
An Efficient and Fault-Tolerant Solution for
Distributed Mutual Exclusion

DIVYAKANT AGRAWAL and AMR EL ABBADI

University of California

In this paper, we present an efficient and fault-tolerant algorithm for generating quorums to
solve the distributed mutual exclusion problem. The algorithm uses a logical tree organization of

the network to generate tree quorums, which are logarithmic in the size of the network in the

best case. Our approach is resilient to both site and communication failures, even when such

failures lead to network partitioning. Furthermore, the algorithm exhibits a property of graceful

degradation, i.e., it requires more messages only as the number of failures increase in the
network. We describe how tree quorums can be used for various distributed applications for

providing mutually exclusive access to a distributed resource, managing replicated objects, and

atomically committing a distributed transaction.

Categories and Subject Descriptors: C .2.4 [Computer-Communication Networks]: Distributed
Systems; D.4. 1 [Operating Systems]: Process Management– mutual exclusion; D.4.5 [Operat-
ing Systems]: Reliability—fault tolerance; D .4.7 [Operating Systems]: Organuatim and De-
sign–- distributed systems

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: Coteries, logical structures, quorums

1. INTRODUCTION

Mutual exclusion is crucial for the design of distributed systems. Many

problems involving replicated data, atomic commitment, distributed shared

memory, and others require that a resource be allocated to a single process at

a time. Solutions to these problems are often vulnerable to site and communi-

cation failures. Intersecting quorums can be used to provide fault-tolerant

solutions to mutual exclusion problems. However, they usually incur high

communication costs. In this paper, we present a new quorum-based

algorithm which has low communication cost and can handle both types of

failures. In particular, this algorithm results in the first distributed mutual

This research was supported by the NSF under grant numbers CCR-8809387 and IRI-8809284

and by the University of California and IBM Yorktown Heights under grant numbers MICRO
88-179 and 89-137.
Authors’ address: Department of Computer Science, University of California, Santa Barbara, CA

93106.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.

@ 1991 ACM 0734-2071/91/0200-0001 $01.50

ACM Transactions on Computer Systems, Vol. 9, No 1, February 1991, Pages 1-20.

2. Divyakant Agrawal and Amr El Abbadl

exclusion protocol to tolerate both site failures and network partitioning

while in the best case incurring logarithmic costs in the size of the network.

Several algorithms exist to implement mutual exclusion in a distributed

environment [3, 10, 25, 7, 18, 12, 23, 6, 26, 19, 171. The primary site approach

[31 requires low communication costs but is highly vulnerable to the failure of
the primary site. Lamport uses logical timestamps [101 to implement dis-

tributed mutual exclusion. This protocol prevents starvation at the expense

of requiring a site requesting mutually exclusive access to the resource to

communicate with all other sites. This makes the protocol fairly expensive

and not resilient to site and communication failures. Schneider [201 proposed

a reliable broadcast based approach for synchronization in distributed sys-

tems. The broadcast mechanism is used to implement distributed semaphores,

which can be employed to achieve mutual exclusion in distributed systems.

Reliable broadcasts, however, are expensive and are not generally available

in distributed systems. The majority quorum algorithm [25, 71 is a very

simple and elegant scheme to achieve mutual exclusion in a distributed

system. In order to attain mutual exclusion, a site must obtain permission

from a majority of sites in the network. Since there can be only one majority

at any instant, mutual exclusion is achieved easily. The majority quorum

algorithm is robust and is resilient to both site and communication failures.

This algorithm has been particularly used in replicated databases and to

solve the distributed commit problem in systems with site failures and

network partitions.

