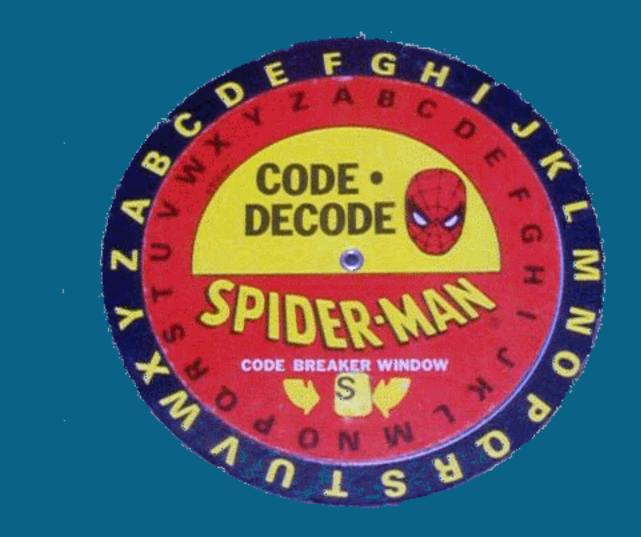
More Fun with Secret Sharing



Overview

★ Threshold cryptosystems

- [DF89] Y. Desmedt and Y. Frankel. 'Threshold cryptosystems'. Advances in Cryptology --- Crypto '89.
- ★ Proactive secret sharing
 - [HJKY95] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. ''Proactive secret sharing, or: How to cope with perpetual leakage.'' Advances in Cryptology --- Crypto '95.
- ★ Verifiable secret sharing
 - [Fel87] P. Feldman. 'A practical scheme for non-interactive verifiable secret sharing.' Proceedings of the 28th Annual Symposium on the Foundations of Computer Science:427--437. IEEE, October 12--14, 1987.

Secret sharing (review)

[Sha79] How to share a secret D:

\star Create polynomial of degree k-1:

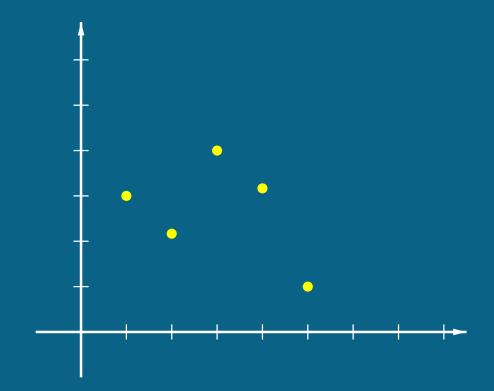
$$f(x) = c_0 + c_1 x + \dots + c_{k-1} x^{k-1}$$

Assign $c_0 = D$ and choose the other c_i 's randomly.

- ★ Calculate $f(1), f(2), \ldots, f(n)$
- \star Distribute these f(x) "shares" to participants (along with the

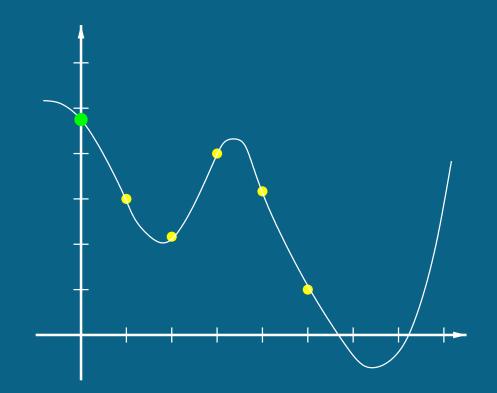
corresponding x values)

 \star To reconstruct secret, gather shares from k participants and interpolate polynomial



corresponding x values)

 \star To reconstruct secret, gather shares from k participants and interpolate polynomial

