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Abstract

We present a quorum-based protocol for a Byzantine fault-tolerant storage system that can dynamically

adapt its failure threshold and server count, allowing the storage system to be reconfigured in anticipation

of possible failures or to replace servers as desired. Our protocol provides confirmable wait-free atomic

semantics while tolerating Byzantine failures from the clients or servers. The system can grow without

bound to tolerate as many failures as desired. Finally, the protocol is optimal and fast: only the minimal

number of servers—3f + 1— is needed to tolerate any f failures and, in the common case, reads require

only one message round-trip.

1 Introduction

Quorum systems [5] are a valuable tool for building highly available distributed data services. These systems

store a shared variable at a set of servers and perform read and write operations at some subset of servers (a

quorum). To access the shared variable, protocols define some intersection property for the quorums which,

combined with the protocol description themselves, ensure that read and write operations obey precise consis-

tency semantics. In particular, a shared register can provide, in order of increasing strength, safe, regular or

atomic semantics [11].

Malkhi and Reiter [13] have pioneered the study of Byzantine quorum systems (BQSs), in which servers

may fail arbitrarily. Their masking quorum systems guarantee data integrity and availability despite compro-

mised servers; they also introduce dissemination quorum systems that can be used by services that support

self-verifying data, i.e., data that cannot be undetectably altered by a faulty server, such as data that have been

digitally signed or associated with message authentication codes (MACs).

Traditional BQS protocols set two parameters—N , the set of servers in the quorum system, and f , the

resilience threshold denoting the maximum number of servers that can be faulty1—and treat them as constants

1Papers such as [13] consider generalized fault structures, offering a more general way of characterizing fault tolerance than a

threshold. However, such structures remain static.
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throughout the life of the system. The rigidity of these static protocols is clearly undesirable.

Fixing f forces the administrator to select a conservative value for the resilience threshold, one that can

tolerate the worst case-failure scenario. Usually, this scenario will be relatively rare; however, since the

value of f determines the size of the quorums, in the common case quorum operations are forced to access

unnecessarily large sets, with obvious negative effects on performance.

Fixing N not only prevents the system administrator from retiring faulty or obsolete servers and substituting

them with correct or new ones, but also greatly reduces the advantages of any technique designed to change

f dynamically. For a given Byzantine quorum protocol N implicitly determines the maximum value fmax of

the resilience threshold: in the common case, the degree of replication required to tolerate fmax failures is

wasted, independent of the value of f that the system uses at a given point in time.

Alvisi et al. [2] take a first step towards addressing these limitations. They propose a protocol that can

dynamically raise or lower f within a range [fmin...fmax] at run time without relying on any concurrency

control mechanism (e.g., no locking)—however, their protocol cannot modify N . Improving on this result,

Kong et al. [10] propose a protocol that can dynamically adjust f and, once faulty servers are detected, can

ignore them to obtain quorums that exhibit better load2, effectively shrinking N . The protocol however does

not allow to add new servers to N . While other quorum-based systems such as Rambo [12], Rambo II [8], and

GeoQuorums [6] can adjust dynamically both f and N , they cannot tolerate Byzantine failures.

In this paper we propose a methodology for transforming static Byzantine quorum protocols into dynamic

ones where both N and f can change, growing and shrinking as appropriate during the life of the system3

We have successfully applied our methodology to several Byzantine quorum protocols [9, 13, 14, 17, 19].

The common characteristic of these protocols is that they are based on the Q-RPC primitive [13]. A Q-RPC

contacts a responsive quorum of servers and collects their answers, and it is a natural building block for

implementing quorum-based read and write operations. Our methodology is simple and non-intrusive: all that

it requires to make a protocol dynamic is to substitute each call to Q-RPC with a call to a new primitive, called

DQ-RPC for dynamic Q-RPC. DQ-RPC maintains the properties of Q-RPC that are critical for the correctness

of Byzantine quorum protocols even when N and f can change.

Defining DQ-RPC to minimize changes to existing protocols is challenging. The main difficulty comes

from proving that read and write operations performed on the dynamic version of a protocol maintain the

same consistency semantics of the operations performed on the static version of the same protocol. In the

static case, these proofs rely on the intersection properties of the responsive quorums contacted by Q-RPCs

while performing the read and write operations. Unfortunately, these proofs do not carry easily to DQ-RPC.

When N changes, it is no longer possible to guarantee quorum intersection: given any two distinct times t1

2Given a quorum system S, the load of S is the access probability of the busiest quorum in S, minimized over all strategies [18].
3We focus on the mechanisms necessary for supporting dynamic quorums. A discussion of the policies used to determine when to

adjust N and f is outside the scope of this paper. Some examples of such policies are given in [3, 10].
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name can tolerate (crash,Byz) client failures semantics servers required

crash (f, 0), without signatures crash atomic 2f + 1

U-dissemination [17] (0, b), using signatures crash atomic 3b + 1

hybrid-d [9] (f, b), using signatures crash atomic 2f + 3b + 1

U-masking [19] (0, b), without signatures correct partial-atomic4 4b + 1

hybrid-m [9] (f, b), without signatures correct partial-atomic4 2f + 4b + 1

Phalanx [14] (0, b), without client signatures Byzantine partial-atomic4 4b + 1

hybrid Phalanx (f, b), without client signatures Byzantine partial-atomic4 2f + 4b + 1

Figure 1: List of quorum protocols that can be made dynamic using DQ-RPC

and t2, the set of machines in N at t1 and t2 may be completely disjoint.

We address this problem by taking a fresh look at what makes Q-RPC-based static protocols work.

Traditionally, the correctness of these protocols relies on properties of the quorums themselves, such as

intersection. Instead, we focus our attention on the properties of the data that is retrieved by quorum operations

such as Q-RPC.

