
1

CS395T: Design/Implementation of Trusted Servers

Byzantine Quorum Systems

by

Anurag Agarwal

CS395T: Design/Implementation of Trusted Servers

Courtesy : From
Byzantine Agreement to
Practical survivability

D. Malkhi

CS395T: Design/Implementation of Trusted Servers

System Model

 Universe U of servers |U| = n
 Quorum system
 Byzantine faulty servers

 Modeled as fail-prone system

 Some contains all the faulty servers

 Initially clients assumed to be correct
 Point to point authenticated and reliable

asynchronous channel

[MR98]

CS395T: Design/Implementation of Trusted Servers

Access Protocol

 Each server stores value v and timestamp T
 Client c chooses timestamps from set Tc

 For clients c and c’, Tc and Tc’ don’t intersect

 Write (v)
 Query servers to get a set A of timestamps for

some quorum Q
 Choose a timestamp t in Tc greater than highest in

A and greater than any of its previous timestamps
 Send update <v,t> to servers until

acknowledgement from some quorum Q’ is
received

2

CS395T: Design/Implementation of Trusted Servers

Access Protocol

 Read()
 Query servers to obtain value/timestamp pairs A

for some quorum Q

 Applies a deterministic function “Result(A)” to
obtain the result of read operation

 “Result” function
 Depends on the type of quorum systems

 Chosen to guarantee safe semantics

CS395T: Design/Implementation of Trusted Servers

Masking Quorum Systems

 A quorum system is a masking quorum system for
a fail prone system if the following properties are
satisfied :
 M-consistency

 M-availability

CS395T: Design/Implementation of Trusted Servers

Masking Quorum Systems

 Read : “Result()” function
 Client receives the responses

 Computes the set

 Chooses the pair in with highest timestamp

CS395T: Design/Implementation of Trusted Servers

f – masking Quorum System

 M-consistency

 M-availability

 Quorum system exists iff

3

CS395T: Design/Implementation of Trusted Servers

Grid Quorum

 ,

 Arrange the universe in a k x k grid

 A masking quorum system (Cj – columns, Ri – rows)

n = 5 x 5, f =1

CS395T: Design/Implementation of Trusted Servers

Dissemination Quorum
Systems

 Quorums for self verifying data
 Only clients can create the data

 Clients can detect attempted changes by a faulty
server

 D-consistency

 D-availability

CS395T: Design/Implementation of Trusted Servers

Dissemination Quorum
Systems

 Read : “Result()” function
 Client receives the responses

 Computes the set of pairs which are verifiable

 Chooses the pair in with highest
timestamp

CS395T: Design/Implementation of Trusted Servers

f – dissemination Quorum
System

 D-consistency

 D-availability

 Quorum system exists iff

4

CS395T: Design/Implementation of Trusted Servers

Grid Quorum

 ,

 Arrange the universe in a k x k grid

 A masking quorum system (Cj – columns, Ri – rows)

n = 5 x 5, f =1

CS395T: Design/Implementation of Trusted Servers

Opaque Masking Quorum
Systems

 Masking quorums require the client to know
the fail prone system

 Problems
 Read protocol becomes complicated

 Revealing possible failure scenarios for which the
system is designed

 Design quorums such that clients don’t need
to know

CS395T: Design/Implementation of Trusted Servers

Opaque Masking Quorum
Systems - Properties

 O-Consistency1:

 O-Consistency2:

 O-availability

CS395T: Design/Implementation of Trusted Servers

Opaque Masking Quorum
Systems

 Read : “Result()” function
 Client receives the responses

 Computes the set of pairs which appear most
often

 Chooses the pair in with highest
timestamp

 f-opaque quorum system
 Exists iff

5

CS395T: Design/Implementation of Trusted Servers

Byzantine Clients

 Problems
 Send different updates to different servers

 Leaves system inconsistent

 May write data that corrupts the state
 Impossible for servers to avoid

 Protocol ensures that clients don’t leave
system in an inconsistent state

 Works for single writer, multiple reader
 Masking Quorum Systems

CS395T: Design/Implementation of Trusted Servers

Client Write protocol

1) Choose a timestamp t in Tc greater than any
value it has chosen before

2) Choose a quorum Q and send an update
message <update,Q,v,t> to each server in Q

