correctly classify 

the image with the highest certainty. The attacker 

then moves the image in the opposite direction 

(gradient ascent), calculating the negative sign of this 

change and adding it (multiplied by a constant ε to 

determine the power of the attack), to the original 

image. While fast, this attack noticeably alters the 

image at ε > 0.015.  

The attack proposed by Carlini and Wagner10 

provides a more sophisticated version of the FGSM 

attack. Referred to as the CW attack, it searches for 

the smallest possible perturbation that successfully 

misclassifies an image after a specified number of 

steps, 100 in our tests. The actual function, listed in 

Equation 1, is more complicated to increase 

efficiency, but performs the same process. This 

attack’s perturbations are less noticeable to the 

human eye than FGSM (Fig. 5), but they take 

significantly more computation time (estimated 

180x). 

 
Named DeepFool,11 the final attack, utilizes a 

unique strategy. Instead of taking advantage of the 

model’s gradient, it searches for the nearest 

hyperplane, the high-dimensional border that 

separates different classifications inside the model’s 

probability space. Once it finds the closest 

hyperplane in Euclidian space, it calculates the 

orthogonal projection of the image’s current values 

onto a point just beyond the hyperplane and adds the 

value of this vector to the original image. As a result, 

very little perturbation is required to misclassify the 

image (Fig. 5), but the attack only requires an 

estimated 9x more computation time than FGSM. 

B. Black-Box 
Unlike white-box attacks, black-box attacks can be 

realistically implemented on brand-name neural 

networks such as Google Lens or the computer vision 

networks in self-driving cars. Two such attacks are 

covered in this paper 

Square12 changes a small square of pixels 

uniformly on the input image then tests for reduced 

confidence, repeating this up to 7,500 times until 

misclassification is reached. This attack is technically 

grey-box, for it requires the confidence of a model’s 

prediction, but this information is available for some 

public models. However, the large number of queries 

to the model required to find adversarial images 

drastically increases runtime to 1700x that of FGSM 

and would likely be detected as adversarial behavior 

by the model.  

In this project, we create a more sophisticated 

attack based around the work by Papernot et al.13 

Named Bloodhound, this attack attempts to train a 

“bloodhound” model that emulates the decision 

borders of the target model. White-box attacks are 

performed on the bloodhound model, and because of 

the transferability in attacks, these attacks are also 

effective against the target model. Transferability is 

Figure 6: FGSM successfully confusing 

the model 

Equation 1: The CW Objective Function 

Figure 5: The perturbation added for misclassification in each attack 

FGSM (scaled to ε) CW DeepFool Square (×.02) Original (Positive) 



 

the concept that attacks generated on a neural 

network will cause misclassification in a separate 

neural network, even when the models’ architectures 

are different.9 To train this model, we used a set of 

54,503 unlabeled sound files of the same format and 

similar classification distribution as the original 

labeled dataset. This large dataset was originally 

provided as a way to test model accuracy for a 

competition held by the dataset’s creators.  

To emulate the target model, the attacker passes 

the unlabeled data, soft-labeling it with the target 

model’s output (Fig. 7). The image and label are then 

passed to the new model to train. We confirmed 

transferability between architectures by testing 

FGSM images trained with AlexNet on ResNet18,5 a 

newer CNN with significantly more layers than 

AlexNet, and the attacks performed nearly 

identically. Therefore, the assumption is made that 

Bloodhound would work against a model of unknown 

architecture. This attack is still not completely 

realistic, for creating such a large dataset would be 

expensive, and the thousands of queries on the target 

model would be easily detectable. Future work will 

adjust Bloodhound to generate images to isolate the 

target model’s decision boundaries in fewer queries, 

following the original example.13 

 

When testing attacks generated on this new 

model, we found that high-epsilon FGSM attacks 

successfully disrupted the model, albeit at a lower 

strength than direct white-box attacks. However, we 

found that CW and DeepFool, attacks that attempt to 

barely cross decision borders for minimal 

perturbations, had no effect on the target model. This 

suggests that the two models do not have the same 

decision borders. We theorize that the first model is 

not trained on a large or diverse enough dataset to 

define intelligent decision borders, and the existing 

hyperplanes are somewhat arbitrary, for a different 

model (the bloodhound) can be trained to have 

similar accuracy yet different decision borders. 