In particular, we identify two such properties, soundness and timeliness. Informally, soundness states that

the data that clients gather from the servers was previously written; timeliness instead requires this data to

be as recent as the last written value. We call these properties transquorum properties, because they do not

explicitly depend on quorum intersection. We prove that transquorum properties are sufficient to guarantee the

consistency semantics provided by each of the protocols that we consider. Now, all that is needed to complete

our transition from static to dynamic protocols is to show an instance of a quorum operation that satisfies the

transquorum properties even when f and N are allowed to change: we conclude the paper by showing that

DQ-RPC is such an operation.

The rest of the paper is organized as follows. We cover related work and system model, respectively, in

Section 2 and Section 3. We specify the transquorum properties in Section 4 and show in Section 5 that our

DQ-RPC satisfies the transquorum properties before concluding.

2 Related work

Alvisi et al. [2] are the first to propose a dynamic BQS protocol. They let quorums grow and shrink depending

on the value of f , which is allowed to range dynamically within an interval [fmin, ..., fmax]. This flexibility,

however, comes at a cost: because their protocol does not allow to change N , they require 2(fmax − fmin)

more servers than an equivalent static protocol to tolerate a maximum of fmax failures.

The Agile store [10] modifies the above protocol by introducing a special, fault-free node that monitors the

set of servers in the quorum system. The monitor tries to determine which are faulty and to inform the clients,

4Partial-atomic semantics guarantees that reads either satisfy atomic semantics or abort [19].
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so that they can find a responsive quorums more quickly. In the Agile store servers can be removed from N ,

but not added to it. Therefore, if the monitor mistakenly identifies a node as faulty and removes it from N , the

system’s resilience is reduced: in effect, the system tolerates fmax Byzantine faulty servers only as long as the

monitor never makes such mistakes.

The Rosebud project [20] shares several of our goals. Rosebud envisions a dynamic peer to peer system,

where servers can fail arbitrarily, the set of servers can be modified at run-time, and clients use quorum

operations to read and write variables. It is hard to compare our protocols to Rosebud, because the only

Rosebud reference we have identified [20] does not give specific details of the protocols they intend to use

to achieve their goals. Nonetheless, Rosebud, by requiring loosely synchronized clocks and assuming servers

with a cryptographic co-processor, appears to make stronger assumptions than we do in this paper. Also,

Rosebud’s handling of view changes appears to differ from ours in at least two ways. First, when an operation

in Rosebud detects that the set of servers is changing, it simply restarts; second, Rosebud allows N to change

only at pre-set intervals. In contrast, we allow operations to continue even as N is changing, and we allow N

(and f ) to change at any time.

Several quorum-based protocols allow to change N and f , but only tolerate crash failures.

Rambo and Rambo II [8, 12] provide the same interface as our protocols: read, write and reconfigure. They

guarantee atomic semantics in an unreliable asynchronous network despite crash failures.

In GeoQuorums [6] the world is split into n focal points and servers are assigned to the nearest (geograph-

ically) focal point. The system provides atomic semantics as long as no more than f focal points have no

servers assigned to them. Servers can join and leave; however, neither n nor f can change with time.

Abraham et al [1] target large systems, such as peer-to-peer, where it is important for clients to issue reads

and writes without having to know the set of all the servers, and it is important for servers to join and leave

without having to contact all other servers. Their probabilistic quorums meet these goals (for example, clients

only need to know O(
√

n) servers), provide atomic semantics with high probability, and can tolerate crash

failures of the servers.

3 System model

Our system consists of a set N of n servers. Servers can dynamically join and leave the system, i.e. both

N and n can change during execution. To prevent Sibyl attacks [7], the identity of every server is verified

before it is allowed to join the system. Servers can be either correct or faulty. A correct server follows its

specification; a faulty server can arbitrarily deviate from its specification. The set of clients of the service is

disjoint from N . Clients perform read and write operations on the variables stored in the quorum system. We

assume that these operations return only when they complete (i.e. we consider confirmable operations [16]).

Our dynamic quorum protocols maintain the same assumptions about client failures of their static coun-
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terparts. Clients communicate with servers over point-to-point, asynchronous fair channels. A fair channel

guarantees that a message sent an infinite number of times will reach its destination an infinite number of

times. We allow channels to drop, reorder or duplicate messages.

4 A new basis for determining correctness

The first step in our transition to dynamic quorum protocols is to establish the correctness of the static protocols

we consider (shown in Figure 1) on a basis that does not rely on quorum intersection. To do so, we observe that

at the heart of all these protocols lies the Q-RPC primitive [13]. This primitive takes a message as argument,

sends that message to a quorum of responsive servers, and returns the response from each server in the quorum.

Our approach to extend quorum protocols to the case where servers are added and removed (and thus quorums

may not intersect anymore) is to define correctness in terms of the properties of the data returned by quorum-

based operations such as Q-RPC. In this section, we first specify two properties that apply to the data returned

by Q-RPC; then, we prove that these properties are sufficient to ensure correctness. In Section 5 we will show

that it is possible to implement Q-RPC-like operations that guarantee these properties even when quorums do

not intersect.

4.1 The transquorum properties

In the protocols listed in Figure 1, quorum-based operations such as Q-RPC are the fundamental primitives on

top of which read and write operations are built. Not all Q-RPCs are created equal, however. Some Q-RPC

operations change the state of the servers (e.g. when the message passed as an argument contains information

that the servers should store), others do not. Some Q-RPCs need to return the latest data actually written in the

system, others are content with returning data that is not obsolete, whether it was written or not. To capture

this diversity, we introduce two properties, timeliness and soundness. We call them transquorum properties

because, as we will see in Section 5, they do not require quorum intersection to hold. Intuitively, timeliness

says that any read value must be as recent as the last written value, while soundness says that any read value

must have been written before. Note that not all Q-RPCs need to be both timely and sound. For example,

Q-RPCs used to gather the current timestamps associated with the value stored by a quorum of servers do not

need to be sound—all that is required is that the returned timestamps be no smaller than the timestamp of the

last write.