In the above protocols, no assumption is made about the logical or physical

organization of the network. The only assumption required is that any two

sites in the network can communicate with each other when there are no

failures. Maekawa [12] proposes implementing distributed mutual exclusion

by imposing a logical structure on the network. In this scheme, a set of sites

is associated with each site, and this set has a nonempty intersection with all

sets corresponding to the other sites. The rule for constructing these sets is

based on the structure of finite projective planes. A process must obtain

permission from all sites in the set associated with its home site before it can

achieve mutual exclusion. Since the set intersects with every other set

of other sites, mutual exclusion is guaranteed. The interesting aspect of

Maekawa’s solution is that the size of each of these sets is d, where n is the

number of sites in the network. Hence, a process needs to communicate with

only v~ sites to obtain permission for mutual exclusion. This is in contrast

to the majority quorum algorithm which involves communication with

~(n + 1)/2] sites. Thus, imposing a logical structure on the net,work sig~i~i.
cantly reduces the overhead of achieving mutual exclusion.

Suzuki and Kasami [23] present a token-based algorithm for distributed

mutual exclusion, which requires at most n messages. Helary, Plouzeau, and

Raynal [9] propose a token-based algorithm that uses a flooding broadcast

technique to locate the token. Raymond [17] proposes another token-based
algorithm that uses a spanning tree of the network for locating the token,

ACM ‘hansact,ons on Computer Systems, Vol 9, No 1, February 199J

An Efficient and Fault-Tolerant Solution for Distributed Mutual Exclusion . 3

and shows that the average number of messages exchanged in this protocol is

O(lolg n). In the best case no communication is necessary since the token may

be available locally while in the worst case the number of messages is

proportional to the diameter of the network. A similar token-based scheme

for a tree of processes or sites has also been proposed by van de Snepscheut

[261. This protocol guarantees fairness and has similar costs as Raymond’s
algorithm. Token-based algorithms suffer from poor failure resiliency. In

particular, if the site holding the token fails, complex token regeneration

protocols must be executed [14]. Furthermore, when this site recovers, it has

to undergo a recovery phase during which it is informed that its token has

been invalidated. For example, the protocol proposed by Raymond cannot

recover from the failure of the site holding the token and all its neighbors.

The above algorithms use static trees. Several protocols have been proposed

to dynamically restructure the tree [16, 4] resulting in a logarithmic bound

on the average number of messages needed to achieve mutual exclusion.

The concept of intersecting quorums captures the essence of mutual exclu-

sion in distributed systems. Garcia– Molina and Barbara [61 have proposed

the notion of a coterie, which generalizes the notion of quorums. A coterie is a

set of sets with the property that any two members of a coterie have a

nonempty intersection. Maekawa’s solution can be considered as a special

instance of a coterie where each member is of equal size, i.e., A sites. A

coterie, on the other hand, permits the individual sets (its members) to be of

unequal sizes. In this paper we combine the idea of logical structures and the

notion of coteries to develop an efficient and fault-tolerant protocol for

mutual exclusion in distributed systems.

We assume that the network is logically organized into a tree. We then

provide a rule for constructing a coterie and prove that any two members of

the coterie have a nonempty intersection. In Maekawa’s protocol, only one

set is associated with each site. This makes the protocol nontolerant to

failures since the failure of any site in the associated set of a site prevents

that site from achieving mutual exclusion. Our scheme ensures fault-

tolerance by providing several alternative sets to a site requesting mutual

exclusion. We show that in the best case our scheme requires permission

from only [log n] sites, and in the worst case it requires [(n + 1)/21 sites.

Note that the majority quorum algorithm [25, 71 would always require

communication with ~(n + 1)/21 sites. We use this approach to solve the

problem of mutually exclusive access to a resource in a distributed system, to

manage replicated objects, and to commit distributed transactions. The mu-

tual exclusion protocol described in this paper is the first protocol to tolerate

both site failures and network partitioning and still needs only O(log n)

messages in the best case.

In the next section we present the model of the system. In Section 3, we

present the tree quorum algorithm for constructing quorums by using a

logical organization of a network that is a binary tree, An analysis of both

the cost and availability aspects of the tree quorum algorithm is performed in

ACM Transactions on Computer Systems, Vol. 9, No. 1, February 1991.