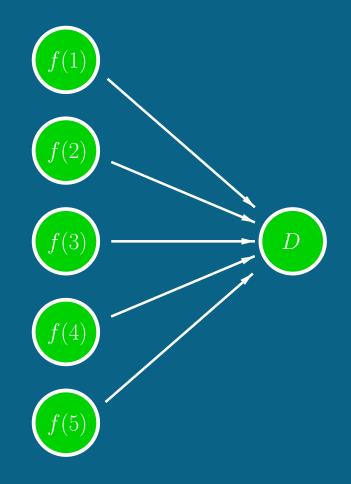


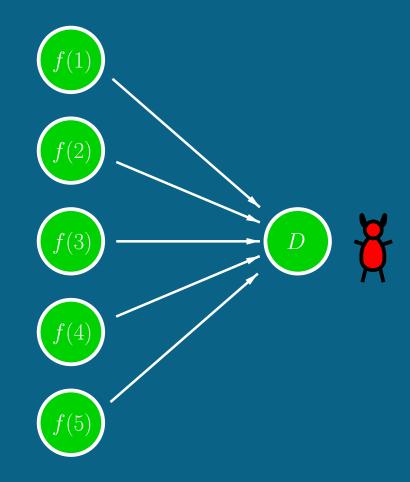
This is called a (k, n)-threshold scheme.

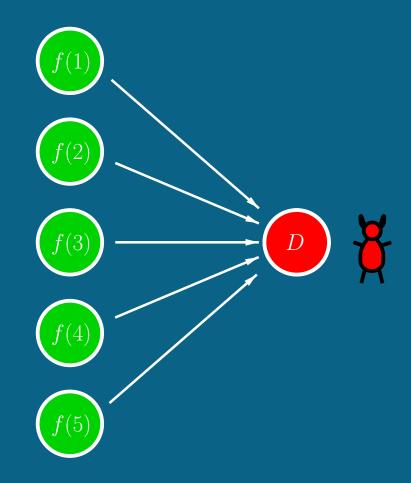
Secret sharing: practical usage?

Public key cryptography

- Want to be able to decipher incoming messages, sign outgoing messages for an entire organization
- Don't want to distribute single private key to everybody—bad for security
- Having private key compromised is more costly than having symmetric key compromised
- Shamir's secret sharing sounds tempting







Straightforward application of Shamir's scheme does not provide much secrecy for distributed systems

- Without secret sharing, secret is always extant—attacker may compromise designated node at any time
- With secret sharing, secret is available intermittently—attacker has to compromise designated node at just the right time
- Attacker can possibly trick shareholders into initiating a reconstruction round

Threshold cryptosystems

[DF89] Y. Desmedt and Y. Frankel. "Threshold cryptosystems". *Advances in Cryptology — Crypto '89*.

Threshold cryptosystems

"Threshold cryptosystem" (also called society-oriented cryptosystem)

- Performs cryptographic operations without reconstructing private key
- Not a generalized scheme like secret sharing—depends on the details of the underlying cryptosystem

[EIG85] T. ElGamal. "A public key cryptosystem and a signature scheme based on discrete logarithms." *IEEE Trans. Info. Theory* IT 31, 1985.

Components:

- \star a large prime p
- \star a generator g for the field \mathbb{Z}_p
 - a generator is a number such that $(0, 1, g, g^2, \ldots, g^{p-2})$ is a permutation of the elements in \mathbb{Z}_p .
 - For a given prime field \mathbb{Z}_p , it turns out there are $\phi(p-1)$ generators and they are not too hard to find.

Components (cont'd):

★ a secret key a, 0 < a < p-1

All calculations performed in \mathbb{Z}_p

Publish (p, g, g^a)

Keep a private

To encrypt a message M:

- \star Sender chooses random integer b
- * Raises g and g^a to the b^{th} power (use successive squaring)
- \star Sends the tuple (g^b, Mg^{ab})

To decrypt:

- \star Receiver uses g^b and a to calculate $(g^{ab})^{-1}$
- \star Multiplies by second entry to yield M

How to crack ElGamal

- * If an eavesdropper could determine b from g and g^b , or determine a from g and g^a , the message could be decrypted.
- * This is known as the *discrete logarithm* problem.
- ★ No polynomial-time solution is known.
- \star ElGamal is believed to be secure in general.