We then define three sets of Q-RPC-like quorum operations: (1) the set of write operations W; (2) the set of

timely operations T ; (3) the set of timely and sound operations R. Each Q-RPC-like operation in a protocol

belongs to zero or more of these sets.

Let w → r (w “happens before” r) indicate that the quorum operation w ended (returned) before the quorum

operation r started (in real time). Further, let o be an ordering function that maps each quorum operation to an

element of an ordered set M. We define the transquorum properties as follows:
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(timeliness) ∀w ∈ W,∀r ∈ T , o(r) 6= ⊥ : w → r =⇒ o(w) ≤ o(r)

(soundness) ∀r ∈ R, o(r) 6= ⊥ : ∃w ∈ W s.t. r 6→ w ∧ o(w) = o(r)

In this paper we always choose o so that when it is applied to a Q-RPC-like operation x, it returns both

a timestamp and the data that is associated with x (i.e. either read or written). This allows us to use the

timeliness property to ensure that readers get recent timestamps and the soundness property to ensure that

reads get data that was written previously.

4.2 Proving correctness with transquorum properties

Transquorum properties are all that is needed to prove that the protocols listed in Figure 1 correctly provide

the consistency semantics that they advertise. We present the complete set of proofs in an extended technical

report [15]. Space considerations limit us to consider in this paper only the first three protocols in the figure.

All three protocols have the same client code, shown on the left in Figure 2 and all three guarantee atomic

semantics. The server code is also identical: servers simply store the highest timesetamped data they see

and send back to the client the data or its timestamp (in reply to READ or GET TS requests, respectively).

The protocols differ in the size of the quorums they use and in the degree of fault tolerance they provide:

U-dissemination protocols [16] (a variant for fair channels of the dissemination protocol presented in [13])

can tolerate b Byzantine faulty servers, crash can tolerate f fail-stop faulty servers, and hybrid-d can tolerate

both b Byzantine failures and f fail-stop failures (for a total of f + b failures). To simplify our discussion,

since the three client protocols are identical we will only discuss the U-dissemination protocol here; all we

say also applies to the crash and hybrid-d protocols, except that the crash protocol does not use any signatures.

Also, the extended technical report [15] shows how to speed up the protocol in the common case by skipping

the write-back when it is not necessary.

4.2.1 Dissemination protocols with transquorums

To illustrate that we only rely on the transquorum properties and not on the specific implementation of Q-RPC,

we replace all Q-RPC calls in the protocol (Figure 2) with an “abstract” function TRANS-Q that we postulate

has the transquorum properties. TRANS-Q takes the same arguments and returns the same values as Q-RPC.

The U-dissemination protocol on the right of Figure 2 uses TRANS-Q as its low-level quorum communi-

cation primitive. We have annotated each call to indicate which set it belongs to (R,W , or T ).

We use the notation 〈a〉b to show that a is signed by b. Note that data is signed before being written, and

verified before being read. The function φ(Q) returns the largest value in the set Q that has a valid signature

using lexicographical ordering: since our values are triplets (ts, writer id,D), φ selects the largest valid

timestamp, using writer id and then D to break ties.

We assign each TRANS-Q quorum operation to one of the sets (R,W or T ) and define the ordering o(x)

for each quorum operation x. Our assignment is shown in the table below. The assignment is fairly intuitive:
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READ

1. Q := Q-RPC(“READ”)
// Q is a set of 〈ts, writer id, data〉writer

2. reply r := φ(Q)
// returns largest valid value

3. Q := Q-RPC(“WRITE”,r)
4. return r.data

WRITE(D)

1. Q := Q-RPC(“GET TS”)
2. ts := max{Q.ts} + 1

3. m := 〈ts, writer id,D〉writer

4. Q := Q-RPC(“WRITE”,m)

READ

1. Q := TRANS-QR(“READ”)
// Q is a set of 〈ts, writer id, data〉writer

2. reply r := φ(Q)
// returns largest valid value

3. Q := TRANS-QW (“WRITE”,r)
4. return r.data

WRITE(D)

1. Q := TRANS-QT (“GET TS”)
2. ts := max{Q.ts} + 1

3. m := 〈ts, writer id,D〉writer

4. Q := TRANS-QW (“WRITE”,m)

Figure 2: U-dissemination protocol (fail-stop clients). On the left: Q-RPC. On the right: TRANS-Q.

operations that change the server state have been assigned to the W set and the ordering function consists

either of what is being written, or of what the caller extracts from the set of responses to its query. More

precisely, to define o(x) we observe that any quorum operation x has two parts: the arguments passed to x and

the value that x returns. We use the notation xarg to refer to the arguments that were passed to the x operation,

and xret to indicate the value returned by x (that value is always a set).

We want to show that the U-dissemination protocol with TRANS-Q operations offers atomic semantics.

Informally, atomic semantics requires all readers to see the same ordering of the writes, and furthermore that

this order be consistent with the order in which writes were made.

Note that atomic semantics is concerned with user-level (or, simply, user) reads and writes, not to be

confused with the quorum-level operations (or, simply, quorum operations) such as Q-RPC and TRANS-Q.

We use lowercase letters to denote quorum-level operations, and capital letters to denote user-level operations

(e.g. R or W ). Similarly, we use the mapping o to denote the ordering constraint that the transquorum

properties impose on quorum operations, and the mapping O to denote the ordering constraints imposed by

the definition of atomic semantics on user read and write operations.