3) If it does not receive ack from all the servers
in Q within some time, repeat the steps 2 and 3

CS395T: Design/Implementation of Trusted Servers

Server Write Protocol

 Two sets to remember
 such that

 Protocol
 If a server receives a fresh <update,Q,v,t>, then

send <echo,Q,v,t> to each member of Q

 If a server receives identical echo messages
<echo,Q,v,t> from every server in Q, then it sends
a <ready,Q,v,t> to each member in Q

CS395T: Design/Implementation of Trusted Servers

Server Write Protocol

 If a server receives identical ready messages
<ready,Q,v,t> from a set B+, then it sends a
<ready,Q,v,t> to each member in Q if it has not
done so already.

 If a server receives identical ready messages
<ready,Q,v,t> from a set Q- of servers, then

(i) if t is greater than its current timestamp,
update v and t

 (ii) send an ack to c even if the value was not
 updated

At this point the server is said to have delivered <v,t>

6

CS395T: Design/Implementation of Trusted Servers

Proof of Correctness

 Duration of write operation
 Starts when first correct server receives update

message
 Ends when all correct servers in a quorum have

delivered the update

 Need to show
 Safe semantics

 Also prove
 Liveness
 Completeness

CS395T: Design/Implementation of Trusted Servers

Proof of Correctness

Lemma 1 : A correct server delivers <v,t> only if some correct
server previously received <update,Q,v,t>

Proof :
(1) To deliver <v,t>, a correct server must have received ready message from a

correct server

(2) First ready message from a correct server when it has received echo from all
the servers in Q

(3) Correct member sends <echo,Q,v,t> only if it receives <update,Q,v,t>

Lemma 2 (Agreement): If a correct server deilvers <v,t> and a
correct server delivers <v’,t>, then v = v’

Proof : (1) One quorum Q1 must have sent <echo,Q1,v,t>

 (2) Another quorum Q2 must have sent <echo,Q2,v’,t>

 (3) Q1 and Q2 have at least one correct server in common, so v must be
identical to v’

CS395T: Design/Implementation of Trusted Servers

Proof of Correctness

Lemma 3(Safe Semantics) : A correct process’s read operation
that is concurrent with no write operations returns the value
written by the last preceding write in some serialization of all
preceding write operations.
Proof : Let W be the set of write operations preceding read.
 By Lemma 2, any value/timestamp pair is well defined
 By definition, every write in W was delivered to a full quorum
 By Lemma 1, no correct server has delivered any write outside W
So the read operation will return the value written by the write
operation in W with the highest timestamp.
 No write operation in W follows the write operation with highest
timestamp because there is a single writer and servers echo request
only if its timestamp is higher than the one they have in store

CS395T: Design/Implementation of Trusted Servers

Proof of Correctness

Lemma 4 :

Proof : Assume that there is a and such that

 . By M-Availability, . Then,

 , violating M-consistency.

Lemma 5 (Propagation) : If a correct server delivers <v,t>, then
eventually there exists a quorum Q such that every server in Q
delivers <v,t>

Proof: The correct server that delivered <v,t> received a message
<ready,Q,v,t> from each server in . Since for some ,

all the members in are correct, every correct member of Q
receives <ready,Q,v,t> from each of the members . The
messages from cause each correct member of Q to send a ready
message. Hence, <v,t> would be delivered by all correct servers in Q

7

CS395T: Design/Implementation of Trusted Servers

Proof of Correctness

Lemma 6(Validity) : If a correct client c sends <update,Q,v,t> to
every server in Q and all servers in Q are correct, then
eventually a correct server delivers <v,t>

Proof : Follows from algorithm

CS395T: Design/Implementation of Trusted Servers

Minimal Quorum Systems

 Reducing quorum size
[MAD02-1]

3f + 1 4f + 1Generic

2f + 13f + 1Self-verifying

Non-confirmableConfirmableBest known n

CS395T: Design/Implementation of Trusted Servers

Minimal Quorum Systems

 Reducing quorum size

 Lower bounds independent of self-verifying or
generic data !