ElGamal threshold decryption

To extend ElGamal with secret sharing techniques:

- \star Generate polynomial for secret key a
- \star Distribute (x_i, y_i) shares as normal and destroy polynomial
- \star When an encrypted message arrives, select k participants
- ★ Each participant generates a modified shadow and computes a partial result on the message with this shadow
- Designated node collects all partial results and uses them to decrypt message
- \star Partial results reveal no more about the key than does g^a

Given k shares $(x_1, y_1), \ldots, (x_k, y_k)$, let

$$\pi_i(x) = \prod_{\substack{j=1, j \neq i}}^k \frac{x - x_j}{x_i - x_j}$$
$$f(x) = \sum_{i=1}^k y_i \pi_i(x)$$

Given k shares $(x_1, y_1), \ldots, (x_k, y_k)$, let

$$\pi_i(x) = \prod_{j=1, j \neq i}^k rac{x - x_j}{x_i - x_j}$$
 $f(x) = \sum_{i=1}^k y_i \pi_i(x)$

Claim: f(x) is our original polynomial

A simple case (k = 3):

$$f(x) = y_1 \frac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)} + y_2 \frac{(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)}$$

$$+y_3\frac{(x-x_1)(x-x_2)}{(x_3-x_1)(x_3-x_2)}$$

Note for all i, $f(x_i) = y_i$.

Modified shadow for shareholder i is

 $a_i = y_i \pi_i(0)$

 \star Only requires knowledge of one's own share and the other x_i involved in this sharing round

★ Observe

$$a_1 + a_2 + \dots + a_k = f(0) = a$$

ElGamal threshold decryption

Each shareholder computes partial result $(g^{ba_i})^{-1}$ and sends to designated node

Designated node multiplies all partial results to decrypt message:

$$Mg^{ba}(g^{ba_1})^{-1} \cdots (g^{ba_k})^{-1} = Mg^{ba}(g^{b(a_1 + \dots + a_k)})^{-1}$$
$$= Mg^{ba}(g^{ba})^{-1}$$
$$= M$$

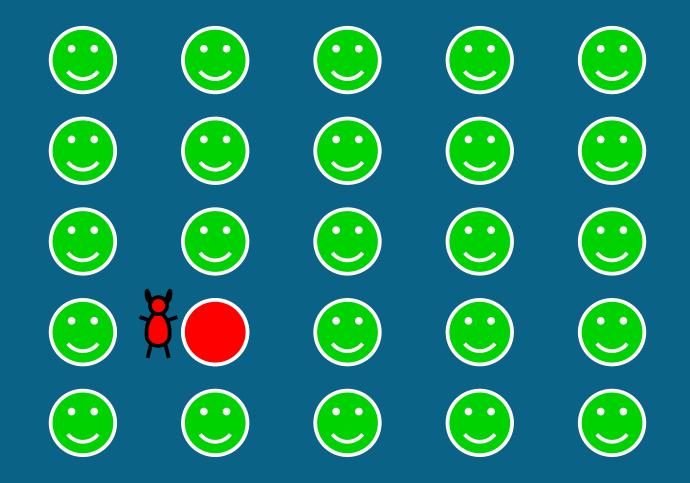
ElGamal threshold decryption

Enhancement to make this less interactive:

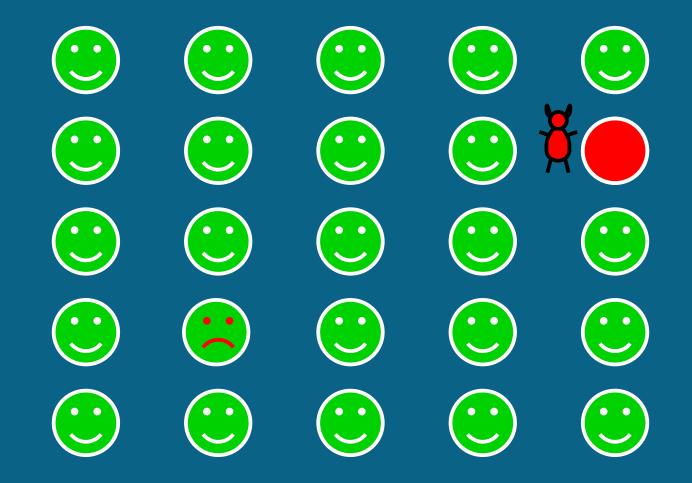
- \star Each node computes partial result g^{by_i}
- Also provide solution using geometry-based secret sharing Drawbacks:
 - \star Cannot prevent k shareholders from colluding with each other to reconstruct the secret key a