C. Attack Results 

Figure 8 shows the performance of each attack 

compared to the original model accuracy. The same 

set of data was used for all tests, perturbed in real-

time. DeepFool was the most effective attack studied, 

for it reduced accuracy by 40% more than the next 

best attack while remaining unnoticeable.

 
As seen in Fig. 9, the Bloodhound attacks are 

very effective on the bloodhound model, but only 

high-epsilon FGSM attacks transfer to the target 

model. CW was excluded from bloodhound tests 

because of its high computation time and near-

identical results to DeepFool in small-scale testing. 

 

IV. Defenses 
Even at low epsilon values, these attacks prove 

highly effective, degrading the AlexNet model’s 

performance to near-random chance while remaining 

very similar to the original sample, even visually 

identical for smaller 𝜀 values. Therefore, different 

proposals of adversarial defenses were investigated 

and experimented relating to data augmentation and 

pre-processing prior to network input. 

A. Adversarial Training 
Adversarial training augments the model training 

pipeline with perturbed data to encourage robustness 

against similar attacks.9 A baseline model is trained 

with standard data, then adversarial perturbations are 

developed to attack this model. These adversarial 

images are then used to train a robust model. 

A problem with this methodology was quickly 

discovered: the model is only robust to perturbations 

included in the training. To solve this, the AlexNet 

model was trained on adversarial data generated on 

the fly, varying the 𝜀 values in a uniform distribution 

between 0 and .03. By re-generating adversarial 

Figure 7: Bloodhound Visualized 

Figure 8: Attack performance on 

AlexNet Architecture 

Figure 9: Bloodhound Attack Statistics 



 

images between epochs of the training sequence, we 

create an arms race between the model and generator, 

each attempting to outdo each other every epoch. 

This process is computationally intensive and time 

consuming but greatly increases robustness. 

B. Low-Pass/Data Smoothing/Gaussian Blur 
Most white-box attack perturbations were observed 

to have large fluctuations between pixels, especially 

FGSM. This allows for a low pass filter defense, the 

Gaussian blur (Fig. 10), on the spectrogram data in 

order to smooth out the small pixel changes from the 

attack. The Gaussian blur therefore hinders white-box 

attacks utilizing the gradient, as highly variable 

gradient-based perturbations are filtered out. 

 
Inspired by the SHIELD adversarial defense,14 

which utilizes lossy JPEG compression to have a 

similar effect, this defense adds a gaussian blur to all 

data fed into the model, creating a “vaccinated” 

model that is unaffected by subtle changes to inputs. 

The blur operation is processed through the data 

loader, allowing for combination with adversarial 

training defense. We found that minor blurring 

drastically reduced the attacks’ efficacy while 

causing negligible accuracy loss from the baseline 

performance. 

Gaussian blur is implemented with a strong and 

weak variation. The weak variation operates on a 3x3 

image kernel convolution with 𝜎 = 1.5 while the 

strong variation operates on a 5x5 kernel, 𝜎 = 3 in 

order to evaluate the tradeoff between gaussian blur 

strength’s effectiveness against adversarial attacks 

and collateral accuracy loss against baseline 

performance. 

C. Defenses Results 
Both Gaussian blur and adversarial training defenses 

are shown to be highly effective at reducing attack 

severity against the model while maintaining normal 

accuracy within 6% on adversarial training and 1% 

with Gaussian blur.  

The FGSM 0.3 attack remains most damaging 

against all defenses, including combinations of 

adversarial training and blurring. Both Gaussian blur 

and FGSM training defenses individually had parts of 

the receiver operating characteristics where the attack 

still causes the classifier to have cases fall below 

random chance (black line in Fig. 11). 

 
A stronger Gaussian blur proved to be more 

effective than the weak blur, remaining comparable 

at the baseline and achieving higher accuracies across 

all attacks. Additionally, Gaussian blur was shown to 

have negligible effect on computational cost and 

training time while adversarial training increased 

training time by a noticeable amount as shown in 

figure 12. 

