
Cooperation and
Communication in Multiagent
Deep Reinforcement Learning

Matthew Hausknecht

Nov 28, 2016

Advisor: Peter Stone

1

Intelligent decision making is at the heart of AI.

Motivation

2

Thesis Question
How can the power of Deep Neural Networks be
leveraged to extend Reinforcement Learning towards
domains featuring partial observability, continuous
parameterized action spaces, and sparse rewards?

3

How can Deep Reinforcement Learning agents
learn to cooperate in a multiagent setting?

Contributions
• Half Field Offense Enivronment

• Deep RL in parameterized action space

• Multiagent Deep RL

• Deep Recurrent Q-Network (DRQN)

• Curriculum learning in HFO

4

Outline
1. Background

2. Deep Reinforcement Learning

3. Multiagent Architectures

4. Communication

5

Markov Decision Process

Action at

State st

Reward rt

Formalizes the interaction between the agent and
environment.

6

Half Field Offense
Cooperative multiagent soccer domain built on the
libraries used by the RoboCup competition

Objective: Learn a goal scoring policy for the offense
agents

Features continuous actions, partial observability, and
opportunities for multi agent coordination

7

Half Field Offense

8

9

10

State Action Spaces

58 continuous state features encoding
distances and angles to points of interest

Parameterized-Continuous Action Space:  
Dash(direction, power)  
Turn(direction) 
Tackle(direction)  
Kick(direction, power)

Choose one discrete action + parameters
every timestep

11

Learning in HFO is difficult

12

Reinforcement Learning
Reinforcement Learning provides a general
framework for sequential decision making.

Objective: Learn a policy that maximizes discounted
sum of future rewards.

Deterministic policy π is a mapping from states to
actions.

For each encountered state, what is the best action to
perform.

13

Q-Value Function
Estimates the expected return from a given state-
action:

Answers the question: “How good is action a from
state s.”

Optimal Q-Value function yields an optimal policy.

Q⇡(s, a) = E
⇥
rt+1 + �rt+2 + �2rt+3 + . . . |s, a

⇤

14

Deep Neural Network

Parametric model with stacked
layers of representation.

Powerful, general purpose function
approximator.

Parameters optimized via
backpropagation.

Input

Output

✓

15

Deep Reinforcement
Learning

Neural network used to approximate
Q-Value function and policy π.

Replay Memory: a queue of recent
experience tuples (s,a,r,s’) seen by
agent.

Updates to network are done on
experience sampled randomly from
replay memory.

State

Q-Value / Action

16

Deep Deterministic
Policy Gradients

Model-free Deep Actor Critic
architecture [Lillicrap ’15]

Actor learns a policy π, Critic learns to
estimate Q-values

Actor outputs 4 actions + 6 parameters.

at = max(4 actions) + associated
parameter(s)

State

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Q-Value

1024

ReLU

256

ReLU

512

ReLU

128

ReLU Actor

Critic

17

Training
Critic trained using temporal
difference:

Given Experience

Actor trained via Critic gradients:

State

ᵘθμ

4 Actions 6 Parameters

ᵘθQ

Q-Value

Actor

Critic

auQ
(s
,a
)

y = rt + �(Q(st+1, µ(st+1)|✓Q))

r✓µµ(s) = raQ(s, a|✓Q)r✓µµ(s|✓µ)

18

Reward Signal

rt = -ᵂd(Agent, Ball) + Ikick + -3ᵂd(Ball, Goal) + 5IGoal

Go to Ball Kick to Goal

With only goal-scoring reward, agent never learns
to approach the ball or dribble.

19

Results

20

Results
Scoring Avg. Steps
Percent to Goal

DDPG1 1.0 108.0
DDPG2 .99 107.1
DDPG3 .98 104.8
DDPG4 .96 112.3

Helios’ Champion .96 72.0
DDPG5 .94 119.1
DDPG6 .84 113.2
SARSA .81 70.7
DDPG7 .80 118.2

[Deep Reinforcement Learning in Parameterized Action
Space, Hausknecht and Stone, in ICLR ‘16]

21

Offense versus keeper

Automated Helios goal keeper is quite effective at
stopping shots.