 Guarantees atomic semantics !!

[MAD02-1]

2f + 13f + 1Self-verifying
and generic

Non-confirmableConfirmableBest known n

CS395T: Design/Implementation of Trusted Servers

Semantics

 Consistency semantics defined in terms of
conditions when read and write complete
 But when do we say that a write has completed ?

 Confirmable
 Write completes at the instant when the writer

completes its protocol

 Non-confirmable
 Write completion cannot be determined locally by

the writer, but writes are still guaranteed to
complete

8

CS395T: Design/Implementation of Trusted Servers

Key Ideas

 Use different quorum sizes for read and write
[MAD02-2]

 AM-Consistency :

 AM-Availability :

 f-threshold case :

 Non-confirmable write : Doesn’t wait for acks from
servers when writing

CS395T: Design/Implementation of Trusted Servers

Key Ideas

 Use replication in time instead of replication
in space

 Previously, 4f +1 needed as some correct
servers may not be updated.

 Solution : Wait for those servers to be
updated !!

CS395T: Design/Implementation of Trusted Servers

SBQ-L Protocol

 f-threshold

 Confirmable

 Authenticated, reliable, asynchronous, point-
to-point channels

 Clients correct

CS395T: Design/Implementation of Trusted Servers

Algorithm (Client)

Write(v)
 Ask all servers for

their current
timestamp t

 Wait for answer from
 |Qw | different servers
 Set tsc > max({t} U any

previous tsc)
 Send STORE(v,tsc) to

all servers
 Wait for acks from |Qw|

different servers

Read()
 send READ to Qr servers
 loop

 receive (ANSWER,v,ts) from
s in Qr

 set answer[s,ts]:= (v,ts)
 until some (v,ts) in answer[][

] is vouched for by |Qw|
servers

 send READ_COMPLETE to
Qr

 return (v,ts)

9

CS395T: Design/Implementation of Trusted Servers

Modification

 Bound the size of answer[][] array
 Upon receiving first msg from server s, update

 T = { f+1 largest timestamps sent by servers}

 On receiving a (v,ts) from a server s, store if
 ts is in T

 ts is the latest timestamp from server s

CS395T: Design/Implementation of Trusted Servers

Proof : Atomicity

Lemma 1: If the protocol is live, it is atomic

a) After write of ts1, no read
returns earlier ts
• Suppose write for ts1 has
completed

• servers acked the write

• At least are correct

• Remaining servers <

b) After c reads ts1, no later read
returns earlier ts
• c reads ts1
 servers say ts1

• At least are correct

• Remaining servers <

• Any read that starts after ts1 returns
 ts ts1

CS395T: Design/Implementation of Trusted Servers

Proof : Liveness

Lemma 2: Every operation eventually terminates

Write: Trivial, because only waits for

Read:
• Consider T after c gets first message from last server.

• Let tmax be the largest timestamp from a correct server in T.

• A client never removes tmax from its answers[s][], for a correct s

• Eventually, all correct servers see a write with ts = tmax and echo client

• Since and the read terminates

CS395T: Design/Implementation of Trusted Servers

Bounds

Theorem : In the authenticated asynchronous model with
byzantine failures and reliable channels, no live
confirmable protocol can satisfy the safe semantics for
distributed shared memory using 3f servers

Proof (Sketch) : Such a protocol must violate safety or
liveness.

 There must exist an execution in which is an operation
influenced by a subset of 2f or fewer servers.