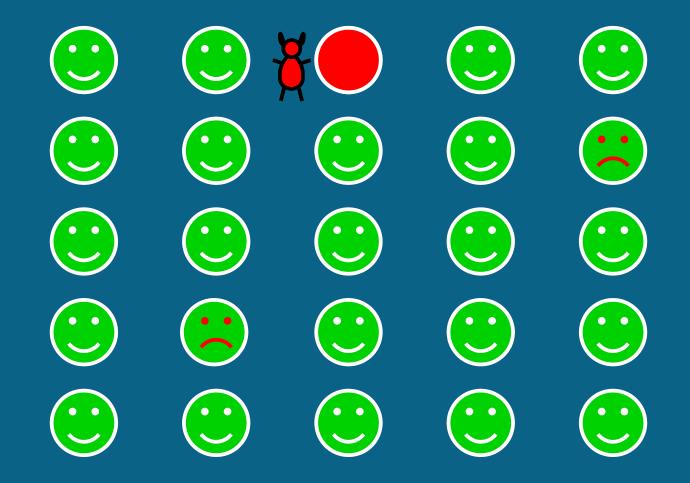
Later developments

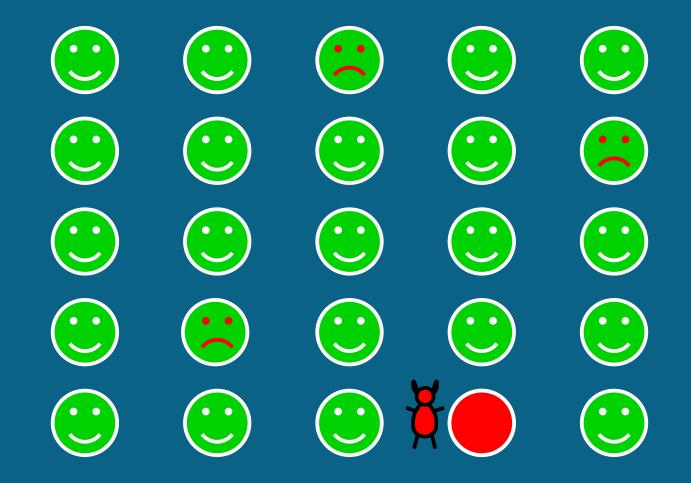
- ★ Threshold signature scheme for RSA
 - [FD92] Y. Frankel and Y. Desmedt. 'Parallel reliable threshold multisignature.' TR-92-04-02, Dept. of EE and CS, Univ. of Wisconsin. April 1992.
- ★ Threshold signature scheme for DSS
 - [GJKR96] R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin. ''Robust Threshold DSS Signatures.'' Advances in Cryptology --- Eurocrypt '96.
- Improvement on RSA methods
 - [Rab98] T. Rabin. 'A Simplified Approach to Threshold and Proactive RSA.'' Crypto '98.

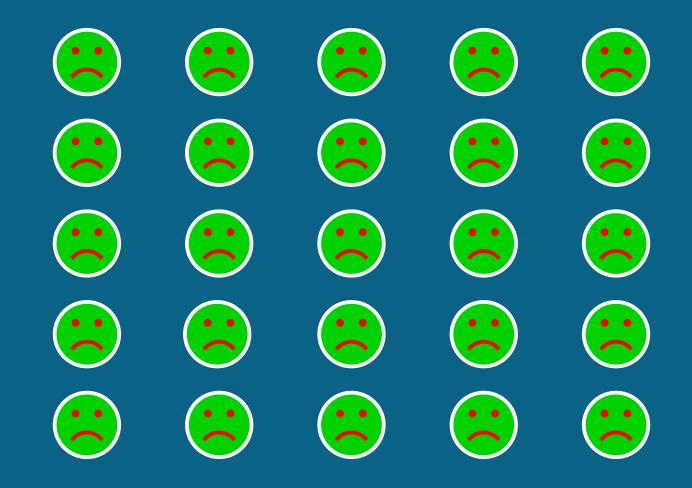












What to do?