Independently created by Helios RoboCup team.

DDPG fails to reliably score against keeper.

22

23

Better value estimates
Q-Learning is known to overestimate Q-Values [Hasselt ’16].

Several approaches have been found, but don’t always
extend to an actor/critic framework.

We will show that mixing off-policy updates with on-
policy Monte-Carlo updates yields quicker, more stable
learning.

24

Q-Learning Spectrum
Q-Learning is a bootstrap off-policy method:

N-step Q-learning [Watkins ’89]:

On-Policy Monte-Carlo updates are on-policy, non-
bootstrap:

Q(st, at|✓) = rt+1 + �max

a
Q(st+1, a|✓)

Q(st, at|✓) = rt+1 + �rt+2 + · · ·+ �T rT

Q(st, at|✓) = rt+1 + �rt+2 + · · ·+ �n�1rt+n + �n
max

a
Q(st+n, a|✓)

25

On-PolicyOff-Policy
B

oo
ts

tra
p

N
o-

B
oo

ts
tra

p

SARSA

Off-policy MC

n-step-return
 methods

On-policy MC

Q-Learning

Low Bias
High Variance

High Bias
Low Variance

26

On-Policy Monte Carlo
On-Policy Monte-Carlo updates make sense near the
beginning of learning, since is
nearly always wrong.

After Q-Values are refined, off-policy, bootstrap
updates more efficiently utilize experience samples.

A middle path is to mix both update types:

max

a
Q(st+1, a|✓)

y = � y
on-policy-MC

+ (1� �) y
1-step-q-learning

27

Experiments
Trained on 1v1 task

We evaluated 5 different β values: 0, .2, .5, .8, 1

y = � y
on-policy-MC

+ (1� �) y
1-step-q-learning

28

β = 0

29

β = 0.2

30

β = 0.5

31

β = 0.8

32

β = 1.0

33

34

Off-Policy Monte Carlo
For 1v1 experiments, a middle ground between on-
policy and off-policy updates works best.

Purely off-policy updates can’t learn; Purely on-policy
updates take far too long to learn.

[On-Policy vs. Off-Policy Updates for Deep
Reinforcement Learning, Hausknecht and Stone,

DeepRL ’16]

35

Thesis Question
How can the power of Deep Neural Networks be
leveraged to extend Reinforcement Learning towards
domains featuring partial observability, continuous
parameterized action spaces, and sparse rewards?

Novel extension of DDPG to parameterized-continuos
action space.

Method for efficiently mixing on-policy and off-policy
update targets.

36

Outline
1. Background

2. Deep Reinforcement Learning

3. Multiagent Architectures

4. Communication

37

Deep Multiagent RL
Can multiple Deep RL agents cooperate to achieve a
shared goal?

Examine several architectures:

Centralized: Single controller for multiple agents

Parameter Sharing: Layers shared between agents

Memory Sharing: Shared replay memory

38

Centralized
Both agents are controlled
by a single actor-critic

State & Action spaces are
concatenated

Learning takes place in
higher-dimensional joint
state, action space

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Q-Value

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Actor

Critic

State

6 Parameters4 Actions

State

39

40

41

Parameter
Sharing

Shared weights between layers in
Actor networks. Separate sharing
between Critic networks.

Reduces total number of
parameters

Encourages both agents to
participate even though 2v0 is
solvable by a single agent.

State

4 Actions 6 Parameters

256

ReLU

128

ReLU

Q-Value

256

ReLU

128

ReLU

4 Actions 6 Parameters

256

ReLU

128

ReLU

Q-Value

256

ReLU

128

ReLU

State

1024

ReLU

512

ReLU

1024

ReLU

512

ReLU

Critics

Actors

42

43

44

45

Both agents add experiences to a shared memory.
Both agents perform updates from the shared memory.
Parameters of agents are not shared.

Memory Sharing

46

Shared
Replay
Queue

Agent-0 Agent-1

Memory Sharing agents add experience and
update from a shared replay memory.