4. Dwyakant Agrawal and Amr El Abbadi

Section 4. In Section 5, we use the tree quorum algorithm to develop a

distributed mutual exclusion protocol and use it for other distributed applica-

tions. Section 6 generalizes the tree quorum algorithm to arbitrary trees. We

conclude the paper with a discussion of our results.

2. MODEL

A distributed system consists of a set of distinct sites that communicate with

each other by sending messages over a communication network. No assump-

tion is made about the underlying topology of the network nor is there any

assumption about the existence of a multicast facility. A multicast facility,

however, can be exploited to improve the performance of the system. We

assume that a routing mechanism exists that delivers messages between

sites. We also assume that the sites can be logically organized to form a

structure such as a binary tree, a tree, a grid, etc.

Sites may either crash or may fail to send or receive messages. Communi -

cation links may fail by crashing, or by failing to deliver messages. Combina-

tions of such failures may lead to partitioning failures [5], where sites in a

partition may communicate with each other, but no communication can occur

between sites in different partitions.

We now formalize the notion of coteries [61. A coterie, C, is a set of sets

where each set g in C is called a quorum. The following conditions hold for

the quorums in a coterie C:

The Intersection Property. If g and h are quorums in C“, then g and h

must have a nonempty intersection, i.e., g f) h # @.

The Minimality Property. There are no two quorums g and h in C such

that g is a superset of h.

Coteries can be used to develop protocols that guarantee mutual exclusion in

a distributed system. For example, to obtain mutually exclusive access to a

resource in the network, a process at site s, is required to receive permission

from some quorum of sites S, in the network. If all sites in S’, grant

permission, the process is allowed to access the resource. Since any pair of

quorums have at least one site in common, mutual exclusion can be guaran-

teed. Note, however, additional mechanisms must be used to eliminate the

problems of deadlock and starvation [19]. The minimality property is not

necessary for correctness but is useful for efficiency.

3. THE ALGORITHM FOR CONSTRUCTING TREE C)UORUMS

The standard approach for implementing coteries is that any set containing a

majority of sites forms a quorum (a variation of this approach is to associate

with each site a vote, and a set of sites form a quorum if the sum of their

votes is greater than or equal to a majority of all votes). We now develop an

alternative approach, which imposes a logical structure on the sites in the

ACM ‘llansactlons on Computer Systems, Vol 9, No 1, February 199]

An Efficient and Fault-Tolerant Solution for Distributed Mutual Exclusion . 5

system. The structure we propose is a binary tree, and we devise an algo-

rithm, which uses this specific tree structure to determine the set of sites that

constitute a quorum.

3.1 Quorum Construction in a Binary Tree

Given a set of n sites, we assume that the sites are logically organized to

form a binary tree. We will assume the standard tree terminology, i.e., root,

child, parent, leaf, etc. The algorithm for constructing quorums can be used

with arbitrary trees, however, for simplicity and efficiency we assume that

the tree is complete, i.e., if k is the level of the tree then it has 2 k+ 1 – 1 sites

and the root is at level k and the leaves are all at level O. For the purpose of

this presentation, any site could be chosen as the root, and any two sites may

be chosen as its children, and so on. A path in the tree is a sequence of sites

Sl, ,92,. . ., Sl>sz+l, . . .> Sn, such that s,+ ~ is a child of s,.

In Figure 1, we present the algorithm for constructing a valid quorum. We

assume that the tree has a well defined root, and that a process at a site

requesting a quorum calls the recursive function GetQuorum with the root of

the tree as parameter. The function GrantsPermission(site) is true if site

agrees to be a member of the quorum. For example, a site may not agree to

be in the quorum on account of failures. The algorithm tries to construct a

quorum by selecting any path starting from the root and ending with any of

the leaves. If successful, this set of sites constitutes a quorum. If it fails to

find a path as a result of the failure (or inaccessibility due to network

partitioning) of a site, say s,, then the algorithm must substitute for that site
with two paths, both of which start with the children of site S, and terminate

with leaves. We note that each path must terminate with a leaf, hence if the

last site in the path is inaccessible, a quorum cannot be formed and the

algorithm terminates with an error condition. If no sites are inaccessible,

then the quorum is any set { Sl, S2, s,, S,+l, s.}, where S1 is the root,

s. is a leaf, and for all i < n, SL+~ is a child of s,. If failures occur, then for

each failed s,, the quorum contains (recursively) a path of sites starting from

SJ and Sk, where s] and sk are the two children of S,, and ending with leaves.