- ★ Could throw away secret and start over with new one
 - Unacceptable for many applications
- ★ Could reconstruct secret and distribute new shares
 - This is a security hazard

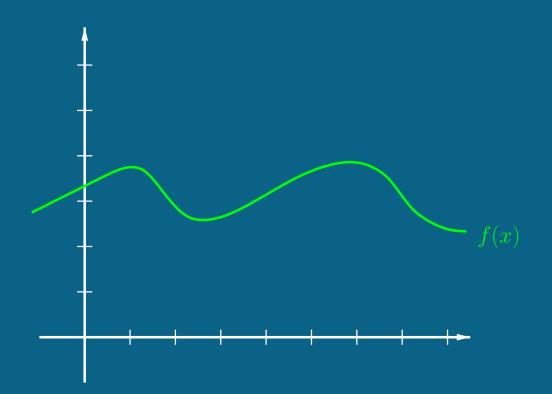
What to do?

- ★ Could throw away secret and start over with new one
 - Unacceptable for many applications
- ★ Could reconstruct secret and distribute new shares
 - This is a security hazard

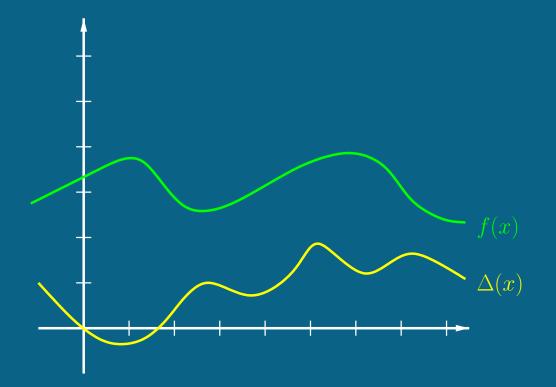
Answer: Proactive Secret Sharing

* Get new shares for same secret *without* reconstructing secret

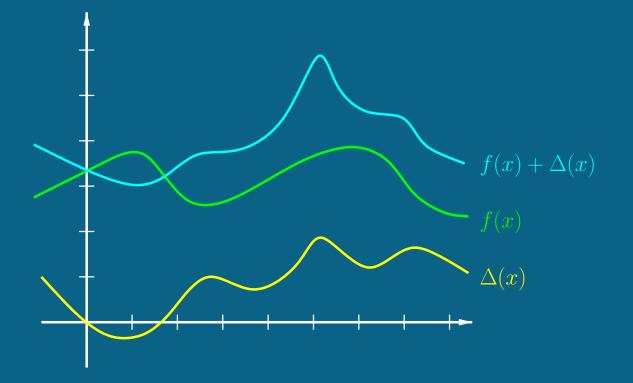
(+,+)-homomorphism property



(+,+)-homomorphism property



(+,+)-homomorphism property



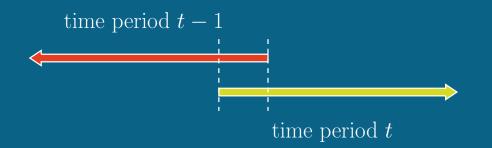
 $f'(0) = f(0) + \Delta(0) = f(0)$

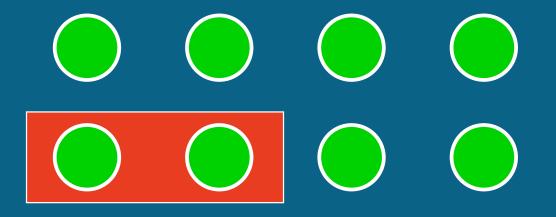
Steps to refresh shares:

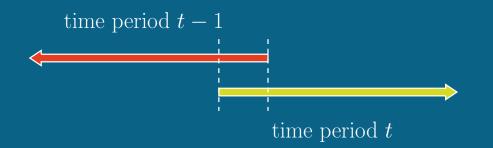
★ Designated node creates random polynomial

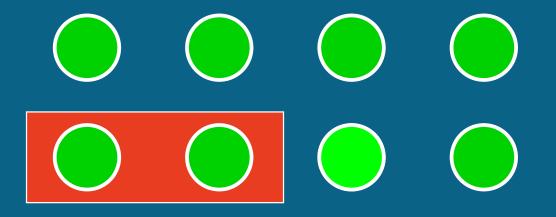
$$\Delta(x) = \delta_1 x + \dots + \delta_{k-1} x^{k-1}$$

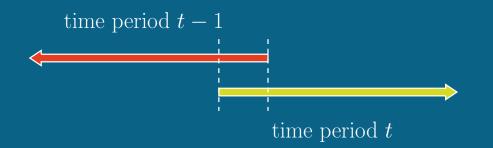
- \star Distributes shares $\Delta(1), \ldots, \Delta(n)$
- ★ Each node makes new share $f'(i) = f(i) + \Delta(i)$
- \star Destroy f(i), $\Delta(i)$

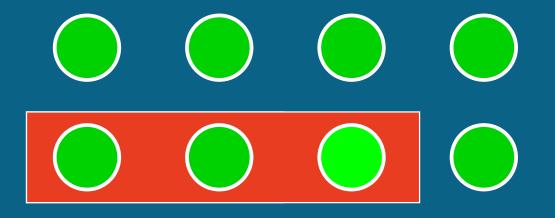


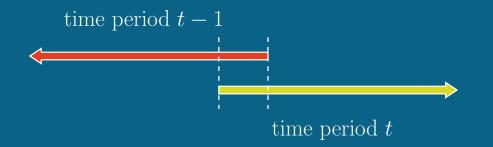


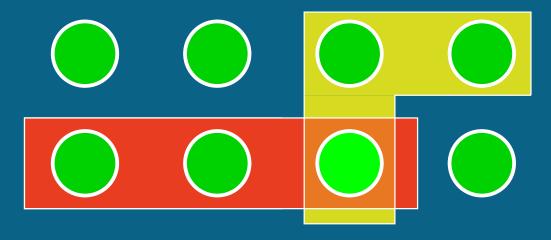


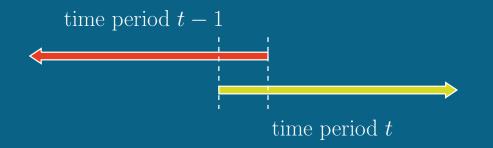




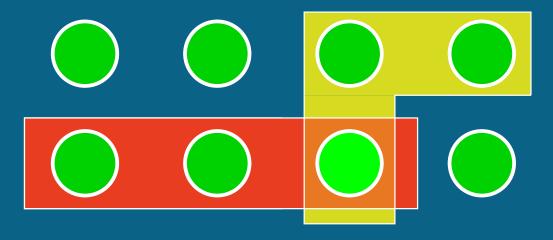


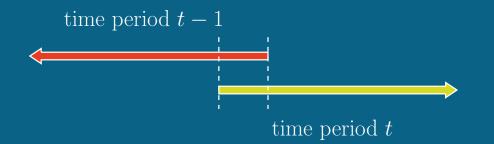






A scenario involving a (5, 8)-threshold scheme:





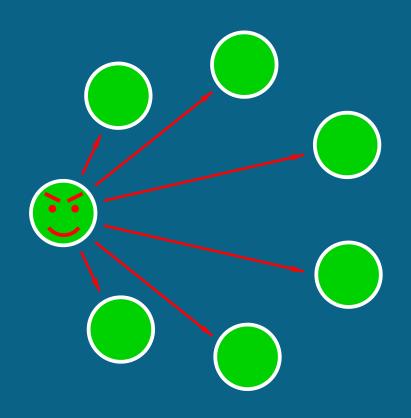
Less than k nodes compromised per time period, but secret revealed.