Atomic semantics can be defined precisely as follows.

Definition 1. Every user read R returns the value that was written by the last user write W preceding R in

the ordering “<”. “<” is a total order on user writes, and W → X =⇒ W < X and X → W =⇒ X < W

for any user write W and user read or user write X .

We use O, which maps every user read and write operation to an element of some ordered set M ′, to define

completely the ordering relation“<”: X < X ′ ⇐⇒ O(X) < O(X ′).

5We do not explicitly require this value to be larger than any timestamp previously sent by this client because we do not allow

clients to issue multiple concurrent writes.
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Operations of this form are assigned this order and this set

r = TRANS-Q(“READ”) o(r) = φ(rret) R
w = TRANS-Q(“WRITE”, ts, writer id,D) o(w) = (warg.ts, warg.writer id, warg.D) W
t = TRANS-Q(“GET TS”) o(t) = (max(tret) + 1,⊥,⊥)5 T

Figure 3: The o mapping

We are now ready to prove our theorem.

Theorem 1. The U-dissemination protocol provides atomic semantics if the TRANS-Q operations have the

transquorums properties for the function o defined in Figure 3.

Lemma 1. The user write operations in the U-dissemination protocol with TRANS-Q are totally ordered in a

way that is consistent with real time. User reads are ordered relative to user writes in a way that is consistent

with real time.

Proof. The lemma is equivalent to the following two conditions, where R indicates user reads, W indicates

user writes, and X indicates either a user read or a user write.

1. X → W =⇒ O(X) < O(W ) and W → X =⇒ O(W ) < O(X)

2. O(W1) = O(W2) =⇒ W1 = W2

Because we assume that user reads and writes are confirmable, R → W means that R returns before W

starts.

We build the ordering O for user reads and writes from the ordering o of the quorum operations that are

invoked within these user operations.

The simplest choice would be to set O(X) = o(x) for some quorum operation x that is called as part of the

user-level operation X . Unfortunately we need to take one extra step to make sure that user reads get ordered

after the user write whose value they read.

Let last o(X) be the value assigned through the o mapping to the last quorum operation in the (read or

write) user-level operation X . For a user write operation W, we define O(W ) to be the pair (last o(W ), 0).

For a user read operation R, we define O(R) to be the pair (last o(R), 1). The second element in these pairs

ensures that user read operations are ordered after the user write whose value they return.

We now show that condition (1) holds. Suppose first that X → W . The last quorum operation of X

(regardless of whether it is a user read or write) is a W operation. The first quorum operation of W , t, is a

T operation. By timeliness, last o(X) ≤ o(t). The write then fills in the last two elements of o(t) with its

writer id and data D, resulting in a value that is strictly larger than o(t). This value is then passed to the last
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quorum operation in W , ensuring that last o(W ) > o(t). Since last o(X) ≤ o(t) and o(t) < last o(W ), it

follows that O(X) < O(W ).

To show the other half of (1), suppose now that W → X . W ends with a W operation and X starts with an

quorum operation t ∈ T , so, by timeliness, last o(W ) ≤ o(t). If X is a user read then its second element is

1, so O(W ) < O(X). If X instead of a user write then last o(X) > o(t) and therefore O(W ) < O(X) still

holds.

To show Property (2), assume O(W1) = O(W2). W1 and W2 cannot be performed by different writers,

because the o value includes the writer id, which is different for each writer. And if W1 and W2 are performed

by the same writer they cannot be distinct. If they were, because user writes are confirmable it would either

follow that W1 → W2 (and, by (1) O(W1) < O(W2), or, symmetrically, that W2 → W1 and O(W2) <

O(W1).

Lemma 2. All user reads R return a value that was written by some user write W , and R 6→ W .

Proof. The value that is returned by read R is the third element in the first quorum operation r ∈ R in R.

By soundness, this value was passed to some quorum operation in W . Both user-level write and user-level

read operations call a W quorum operation, but we observe that the user-level read calls it with a value that

it first gets from a R quorum operation. We can therefore use soundness repeatedly to show that there must

have been some quorum operation w ∈ W inside a user-level write operation W such that o(r) = o(w) and

r 6→ w. This proves the first part of the lemma. Since r did not happen before w, it is also impossible that R

happened before W (since the latter would imply the former). This proves the second part of the lemma.

Lemma 3. All reads R return the value that was written by the last write W preceding R in the “<” ordering.

Proof. Lemma 2 tells us that the value returned by R was written by some write W . By construction of O,

we have O(W ) = (last o(W ), 0) = (last o(R), 0) < (last o(R), 1) = O(R), so W precedes R in the “<”

ordering. By definition, for any write W ′ that is ordered after W in <” we know that O(W ′) > O(W ). Since

the pairs for O(W ) and O(W ′ have the same second element, the first element in O(W ′) must be larger than

the first in O(W ). Hence, since O(R) and O(W ) have the same first element, it follows that W ′ is ordered in

“<” after R. Therefore W is the last write preceding R in the “<” ordering.

The three lemmas together prove our first theorem, showing that we can replace Q-RPC with any operation

that satisfies the transquorum properties without compromising the semantics of the U-dissemination protocol.

5 Dynamic quorums

The transquorum properties allows us to reason about quorum protocols without being forced to use quorums

that physically intersect. In this section, we leverage this result to build DQ-RPC, a quorum-level operation
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that satisfies the transquorum properties but also allows both the set of servers and the resilience threshold to

change with time.

First, though, we need to introduce some way to describe how our system evolves over time, as N and f

change.

5.1 Introducing views

We use the well-established term view to denote the set N that defines the quorum system at each point in

time. Each view is characterized by a set of attributes, the most important of which are the view number t, the

set of servers N(t) and the resilience threshold f(t). In general, view attributes include enough information

to compute the quorum size q(t). The responsibility to steer the system from view to view is left with an

administrator, who can begin a view change by invoking the newView command.