10

CS395T: Design/Implementation of Trusted Servers

Safety Violation

read

a1

a2

a3

State A

(e)

read

b1

b2

a3

(e)

State B

n=3,f = 1

a1

a2

a3

State A

a1

a2

a3

State A

b1

b2

a3

write

State B

CS395T: Design/Implementation of Trusted Servers

Safety Violation

a1

a2

a3

a1

a2

a3

b1

b2

a3

write
read

a1

a2

a3

State A

(e)

b1

a3

read

(e)

State BState A State B State A

n=3,f = 1

CS395T: Design/Implementation of Trusted Servers

Safety Violation

a1

a2

a3

a1

a2

a3

b1

b2

a3

write
read

a1

a2

a3

State A

(e)

b1

a3

read

(e)

State B

a2

States indistinguishable for e !!

n=3,f = 1

State A State B State A

CS395T: Design/Implementation of Trusted Servers

Dynamic Byzantine Quorums

 Designing quorums requires estimating number of
faulty servers present at a time
 Optimistic : Can violate safety

 Pessimistic : Wastes resources

 Solution
 Monitor environment to estimate f

 Adjust resilience threshold dynamically

 Advantages
 Efficient for small number of failures

 Read/Write does not block on changing f

[AMP00]

11

CS395T: Design/Implementation of Trusted Servers

Problem to be tackled…

Masking quorum system
n = 9 , f = 1

CS395T: Design/Implementation of Trusted Servers

Problem to be tackled…

Masking quorum system
n = 9 , f = 1

Write

CS395T: Design/Implementation of Trusted Servers

Problem to be tackled…

Masking quorum system
n = 9 , f = 1 f = 2

Reconfiguration ….

CS395T: Design/Implementation of Trusted Servers

Problem to be tackled…

Masking quorum system
n = 9 , f = 1 f = 2

Read

12

CS395T: Design/Implementation of Trusted Servers

Problem to be tackled…

Masking quorum system
n = 9 , f = 1 f = 2

Read

No majority or even a wrong answer!!!

CS395T: Design/Implementation of Trusted Servers

Approach

 Every server stores a threshold variable T
giving the present value of f

 Assumption
 For any operation o, number of failures never

exceeds the minimum of :
 The value written in last write to T

 Values written to T in writes concurrent with o

 f lies between fmin and fmax

CS395T: Design/Implementation of Trusted Servers

New Problem

 What value of threshold to use to read T ?

 Define “announce set”
 A set of servers whose intersection with all

possible quorums is large enough to allow
unambiguous determination of T

 Intersection > 2fmax ensures this

 Taking announce set to be n-fmax leads to :

n ≥ 6fmax – 2fmin + 1

CS395T: Design/Implementation of Trusted Servers

Operations on T

Write(d)

 Ask all servers for their
current timestamp t

 Wait for answer from an
announce set

 Set tsc > max({t} U any
previous tsc)

 Send (d,tsc) to all servers

 Wait for acks from an
announce set

Read()

 Ask all servers for latest
value/timestamp pair

 Wait for answer from |Qmin|
different servers

 Select most recent (v,ts) for
which at least fmax + 1
answers agree (if any)

Client c with current threshold = f

13

CS395T: Design/Implementation of Trusted Servers

More problems…..

fmin = 1 , fmax = 3

n = 17, Qmin = 10

announce set = 14

Initially T = 1

CS395T: Design/Implementation of Trusted Servers

More problems…..

fmin = 1 , fmax = 3

n = 17, Qmin = 10

announce set = 14

Threshold Write : T = 2

CS395T: Design/Implementation of Trusted Servers

More problems…..

fmin = 1 , fmax = 3

n = 17, Qmin = 10

announce set = 14

While a client performing threshold write to set T = 3 …..

CS395T: Design/Implementation of Trusted Servers

More problems…..

fmin = 1 , fmax = 3

n = 17, Qmin = 10

announce set = 14

another client tries to read T ….

14

CS395T: Design/Implementation of Trusted Servers

More problems…..

fmin = 1 , fmax = 3

n = 17, Qmin = 10

announce set = 14

another client tries to read T ….

CS395T: Design/Implementation of Trusted Servers

More problems…..

fmin = 1 , fmax = 3

n = 17, Qmin = 10

announce set = 14

The read would return T=1 which is incorrect !!