Memory Sharing

47

48

Multiagent Architectures

Centralized controller utilizes only a single agent.

Sharing parameters and memories encourages
policy similarity, which can help all agents learn the
task.

Memory sharing results least performance gap
between agents.

49

Outline
1. Background

2. Deep Reinforcement Learning

3. Multiagent Architectures

4. Communication

50

Symbiosis in Nature

Crocodile and Egyptian Plover

Clownfish and anemone

51

Communication

In human society, cooperation
can be achieved far faster
than in nature, through
communication.

How can learning agents use communication to
achieve cooperation?

52

1. Identify task-relevant information

2. Communicate meaningful information to the teammate

3. Remain stable enough that teammate can trust the
meaning of messages

Desire a learned communication
protocol that can:

53

Related Work
• Multiagent Cooperation and Competition with Deep

Reinforcement Learning; Tampuu et. al, 2015

• Learning to Communicate to Solve Riddles with
Deep Distributed Recurrent Q-Networks; Foerster
et al., 2016

• Learning to Communicate with Deep Multi-Agent
Reinforcement Learning; Foerster et al., 2016

54

Baseline Communication
Architecture

Continuous communication
actions. Messages are real
values.

No meaning attached to
messages; no pre-defined
communication protocol.

Incoming messages appended
to state.

Messages updated in direction
of higher Q-Values.

Actions Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Q-Value

1024

ReLU

256

ReLU

512

ReLU

128

ReLU
Actor

Critic

Comm

State Comm

55

Teammate Comm Gradients

Same as baseline except Communication gradients
exchanged with teammate.

Allows teammate to directly alter communicated
messages in the direction of higher reward.

56

Baseline Comm Arch

Actor Actor

Critic Critic

state comm statecommaction action

state state

T=1

T=0

Agent 0 Agent 1

57

Teammate Comm Gradients

Actor Actor

Critic Critic

state comm statecommaction action

state state

T=1

T=0

Agent 0 Agent 1

58

Guess My Number Task

Each agent assigned secret number

Goal: teammate send a message close to
secret number h

Reward:

Max reward when teammate message equals your
secret number.

59

Baseline

60

Teammate Comm Grad

61

Blind Agent can hear but cannot see

Sighted Agent can see but cannot
move

Goal: sighted agent must use
communication to help blind agent
locate and approach the ball

Rewards:

Agents communicate using
messages

Blind Soccer

62

63

Baseline

64

Baseline architecture begins to solve the task, but the
protocol is not stable enough and performance crashes.

Teammate Comm Gradients

65

Fails to ground messages in the state of the environment.

Agents fabricate idealized messages that don’t reflect
reality.

Example: blind agent wants the ball to be directly ahead

So it alters the sighted agents messages to say this,
regardless of the actual location of the ball.

Teammate Comm Gradients

66

GSN learns to extract information
from the sighted agent’s
observations that is useful for
predicting the blind agent’s rewards.

Intuition: We can use observed
rewards to guide the learning of a
communication protocol.

Grounded Semantic
Network

o(1)

r(2)

128

ReLU

256

ReLU

64

ReLU

64

ReLU

m(1) a(2)

θr

θm

67

Maps sighted agent’s observation
o(1) and blind teammate’s action a(2)
to blind teammate reward r(2) 

 r(2) = GSN(o(1), a(2))

Grounded Semantic
Network

o(1)

r(2)

128

ReLU

256

ReLU

64

ReLU

64

ReLU

m(1) a(2)

θr

θm

68

Grounded Semantic
Network

Message encoder M and a reward
model R:

Activations of layer m(1) form the
message.

Intuition: m(1) will contain any salient
aspects of o(1) that are relevant for
predicting reward.

o(1)

r(2)

128

ReLU

256

ReLU

64

ReLU

64

ReLU

m(1) a(2)

θr

θm

69

Grounded Semantic
Network

Training minimizes supervised loss:

Evaluation requires only observation
o(1) to generate message m(1)

GSN is trained in parallel with agent.
Uses learning rate 10x smaller than
agent for stability. o(1)

r(2)

128

ReLU

256

ReLU

64

ReLU

64

ReLU

m(1) a(2)

θr

θm

70

GSN

71

72

Is communication
really helping?