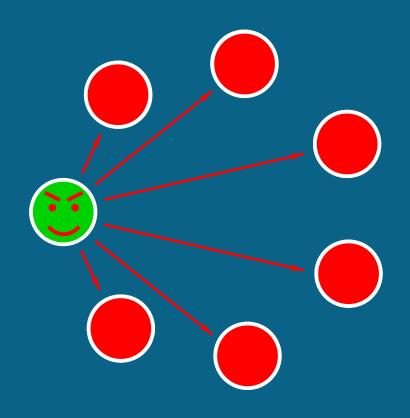
Solution: replicate!

- ★ Have k-1 nodes generate random polynomials $\Delta_1, \ldots, \Delta_{k-1}$ of degree k-1 passing through the origin
- \star Each distributes delta shares $\Delta_j(1),\ldots,\Delta_j(n)$ privately to all nodes
- \star Each recipient *i* creates new share

$$f'(i) = f(i) + \sum_{j=1}^{k-1} \Delta_j(i)$$

Result: attacker must now compromise k nodes per time period in order to learn secret.





Verifiable secret sharing

[Fel87] P. Feldman. "A practical scheme for noninteractive verifiable secret sharing." *Proceedings of the 28th Annual Symposium on the Foundations of Computer Science*:427–437. IEEE, October 12–14, 1987.

 Provides a way to check shares for validity without reconstructing secret and without disclosing (too much) information

Steps for Feldman-VSS protocol

Either by consensus or predetermination:

- \star Choose large primes p and q, p = mq + 1
- * Choose element g of order q in \mathbb{Z}_p (i.e. $g^q \equiv 1 \mod p$)
 - \mathbb{Z}_p is used for verification
 - \mathbb{Z}_q is actual secret sharing domain

Steps for Feldman-VSS protocol

Dealer:

* Creates polynomial $f(x) = c_0 + c_1 x + \cdots + c_{k-1} x^{k-1}$ in \mathbb{Z}_q

• Secret is c_0

★ Distributes shares $(x_1, y_1), \ldots, (x_n, y_n)$ privately

• Note in \mathbb{Z} , $f(x_i) = rq + y_i$ for some r

★ Broadcasts $g^{c_0}, g^{c_1}, \ldots, g^{c_{k-1}}$

Steps for Feldman-VSS protocol

Each shareholder *i*:

 \star Calculates $g^{y_i} \pmod{p}$ and verifies

$$(g^{c_0})(g^{c_1})^{x_i}(g^{c_2})^{x_i} \cdots (g^{c_{k-1}})^{x_i} \equiv g^{c_0+c_1x_i+\dots+c_{k-1}x_i} \equiv g^{f(x_i)} \equiv g^{f(x_i)} \equiv g^{r_q+y_i} \equiv (g^q)^r g^{y_i} \equiv (g^q)^r g^{y_i} \equiv g^{y_i} \pmod{p}$$

This holds iff the shares are valid and consistent with the $g^{c'}s$.

Verifiable secret sharing

Possible drawback of *Feldman-VSS* scheme:

- ★ Makes $g^{f(0)}$ public
 - While entire f(0) is hard to determine, the lowest-order bits are easily accessible—partial information disclosure

Remedies:

- ★ Encode actual secret into higher-order bits of an envelope
- ★ Use *Pedersen-VSS* scheme (information-theoretically secure)

Proactive secret sharing

[HJKY95] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. "Proactive secret sharing, or: How to cope with perpetual leakage." *Advances in Cryptology — Crypto '95*.

Also add robustness:

- ★ Use n > 2(k-1) nodes
- \star Have all n nodes distribute Δ -shares (instead of just k-1)
- ★ Accusation protocol
- * Share recovery scheme (to deal lost or corrupted nodes back in)