The set constructed by this algorithm is termed as a tree quorum.

Consider a distributed system with seven sites. We superimpose a binary

tree on the sites as illustrated in Figure 2, with the sites numbered as shown.

Following the algorithm, the union of the following tree quorums constitutes

a coterie. If no failures have occurred, then any of the following four sets

form a quorum: {1,2,4}, {1,2,5}, {1,3,6}, and {1, 3,7}. If the root is inacces-

sible (due to site failures or network partitioning), then the following four

sets are quorums: {2,4,3,6}, {2,5, 3,6}, {2,4, 3,7}, and {2,5,3, 7}. If site 2

or site 3 is down, then {1,4, 5} or {1, 6, 7} respectively form quorums. If both

sites 1 and 2 are down, then {4, 5, 3, 6} and {4, 5, 3, 7} are candidates for

quorums. Similarly, if sites 1 and 3 are inaccessible, the sets {2,4,6,7} and

{2, 5,6, 7} are quorums. Finally, if sites 1, 2, and 3 are inaccessible, then the
only possible quorum is {4,5,6, 7}.

ACM TransactIons on Computer Systems, Vol. 9, No. 1, February 1991.

6. Divyakant Agrawal and Amr El Abbadi

FUNCTION GetQuorum(Tree: TREE): QuorumSet;

VAR

lef?,z-zght: QuorumSet;

BEGIN

IF Empty (Tree) THEN

RETURN({ });

ELSE IF GrarztsPermzsszon(Tree t Node) THEN

RETURN({ Tree ? Node} U GetQuorum(Tree ~ LeftChdd));

OR

RETURN({ Tree T Node} U GetQuorum(Tree t .RzghtChzZd));

ELSE

left ~ GetQuorum(Tree t LeftChdd);

rzght + GetQuorum(Tree T R1ghtChzld);

IF (lefl = ~ v rzght = +) THEN

(* Unsuccessful in establishing a quorum*)
EXiT(error);

ELSE

RETURN(/e/l U zzght);

END; (*IF *)
END; (*IF *)

END GetQuorum

Fig 1 The algorithm for constructing a tree quorum

Fig 2. A sample hierarchy of 7 site network

3,2 Correctness

We now demonstrate that the tree quorums constructed by the proposed

algorithm guarantee the intersection and the minimality properties of coter-

ies. The following theorem establishes the correctness of the tree quorum

algorithm proposed above.

THEOREM 1. Tree quorums satisfy the intersection and the minimality

properties of coteries.

ACM Transactions on Computer Systems, Vol, 9, No 1, February 1991

An Efficient and Fault-Tolerant Solution for Distributed Mutual Exclusion . 7

F’ROOF, The proof is by induction on the levels of binary trees.

Basis. Consider a binary tree of level O, which implies that there is one site

SI in the network. The set of tree quorums will be { { SI } }. The intersection

ancl the minimality properties hold trivially for the basis case.

Induction Hypothesis. Assume that the theorem holds for binary trees of

level k,

Induction Step. Consider a binary tree of level k + 1. Without loss of

generality, assume that SI is the root of this tree. Now consider the three

subtrees of this tree: the subtree consisting of the root, the left subtree, and

the right subtree. It can be verified from the tree quorum algorithm in

Figure 1 that any tree quorum chosen in this tree will be from one of the

following classes:

(1) { s,} U {members from the quorum set of the left subtree},

(2) { SI} U {members from the quorum set of the right subtree], or

(3) {members from the quorum set of the left subtree} U {members from the

quorum set of the right subtree}.