74

t-SNE Analysis
2D t-SNE projection of 4D messages
sent by the sighted agent

Similar messages in 4D space are
close in the 2D projection

Each dot is colored according to
whether the blind agent Dashed or
Turned

Content of messages strongly
influences actions of blind agent

75

1. Identify task-relevant information

2. Communicate meaningful information to the teammate

3.Remain stable enough that teammate can trust the
meaning of messages

Desire a learned communication
protocol that can:

77

GSN fulfills these criteria. For more info see:
[Grounded Semantic Networks for Learning Shared
Communication Protocols] NIPS DeepRL Workshop ‘16

Communication Conclusions
Communication can help cooperation. It is possible
to learn stable and informative communication
protocols.

Teammate Communication Gradients is best in
domains where reward is tied directly to the content
of the messages.

GSN is ideal in domains in which communication
needs to be used as a way to achieve some other
objectives in the environment.

78

Thesis Question
How can Deep Reinforcement Learning agents
learn to cooperate in a multiagent setting?

Showed that sharing parameters and replay
memories can help multiple agents learn to
perform a task.

Demonstrated communication can help agents
cooperate in a domain featuring asymmetric
information.

79

Future Work

Teammate modeling: Could such a model be used for
planning or better cooperation?

Embodied Imitation Learning: How can an agent
learn from a teacher without directly observing the
states or actions of the teacher?

Adversarial multiagent learning: How to communicate
in the presence of an adversary?

80

Contributions
• Extended Deep RL algorithms to parameterized-

continuous action space.

• Demonstrated that mixing bootstrap and Monte Carlo
returns yields better learning performance.

• Introduced and analyzed parameter and memory sharing
multiagent architectures.

• Introduced communication architectures and
demonstrated that learned communication could help
cooperation.

• Open source contributions: HFO, all learning agents
81

Thanks!

State

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

Q-Value

1024

ReLU

256

ReLU

512

ReLU

128

ReLU Actor

CriticConvolution 1

Convolution 2

Convolution 3

LSTM

Fully Connected

Q-Values

82

Partially Observable MDP
(POMDP)

Action at

Observation ot

Reward rt

Observations provide noisy or incomplete information

Memory may help to learn a better policy
83

Atari Environment

Action at

Observation ot

Reward rt

Resolution 160x210x3
18 discrete actions

Reward is change in game score

84

Atari: MDP or POMDP?

Depends on the number
game screens used in the
state representation.

Many games PO with a
single frame.

85

Neural network estimates Q-Values
Q(s,a) for all 18 actions:

Learns via temporal difference:

Accepts the last 4 screens as input.

Deep Q-Network (DQN)

Convolution 1

Convolution 2

Convolution 3

Fully Connected

Fully Connected

Q-Values

Q(s|✓) = (Qs,a1 . . . Qs,an)

Li(✓) = Es,a,r,s0⇠D

h�
Q(st|✓)� yi

�2i

yi = rt + �max(Q(st+1|✓))

86

Flickering Atari
How well does DQN perform on POMDPs?

Induce partial observability by stochastically
obscuring the game screen

Game state must be inferred from past observations

ot =

⇢
st with p =

1
2

< 0, . . . , 0 > otherwise

87

DQN Pong

True Game Screen Observed Game Screen
88

DQN Flickering Pong

True Game Screen Observed Game Screen
89

Uses a Long Short Term Memory
(LSTM) to selectively remember past
game screens.

Architecture identical to DQN except:
1. Replaces FC layer with LSTM
2. Single frame as input each

timestep

Trained end-to-end using BPTT for
last 10 timesteps.