When the administrator calls newView, the view information stored at the servers is updated. We say that a

view t starts when a server receives a view change message for view t (for example because the administrator

called newView(t, . . .)). A view t ends when a quorum q(t) of servers have processed a message indicating

that some later view u is starting. After starting and before ending, the view is active. A view may start before

the previous view ended, i.e. there may exist multiple active views at the same time; our protocol makes sure

that the protocol semantics (e.g. atomic) is maintained despite view changes, even if client operations happen

concurrently to them.

The newView function has the property that after newView(t) returns, all views older than t have ended

and view t has started. Furthermore, at this point the administrator can safely turn off server machines that are

not in view t.

Obviously, we must restrict who can call the newView command. In our system, this is solely the privilege

of the administrator. An obvious vulnerability of our system is that if the administrator is malicious then we

cannot provide any guarantee (for example, that user could change the set of servers to the empty set to deny

service to all clients). However, the system can tolerate crash failures of the administrator.

Since our system uses views to discretize time, so does our definition of faults. We say that a server is

correct in some view t if it follows the protocol from the beginning of time until view t ends. Otherwise, it

is faulty in view t. Note that a server may be correct in some view t and faulty in a later view u. However,

faulty servers will never be considered correct again. If some server recovers from a failure (for example by

reinstalling the operating system after a disk corruption), it takes on a new name before joining the system. The

notion of resilience threshold is also parameterized using view numbers. For example, a static U-dissemination

protocol requires a minimum of n ≥ 3f + 1 servers: this requirement now becomes |N(t)| ≥ 3f(t) + 1 for

each view t. Our system assumes that between the start and the end of view t, at most f(t) of the servers in

N(t) are faulty. Since views can overlap this means that sometimes a conjunction of such conditions must

hold at the same time.
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5.2 A simplified DQ-RPC

We begin with a simplified version of DQ-RPC that, while suffering from serious limitations, allows us to

present more easily several of the key features of DQ-RPC—the full implementation of DQ-RPC is presented

in Section 5.3.

The easiest way to implement DQ-RPC is to ensure that different views never overlap, i.e. that at any point

in time there exists at most one active view. Since we know that the protocols in Figure 1 are correct for a

static quorum system, we can simply make sure to evolve the system through, as it were, a sequence of static

quorum systems. We can do so as follows.

• Replies from the servers are tagged with a view number

• Once a client accumulates q(t) responses tagged with view t, the DQ-RPC returns these responses.

Our simplified DQ-RPC has two outputs: a view t (that we call DQ-RPC’s current view) and a quorum of

q(t) responses.

If we assume that clients have some external, infallible way to know which servers are in an active view

then the above simple scheme is sufficient: DQ-RPC sends its messages to servers in an active view and it

makes sure that it only picks active views as its current view6.

Showing how DQ-RPC can determine which views are active is the subject of the rest of this section.

5.2.1 View changes

To determine whether a view is active, it is important to specify how the system starts (and ends) views.

To initiate a view change, the administrator’s computer first tells a quorum of machines on the old view that

their view has ended. These machines immediately stop accepting client requests. Therefore, clients can no

longer read from the old view since they will not be able to gather a quorum of responses. The administrator

then performs a user-level read on the machines from the old view to obtain some value v. Finally, the

administrator tells all the machines in the new view that the new view is starting, and provides them with the

initial value v. At this point, the machines in the new view start accepting client requests.

Naturally, it is not always possible for the administrator to make sure it has contacted all the new machines:

if some server is faulty then it could choose not to acknowledge, causing the administrator to block forever.

In our simplified DQ-RPC we remove this problem by simply assuming that the administrator has some way

to contact all the servers. We will see in Section 5.3 how the full DQ-RPC ensures that all view changes

terminate.

A delicate point to consider when performing a view change is that, after view t ends, so does the constraint

that at most f(t) of the machines in view t can be faulty. For example, if the view was changed to remove

6It is necessary to pick an active view: after some DQ-RPC writes data to the latest view, reads to a view that has ended would

return old data since different views may have no servers in common.
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some decommissioned servers, it is natural to expect that the semantics of the system from then on does not

depend on the behavior of the decommissioned servers.

And yet, the decommissioned machines know something about the previous state of the system. If they

all became faulty (as it may happen, since they are no longer under the administrator’s watchful eye) they

would be able to respond to queries from clients that are not yet aware of the new servers and fool them into

accepting stale data, violating atomic semantics. To prevent the system from depending on servers that have

been decommissioned, the view change protocol must ensure that no client can read or write to a view after

that view has ended. Our forgetting protocol enforces this property.

Safe View Certification through “Forgetting” The simplified DQ-RPC requires the client to receive a

quorum of responses with view t’s tag before it returns that value and considers view t current. If the servers

are correct, then this ensures that no DQ-RPC chooses t as current after t ends (recall that views end once a

quorum of their servers have left the view).

The forgetting protocol ensures that this property holds despite Byzantine failure of the servers. Clients

tag their queries with a nonce e. Server i tags its response with two pieces of information: 1) server i’s view

certificate 〈i, meta, pub〉admin, signed by the administrator, and 2) a signature for the nonce 〈e〉priv , proving

that server i possesses the private key associated with the public key in the view certificate. The key pair

pub, priv is picked by the administrator. In the certificate, meta contains the meta information for the view,

namely the view number t, the set of servers N and the resilience threshold f . The quorum size q can be

computed from these parameters.

When servers leave view t, they discard the view certificate and private key that they associated with that

view. The challenge is to ensure that even if they become faulty later, they cannot recover that private key and

thus cannot vouch for a view that they left. We now discuss how our protocol addresses this issue.