It can be easily verified that the members of class 1 will have a nonempty

intersection with classes 1, 2, and 3. Also, members of class 1 are not

contained in classes 2 and 3. Similar conditions hold for classes 2 and 3.

Thus, the quorum set constructed for a tree of level k + 1 is a coterie.

Hence, by induction, tree quorums constructed for a network organized as a

binary tree of arbitrary level will satisfy the intersection and the minimality

prc)perties. ❑

3.3 Discussion

In the best case, only [log nl sites are necessary to form a tree quorum. This

case is achieved both when there are no failures, and for certain patterns of

failures, e.g., when a site at the level above the leaves fails, a quorum of size

(log n] is still possible. For example, in Figure 2 if site 2 is inaccessible then

a qporum of size [log nl can still be formed with {1,4, 5}. This means that in

a relatively failure-free environment, the tree quorum algorithm requires

fewer messages to form a quorum than any of the previous fault-tolerant

protocols [12, 25, 7]. Furthermore, the algorithm can also tolerate the failure

of up to n – [log nl specific sites, and still form a tree quorum. In the above

example, quorum {1, 4,5} can be formed if in addition to site 2, sites 3, 6, and

7 have failed.
In the worst case, a majority of sites is necessary for constructing a tree

quorum, which is the same as the number of sites required by the quorum

algorithm in all cases. This is proved in the following theorem.

THEOREM 2. The worst-case tree quorum size is f (n + 1)/21.

ll%ooF. The proof is by induction on the levels of binary trees.

Basis. Consider a binary tree of level O, i.e., a tree consisting of a single

site. The size of the quorum is one and therefore the theorem holds.

ACM Transactions on Computer Systems, Vol 9, No 1, February 1991

8. Divyakant Agrawal and Amr El Abbad!

Induction Hypothesis. Assume that the theorem holds for binary trees of
level k, i.e., the worst case quorum size is 2 k since there are 2 k+ 1 – 1 sites in

such a tree.

Induction Step. Consider a binary tree of level k + 1.This tree consists of a

root and left and right subtrees each of level k. The largest quorum in such a

tree will occur when the root is down and the largest quorums are chosen

from the left and right subtrees. From the induction hypothesis, the worst

case size of the quorum is 2 k + 2 k or 2 ‘h 1, which is equal to [(n + 1)/2].

Note that n = 2k+2 – 1. ❑

Note that the algorithm may not be able to form a tree quorum in some

cases after the failure of (log n] sites, e.g., if sites 1, 2, and 4 are inaccessible

in Figure 2, the set of sites {3, 5, 6, 7}, which contains a majority of sites, do

not form a tree quorum. Those sites would form a quorum in the majority

quorum algorithm. However, in the complementary situation when sites 3, 5,

6, and 7 are inaccessible, our approach can form a quorum, the set {1,2, 4},

while the majority quorum algorithm would not succeed.

The tree quorum algorithm exhibits the useful property of graceful degra-

dation [13], which is desirable in distributed fault-tolerant systems. In a

failure-free environment, the algorithm guarantees low communication costs:

only [log nl sites are necessary to form a quorum. As failures occur, and

increase, the cost of forming a quorum may increase, and the probability of

forming a quorum decreases. For example in a tree of level k, if a failure is

detected at level i >0 while constructing a quorum, the quorum size in-

creases from k. + 1 to (k – i) + 2 i. This is because when a node fails instead

of one path from the node two paths starting from the node’s children must

be included in the quorum. Thus, the penalty for failures closer to the root is

more severe than the failures in the vicinity of the leaves. Note however,

that the tree quorum algorithm always guarantees the formation of a quo-

rum as long as the number of failures is less than (log n] sites, and may still

allow some quorums to be formed even after the failure of n – flog nl sites.

4. ANALYSIS OF THE TREE QUORUM ALGORITHM

In this section, we analyze two important aspects of the tree quorum algo-

rithm: the cost and availability of forming tree quorums. We first compute

the expected number of sites that are needed to obtain a tree quorum and a

majority quorum. We then compute the probability of acquiring a tree
quorum when there are n sites in the system and compare the availabilities

of forming a tree quorum and a majority quorum. Finally, we compare the
tree quorum availability with other simple quorum based approaches.