CS395T: Design/Implementation of Trusted Servers

Solution

 Note that there are
still fmax+ 1 servers
which have a later
timestamp

 (v,ts) is
countermanded if at
least fmax+1 servers
return a timestamp
greater than ts

Read()

 Ask all servers for latest
value/timestamp pair

 Wait for answer from |Qmin|
different servers

 Select most recent (v,ts) for
which at least fmax + 1
answers agree (if any), if it is
not countermanded

CS395T: Design/Implementation of Trusted Servers

New Framework for Dynamic
Byzantine Storage

 Can adapt to both failure threshold and
server count

 Provides confirmable wait-free atomic
semantics

 No bounds on number of failures that can be
tolerated

 Optimal and fast

[MA04]

15

CS395T: Design/Implementation of Trusted Servers

The Methodology

 Existing protocols based on Q-RPC primitive

 For dynamic quorums, simply replace Q-RPC
calls by DQ-RPC

 Proving correctness requires defining new
properties independent of the quorum
intersection

 Focus on properties of the data that is
retrieved by quorum operations

CS395T: Design/Implementation of Trusted Servers

Transquorum properties

 Timeliness : Any read value must be as
recent as the last written value

 Soundness : Any read value must have been
written before

 Three sets of Q-RPC-like quorum operations
 The set of write operations

 The set of timely operations

 The set of timely and sound operations

CS395T: Design/Implementation of Trusted Servers

U-Dissemination Protocol

READ

1. Q := Q-RPC(“READ”)
//Q is a set of
<ts,writer,data>writer

2. reply r := phi(Q)
// returns the largest valid
value

3. Q:= Q-RPC(“WRITE”,r)

4. return r.data

WRITE

1. Q := Q-RPC(“GET_TS”)

2. ts := max{Q.ts} + 1

3. m := <ts,writer_id,D>writer

4. Q := Q-RPC(“WRITE”,m)

CS395T: Design/Implementation of Trusted Servers

New U-Dissemination Protocol

READ

1. Q := TRANS-Q (“READ”)
//Q is a set of
<ts,writer,data>writer

2. reply r := phi(Q)
// returns the largest valid
value

3. Q:= TRANS-Q (“WRITE”,r)

4. return r.data

WRITE

1. Q := TRANS-Q (“GET_TS”)

2. ts := max{Q.ts} + 1

3. m := <ts,writer_id,D>writer

4. Q := TRANS-Q (“WRITE”,m)

16

CS395T: Design/Implementation of Trusted Servers

Byzantine Tolerant Erasure-
coded Storage

 If a group of servers coming together to get
an answer, then can store parts of
information at servers

 Use m-of-n erasure codes

 Requires less bandwidth and storage space
than full replication

[WGG04]

CS395T: Design/Implementation of Trusted Servers

References
[LAM77] L. Lamport. On Interprocess Communication--Part I: Basic Formalism, Part II:
Algorithms Distributed Computing 1, 2 (1986), 77-101.
[MR98] D. Malkhi, M. Reiter. Byzantine quorum systems, Distributed Computing 11 (4) (1998) 203-
213

[MAD02-1] J-P. Martin, L. Alvisi, M. Dahlin. Minimal Byzantine Storage Proceedings of the 16th
International Symposium on Distributed Computing (DISC 2002). Toulouse, France.

[MAD02-2] J.-P. Martin, L. Alvisi, M. Dahlin. Small Byzantine Quorum Systems. Proceedings of
the 2002 International Conference on Dependable Systems & Networks (DSN 2002)

[AMP00] L. Alvisi, D. Malkhi, E. Pierce, M. Reiter, R. Wright. Dynamic Byzantine Quorum
Systems Proceedings of the 2000 International Conference on Dependable Systems and Networks
(IEEE Computer Society)
[MA04] J.P. Martin and L. Alvisi. Dynamic Byzantine Storage. Proceedings of the 2004
International Conference on Dependable Systems & Networks (DSN 2004)

[WGG04] J.J.Wylie, G.R. Goodson, G.R. Ganger, M. Reiter. Efficient Byzantine-tolerant erasure-
coded storage. Under Review