The private key is only transmitted when the administrator informs the server of the new view. Our network

model allows the channel to duplicate and delay this message, which may therefore be received after the

server has left the view. To prevent the decommissioned server from recovering the private key we encrypt the

message using a secret key that changes for every view.

The administrator’s view change message for view t to server i contains the following:

(“NEW VIEW”, t, oldN, encrypt
(

(〈i, meta, pub〉admin, priv), kt
i

)

). We use the notation encrypt(x, k) for

the result of encrypting data x using the secret key k. The view key k t
i is shared by the administrator and server

i for view t. It is computed from the previous view’s key using a one-way hash function: k t
i := h(kt−1

i ). The

administrator and server i are given k0
i at system initialization.

When correct servers leave a view t, they discard view t’s certificate, private key priv and view key k t
i . As

a result they will be unable to vouch for view t later even if they become faulty and gather information from

duplicated network messages. This ensures that client following the simplified DQ-RPC protocol will not pick
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view t as its current view after t ends.

5.2.2 Finding the current view

In the previous section we have seen how clients can identify old views. We now need to make sure that the

clients will be able to find the current view, too.

If the set of servers that the client contacts to perform its DQ-RPC intersects with the current view in one

correct server i, then the client will receive up to date view information from i and will be able to find the

current view.

If that is not the case, then the client can consult well-known sites to which the administrator publishes

the list of the servers in the current view. Our certified tags ensure safety: even if the information the client

retrieves from one of these sites is obsolete, the client will never pick as current a view that has ended.

Therefore it suffices that the client eventually learn of an active view from one of the well-known sites.

In the case of a local network, clients could also broadcast a query to find the servers currently in N . This

solution has the advantage of simplicity but it only works if all servers are in the same subnet.

5.2.3 Summary

Clients only accept responses if they all have valid tags for the same view. Until they accept a response, clients

keep re-sending their request (for read or write) to the servers. Clients use the information in the tags to locate

the most recent servers, and periodically check well-known servers if the servers do not respond or do not

have valid tags. Tags are valid if their view certificate has a valid signature from the administrator and the tag

includes a signature of the client-supplied nonce that matches the public key in the certificate.

Replacing Q-RPC with this simplified DQ-RPC in a dissemination quorum protocol from Figure 1 results

in a dynamic protocol that maintains all the properties listed in the figure.

However, simplified DQ-RPC has two significant limitations. First, it requires the administrator’s newView

command to wait for a reply from all the servers in the new view, which may never happen if some servers in

the new view are faulty. Second, it does not let DQ-RPCs (and, implicitly, user-level read and write operations

issued by clients) complete during a view change: instead the operations are delayed until the view change

has completed. We address both limitations in the next section.

5.3 The full DQ-RPC for dissemination quorums

The full DQ-RPC for dissemination quorums follows the same pattern as its simplified version: it sends the

message repeatedly until it gets a consistent set of answers, and picks a current view in addition to returning

the quorum of responses. DQ-RPC uses the technique described in the previous section to determine whom to

send to, but it can decide on a response sooner than the simplified DQ-RPC because it can identify consistent

answers without requiring all the responses to be tagged with the same view. The full DQ-RPC also runs a
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DQ-RPC(msg)

1. Sender sender := new Sender(msg)
2. static ViewTracker g viewTracker := new ViewTracker
3. repeat
4. sender.sendTo(g viewTracker.get().N)
5. (Q, t) := g viewTracker.findConsistentQuorum(sender.getReplies())
6. if running for too long then g viewTracker.consult()
7. until Q 6= ∅ // t is the current view associated with this operation
8. return Q // sender stops sending at this point

Figure 4: Dynamic quorum RPC

different view change protocol that terminates despite faulty servers.

We split the implementation of DQ-RPC into three parts. The main DQ-RPC body (Figure 4) takes a

message and sends it repeatedly to the servers believed to constitute the current view. The client’s current

view changes with the responses that it gets; if no responses are received for a while then DQ-RPC consults

well-known sources for a list of possible servers (line 6). The repetitive sending is handled by the Sender

object, and the determination of the current view is done by the ViewTracker object (Figure 6). The client

exits when it receives a quorum of consistent answers. In the simplified protocol, answers were consistent if

they all had the same tag. In this section we develop a more efficient notion of consistent responses.

The Sender is given a message and a destination and it repeatedly sends the message to the destination. The

destination can be changed using the sendTo method and the replies are accessed through getReplies7.

The ViewTracker acts like a filter: Sender must go through it to read messages. The ViewTracker looks at

the messages and keeps track of the most recent view certificate it sees. As we saw in the forgetting protocol,

messages are tagged with a signed view certificate and a signed nonce. Messages that do not have a correct sig-

nature for the nonce are not considered as vouching for the view (line 3 of ViewTracker.findConsistentQuorum).

However, even if the nonce signature is invalid, ViewTracker will use valid view certificates to learn which

servers are part of the latest view (line 5). The most recent view certificate can be accessed through the get

method. The ViewTracker can also get new candidates from well-known servers with the consult method.

Finally, the ViewTracker has the responsibility of deciding when a set of answers is consistent, through the

findConsistentQuorum method.

5.3.1 Introducing generations

Our dynamic protocols only require the minimal number of servers [16] to tolerate f faults: 3f +1. The price

for this minimal replication is that every time new servers are added, the data must be copied to them.

When more machines are available, it is possible to use the additional replicas to speed up view changes.

7The code for the Sender object can be found in [15].
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We offer this capability through the new spread parameter. When the spread parameter m is non-zero, quorum

operations involve more servers than strictly necessary. This margin allows the quorums to still intersect when

a few new servers are added, allowing these view changes to proceed quickly. As a result, there are now two

different kinds of view changes: one in which data must be copied and one in which no copy is necessary. In

the second case we say that the old and new views belong to the same generation. Each view is tagged with a

generation number g that is incremented at each generation change.