Deep Recurrent Q-Network

Convolution 1

Convolution 2

Convolution 3

LSTM

Fully Connected

Q-Values

90

DRQN Flickering Pong

True Game Screen Observed Game Screen
91

92

LSTM infers velocity

93

DRQN Frostbite

94

95

Extensions
DRQN has been extended in several ways:

• Addressable Memory: Control of Memory, Active
Perception, and Action in Minecraft; Oh et al. in
ICML ’16

• Continuous Action Space: Memory Based Control
with Recurrent Neural Networks; Heess et al., 2016

[Deep Recurrent Q-Learning for Partially Observable
MDPs, Hausknecht et al, 2015; ArXiv]

96

Bounded Action Space
HFO’s continuous parameters are bounded

Dash(direction, power)
Turn(direction)
Tackle(direction)
Kick(direction, power)

Direction in [-180,180], Power in [0, 100]

Exceeding these ranges results in no action

If DDPG is unaware of the bounds, it will invariably
exceed them

97

We examine 3 approaches for bounding the DDPG’s
action space:

1. Squashing Function

2. Zero Gradients

3. Invert Gradients

Bounded DDPG

98

Squashing Function
1. Use Tanh non-linearity to bound parameter output

2. Rescale into desired range

99

Squashing Function

100

Each continuous parameter has a range: [pmin, pmax]

Let p denote current value of parameter, and the
suggested gradient.

Then:

Zeroing Gradients

rp =

(
rp if p

min

< p < p
max

0 otherwise

rp

101

Zeroing Gradients

102

Inverting Gradients

rp = rp ·
(
(p

max

� p)/(p
max

� p
min

) if rp suggests increasing p

(p� p
min

)/(p
max

� p
min

) otherwise

For each parameter:

Allows parameters to approach the bounds of the ranges
without exceeding them

Parameters don’t get “stuck” or saturate

103

Inverting Gradients

104

2v1

• Can agents learn cooperative behaviors like
passing and cross kicks?

• Hypothesis: Cross kicks can help achieve more
reliable scoring in 2v1 setting. Can sharing
architectures learn such behaviors?

105

2v1

106

2v1

107

108

2v1

• Both memory sharing and parameter sharing result
in reasonably high goal percentage

• Agents do not learn passes or cross kicks and
instead rely on individual attacks

109

Curriculum Learning
• Motivation: it’s difficult to design unbiased reward

functions for complex tasks.

• Easier to break a complex task into many subtasks,
learn each subtask, and then use the skills to address
the complex task.

• Given: Complex target task with sparse reward
function, curriculum of tasks with non-sparse reward.

• Goal: Learn how to perform all tasks in curriculum
including the target task.

110

State Embed Architecture

Each task in curriculum is
represented as an embedding
vector.

Task embedding vector is
concatenated with agent’s
observation.

State

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

i

Task Embedding

Wemb

111

Weight Embed Architecture
Each task in curriculum is
represented as an embedding
vector.

Weight embedding architecture
conditions the activations of a
particular layer on the task
embedding.

Allows a single network to learn
many tasks and act uniquely in each
task.

State

4 Actions 6 Parameters

1024

ReLU

256

ReLU

512

ReLU

128

ReLU

i

Task Embedding

128

Wemb

WWenc

Wdec

112

Curriculum

• Target Task: Score on Goal

• Curriculum: Move to Ball, Kick to Goal

• Each task in curriculum corresponds to one skill in
the target task.

• Tasks are represented using an embedding vector.

113

Curriculum Ordering
• The order of training tasks has an impact on

ultimate performance.

• Random curriculum: Presents a random task in the
curriculum at each episode

• Sequential curriculum: Easiest tasks presented
first, then harder tasks. Each task trained until
convergence.

114

Random Curriculum, No
Embedding

115

Seq Curriculum, No
Embedding

116

Random Curriculum, State
Embedding

117

Seq Curriculum, State
Embedding

118

Random Curriculum, Weight
Embedding

119

Seq Curriculum, Weight
Embedding

120

Curriculum Learning

• Agents can reuse learned skills to perform the
soccer task which features a sparse goal reward

• Agents must continue to revisit all training tasks or
they will forget previous skills

• Ablation experiments show that all tasks are
necessary for the soccer curriculum

121