 

 
Overall, combining adversarial training and 

strong blur yields the best results, with consistently 

high accuracies between the baseline (92%) and the 

Figure 10: Perturbed image 

transformed with Gaussian blur 

Figure 11: ROC curves for weak 

Gaussian Blur (left) and adversarial 

training (right). Adversarial training 

outperforms Gaussian blur. 

Figure 12: Training time comparison 

of defenses. 

Figure 13: Combined FGSM + 2X 

(strong) Gaussian Blur. 



 

largest attacks (86%) (Fig. 13). Figure 14 shows the 

accuracy of each defense on FGSM and CW attacks. 

V. Conclusions 

A. Results 
Likely because of the small dataset provided, small 

neural networks like AlexNet perform best at this 

binary classification problem. Deeper networks like 

ResNet and VGG tend to overfit and are brittle to 

attacks. 

Most attacks tested in this project caused the 

model to predict negative for the majority of samples, 

not rising to the level of full targeted disruption, but 

rendering the model useless. However, by using high-

epsilon FGSM attacks and DeepFool, we were able to 

create targeted misclassifications. This means that we 

exhibited full control over the model’s outputs, a 

much more powerful position than with the other 

attacks. Square and Bloodhound, the black-box 

attacks tested, successfully disrupted the model 

without internal knowledge when high levels of 

perturbation were permitted, and with a more 

sophisticated model trained on a larger dataset, the 

Bloodhound attack would likely successfully attack 

with delicate perturbations. 

Defenses proved capable of mitigating white-box 

attacks without sacrificing considerable accuracy, 

precision, or recall against unmodified data. 

Combining multiple defenses also enhanced 

effectiveness without causing conflicts. 

B. Limitations 
Through analysis of the dataset, three problems 

emerge: The dataset is too small to create significant  

decision borders inside the model’s parameters, there 

are many more negative samples than positive, and 

the dataset contains mislabeled samples. 

The labeled dataset contains 30,000 samples. 

While this amount is enough to train a reasonably 

accurate model, it is not enough to fully teach the 

subtle differences between whale calls. When testing 

the Bloodhound attack strategy (see 3.B), we found 

that DeepFool, an attack designed to barely cross the 

nearest decision boundary, performed strongly on the 

bloodhound model but had no effect on the target 

model. This suggests that the boundaries between 

models are arbitrary and need more data to be 

accurately fleshed out.  

To address this problem moving forward, 

research will shift towards larger dataset containing 

real-world interference such as passing boats and 

other mammal sounds. Additionally, the dataset will 

be bootstrapped, or artificially expanded, by 

duplicating training examples with added noise and 

truncating samples in both the frequency and time 

domain. By adding adversarial defense training 

images as described in 4.A and 4.B, this project takes 

a first step towards expanding the dataset. Testing 

showed that these techniques increased accuracy and 

helped the model to generalize. 

Figure 14: Overall defenses accuracy comparison against multiple attacks 



 

The dataset contains an imbalance in the number 

of named samples, containing only ~7000 positives 

and ~23,000 negatives. As detailed at the end of 1.A, 

this disparity was successfully addressed by 

weighting samples differently in training depending 

on their label. 

The final problem with the data is systemic and 

out of the scope of this project. The dataset was 

designed to be used to distinguish North Atlantic 

right whale up-calls from noise and other similar-

sounding mammal calls, such as humpback whale 

calls. Oftentimes, the 2-second samples are too short 

to correctly distinguish these calls (Fig. 15), thus 

confusing our model with seemingly missed calls. 

Additionally, the creators of the dataset have 

announced that some samples are overtly mislabeled. 

 

C. Future Work 
We are currently expanding the project to create a 

generalized sound classifier that is robust against 

adversarial attacks. The long-term goal is a real-time 

classifier that passively monitors a section of the 

ocean, grabbing and classifying sound samples of 

underwater mammals and ships. 

Future research will directly alter sound samples 

to disrupt the model rather than arbitrary changes to 

the generated spectrograms. 
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