These two parameters, m and g, are stored in the view meta-data alongside with N , f and t.

The additional servers do not necessarily need to be used to speed up view changes. Using a smaller m

with a given n makes the quorums smaller and reduces the load on the system. The parameter m therefore

allows the administrator to trade-off low load and quick view changes.

Intra-Generation: When Quorums Still Intersect When clients write using the DQ-RPC operation, their

message is received by a quorum of responsive servers. The size of the quorum depends on the parameters of

the current view t (recall that t is also determined in the course of a DQ-RPC). The quorum size depends on

the failure assumptions made by the protocol. For a U-dissemination Byzantine protocol that tolerates b faulty

servers, the quorum size is q(n, b,m) =
⌈

n+b+1+m/2

2

⌉

.

In the absence of view changes, our quorums intersect in b+1+m/2 servers. If m new (blank) servers are

added to the system, then our quorums intersect in b + 1 servers, which is still sufficient for correctness: one

of the servers is correct and the reader will recognize the signature on the correct data. Thus, up to m servers

can be added to the system before it is necessary to copy the data to any of the new servers.

Similarly, if m of the servers that were part of a write quorum are removed, new quorums will still intersect

in b + 1 servers and the system will behave correctly. Finally, if b is increased or reduced by up to m (causing

the quorums to grow or shrink accordingly), new quorums will still intersect the old ones in b + 1 servers.

More generally, if after a write a servers are added, d servers are removed, b is modified by c, and m is

reduced to mmin then the quorums will still intersect sufficiently as long as a + d + c ≤ mmin. If a view

change would break this inequality then it is necessary to copy the value to some of the new servers before the

view change completes: we say that the old and new views are in different generations.

5.3.2 View changes: closing the generation gap

The copying of data across generations is done as part of the view change protocol. Unlike the view change

protocol that is associated with simplified DQ-RPC, the full view change protocol terminates.

View changes are initiated by the administrator because some machines need to be added, removed or

moved, or because the resilience f or the spread m have to be changed. The newViewmethod first determines

whether the new view will be in the same generation as the previous one, using the relation in Section 5.3.1. It
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then computes the key pairs and certificates for the new view. Finally the administrator encodes the certificates

using the appropriate shared key and sends them to all servers in t, re-sending when appropriate and waiting

for a quorum of responses.

Servers switch states according to the diagram in Figure 5. When they receive a new view message for a

new generation (and they are part of that generation), servers piggyback that message on top of a read they

perform on a quorum from the old view. They then update their value with what they read (if it is newer than

the value they currently store) and update their view certificate. If they are part of the new view but there is

no generation change then the servers just update their view information as per the forgetting protocol. If they

are not part of the new view then the servers update their certificates too. In that case they will not be able

to vouch for the new view since they have no valid view certificate for it, but they will still be able to direct

clients to the current servers.

Servers are in the limbo state initially and after leaving the view. They are in the joining state while they

copy information from the older view, and they are in the ready state otherwise. Servers process client requests

in all three states. Servers in the joining state use the view certificate for the old view (if they have it) until

they reach the ready state.

The administrator’s newView waits for a quorum of new servers to acknowledge the view change and then

it posts the new view to the well-known locations and returns. At this point, the administrator knows that the

data stored in the machines that were removed from the view are not needed anymore and therefore the old

machines can be powered off safely.

There may still be some machines in the joining stage at this point. These machines do not prevent opera-

tions from completing because DQ-RPC operations only need f +1 servers in the new generation to complete,

and any dissemination quorum contains at least f + 1 correct servers.

When newView returns, the old view has ended and the new view has started and matured, meaning that

at least one correct server is done processing the view change message for it. This means that reads and writes

to the new view will succeed and reads and writes to the old view will be redirected to the new view (either

directly by the old servers or through a consultation of the well-known locations).

The protocol as presented here requires the administrator to be correct. If the administrator crashes after

sending the new view message to a single faulty new server, the new server can cause the servers in the old

view to join the limbo state without informing the new servers that they are supposed to start serving. In the

extended technical report [15] we show a variant that tolerates crashes in the sense that if the administrator

machine crashes at any point during the view change and never recovers then read and write operations will

still succeed even though it is not possible to change views anymore.
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Figure 5: Server transitions for the dissemination protocol

(meta) ViewTracker.get() // returns the latest view meta-data

1. return m maxMeta

(sender, reply, meta) ViewTracker.receive(nonce)
// used by the Sender object when gathering replies

1. if there is no message waiting, then return false
2. receive (msg,meta) from sender

3. if not validCertificate(meta) then return false
4. if meta.t > m maxMeta.t then
5. m maxMeta := meta

6. if msg == CONSULT-ACK then goto 1
7. return (sender,msg,meta)

(messages, view) ViewTracker.findConsistentQuorum(messageTriples)
// returns a consistent quorum of messages (if any) and the current view

1. messagesInQuorum := {m ∈ messageTriples : m.sender ∈ m maxMeta.N}
2. if |messagesInQuorum| < q(|m maxMeta.N |,m maxMeta.f, m maxMeta.m)

then return (∅,⊥)
// fail if there is no consistent quorum of messages

3. validMessages := {m ∈ messagesInQuorum : validTag(m)}
4. recentMessages := {m ∈ validMessages : m.meta.g == m maxMeta.g}
5. if |recentMessages| < m maxMeta.f + 1 then return (∅,⊥)

// fail if the view is not mature
6. return (messagesInQuorum,m maxMeta)

ViewTracker.consult // consults well-known servers for the latest meta-data

1. Choose a server j at random from the list of well-known view publishers
2. Send (CONSULT, m maxMeta) to j

Figure 6: Definition of the ViewTracker object
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5.3.3 DQ-RPC satisfies transquorums for dissemination quorums

We now show that the DQ-RPC protocol in Figure 4 provides the transquorum properties for the same ordering

function o of Section 4.2.1. It will follow directly that U-dissemination, crash and hybrid-d based on DQ-RPC

provide atomic semantics.

Recall that a view t ends when a quorum in t has processed a message indicating that a new view is starting.

A view t starts as soon as one server in t receives the message indicating that t is starting. A view t has

matured when one correct server is done processing the view change message for view t.

Each DQ-RPC operation uses the findConsistentQuorummethod to decide on some view that it calls

current. We first show that the current view is active at some point during the DQ-RPC.

Lemma 4. The view t chosen by a DQ-RPC operation is concurrent with the DQ-RPC operation.

Proof. The view t is chosen in ViewTracker’s findConsistentQuorummethod (Figure 6). By inspection

we observe that if t is chosen then q(n(t), f(t), m(t)) responses from different servers were tagged with a view

that was no more recent than t.

Suppose, by contradiction,, that view t has ended. Then, a quorum Q0 of servers in t have processed

the view change message and discarded the view meta-information associated with view t. The forgetting

protocol ensures that the servers in Q0 that were correct during view t will not be able to regain the view

meta-information. By quorum intersection8, the quorum of q(t) replies in t selected by DQ-RPC to vouch for

view t intersects the quorum Q0 in at least one server s that was correct in t. The server s cannot generate a

valid tag for view t, contradicting our hypothesis that t had ended. Thus, view t has not ended.

View certificates are signed by the administrator, and such signatures cannot be faked. Since the responses

contain a certificate for view t, at least one server received this certificate from the administrator. Therefore,

view t has started.

Lemma 5. All reads succeed. That is, there is no DQ-RPCT or DQ-RPCR operation x such that φ(x) = ⊥.

Proof. The φ(Q) function returns the largest valid element of Q. DQ-RPC replies contain at least f + 1

responses tagged with the latest generation. Servers only use the most recent tag once they have data, so all

DQ-RPC replies contains at least one non-⊥ reply from a correct server that can be chosen by φ.

Lemma 6. All T operations in the dissemination DQ-RPC are timely.

Proof. Lemma 5.3.3 shows that o(r) 6= ⊥, so we must prove ∀w ∈ W,∀r ∈ T : w → r =⇒ o(w) ≤ o(r).

Our proof proceeds by case analysis on the views associated with operations r and w.

8It is safe to use quorum intersection here, since Q0 and q(t) are quorums of the same view t
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If w and r picked views that are in the same generation then the two quorums intersect in at least one correct

server. Since w → r and servers never decrease the timestamp they store, it follows that o(w) ≤ o(r).

If w picked a view t that is in the generation that immediately precedes the generation v to which r’s view

belongs, then we consider the last view u in t’s generation. As we have seen in the previous paragraph, reads

from a quorum q(u) in u will result in a timestamp that is at least as large as o(w). Such a read occurs when a

server transitions to the ready state in v’s generation, and all correct servers that enter v’s generation therefore

have a timestamp at least as recent as o(w). The read r waits until it knows that view v is mature, so at least

one correct server answered the DQ-RPC r after installing view v. Since that server is correct, its reply is

valid. Since that reply has a timestamp at least as recent as o(r) and dissemination quorums pick the largest

valid reply, it follows that o(w) ≤ o(r).

If w picked a view that happens several generations before r then we can apply the previous paragraph’s

reasoning several times to show that o(w) ≤ o(r).

Finally, it is not possible for w to pick a view in a later generation than what r picks if w → r. DQ-RPCs

decide on a view whose generation is vouched for by at least f + 1 servers with data. That means that one of

these servers is correct. Correct servers only install a generation after all previous generation have ended, so r

cannot pick an earlier generation.

This covers all the possible ordering for generations, so ∀w ∈ W, ∀r ∈ T : w → r =⇒ o(w) ≤ o(r).

Lemma 7. All R operations in the dissemination DQ-RPC are sound.

Proof. Since no dissemination operation returns ⊥ we show ∀r ∈ R : ∃w ∈ W s.t. r 6→ w ∧ o(w) = o(r).

Since o(r) picks the largest valid value and the cryptographic primitives hold, o(r) can only return a value

that was written previously, so one for which a w operation exists. Furthermore that value must have been

forwarded to the reader so the write must happen before the read or concurrently with it.

We can directly conclude the following theorem from the two previous lemmas.

Theorem 2. Our implementation of the DQ-RPC operation satisfies the transquorums property for the o

function in the U-dissemination protocol.

6 Conclusions

We present a methodology that easily transforms several existing Byzantine protocols for static quorum sys-

tems [9, 13, 14, 17, 19] into corresponding protocols that operate correctly when the administrator is allowed

to add or remove servers from the quorum system, as well as to change its resilience threshold. Performing

the transformation does not require extensive changes to the protocols: all that is required is to replace calls

to the Q-RPC primitive used in static protocols with calls to DQ-RPC, a new primitive that in the static case
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behaves like Q-RPC but can handle operations across quorums that may not intersect while still guaranteeing

consistency. Our methodology is based on a novel approach for proving the correctness of Byzantine quorum

protocols: through our transquorum properties, we specify the characteristics of quorum-level primitives (such

as Q-RPC) that are crucial to the correctness of Byzantine quorum protocols and proceed to show that it is

possible to design primitives, such as DQ-RPC, that implement these properties even when quorums don’t

intersect. We hope that designers of new quorum protocols will be able to leverage this insight to easily make

their own protocols dynamic.
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