4.1 Message Cost

The number of messages needed to construct a quorum is directly propor-

tional to the size of the quorums. In the majority quorum algorithm, the

quorum size corresponding to a majority is

[1

n+l

2“

ACM TransactIons on Computer Systems. Vol 9, No 1, February 1991.

An Efficient and Fault-Tolerant Solution for Distributed Mutual Exclusion . 9

E

;:E “
o

.: MajomtyQuorums
:

,,

e .: Z’reeQuOrums(j = 0.0)
c 112

t
O: TreeQuorums(j = 0.5)

e O: TreeQuorums(j = 0.75) ‘“

d% @: T-QuorumW = 1.0) ..
,.

s 80
,..

i
..

..
z ...

e .,
64. d“

0
f 48.

q
u 32. 6 . .0
c!

.’’”

r ~, . . . ,, ““

u
m 16.

s ~“;,:.. ;,:: ‘;: ;:’”.:. “.:::’:: ::: “:...:::;

>
32 64 SK 128 160 192 224

Number of sites in the network

Fig. 3. Expected message cost of the two algorithms

In the case of the tree quorum algorithm, the size of the tree quorums vary

from [log nl to ~(n + 1)/21. The message cost can be computed by using a

recurrence relation that calculates the cost of obtaining a quorum in a tree of

level 1 + 1 in terms of subtrees of level 1. Unlike the majority quorum

algorithm where all quorums are of equal size, the tree quorums are of

varying sizes. We introduce a parameter f that indicates the fraction of

quorums that include the root of a tree of level 1 + 1. Hence, 1 – f is the

fraction of quorums that do not include the root. Let Cl be the average cost of

forming a quorum in a tree of level 1. Thus, the cost Cl+ ~ for a tree of level

l+lis

c [+, = f(c, + 1) + (1 - f)(2cJ.

Tlhe first term arises because the root is included in f cluorums while the

second term occurs because there are 1 – f quorums with size 2 Cl. Note that

Co is equal to one.

Figure 3 illustrates the cost of obtaining a quorum in the two algorithms

for varying sizes of the network. In the case of the tree quorum algorithm, we

illustrate four curves for different values of f. The extreme values of f being

O and 1 illustrate the upper and lower bounds of the message cost in this

algorithm. We first note that in the worst case, when f = O, the tree quorum

algorithm has the same message cost as the majority quorum algorithm. The

case with f = O corresponds to the situation where a larger quorum is always

chosen instead of the smaller one. In particular, this will occur when the root
of a given subtree is not available. In most distributed systems the probabil-

ity of a site being available will most likely be greater than 50 percent. In

ACM Transactions on Computer Systems, Vol. 9, No. 1, February 1991.

10 . Dlvyakant Agrawal and Amr El Abbadl

that case, the curve corresponding to f = 0.5 represents a realistic upper

bound on the cost of forming a tree quorum. The region limited by the curves

f = 1 and f = 0.5 is significantly cost efficient when compared to the majority

quorum algorithm. In particular, in a network of 127 sites, the expected size

of the quorum in the majority quorum algorithm is 64, whereas the tree

quorum algorithm will have size 7 in the best case and 22 when f = 0.5. If

we increase the bias towards smaller quorums, for example f = 0.75, the

message cost becomes approximately logarithmic.

4.2 Availability Analyws

Let p be the probability that a site is available at any time. Furthermore,

assume that the number of sites in the system is n = 2 k + 1 for some

nonnegative integer k. We compute the probability of obtaining quorums in

the majority quorum algorithm [7, 251 and the tree quorum algorithm. The

availability of an algorithm is defined as the probability of forming a quorum

successfully in that algorithm.

In the case of the majority quorum algorithm, a majority of sites can form a

quorum only if a majority or more sites are available. Thus the availability of

this algorithm is

Availability (majority) = Probability(k + 1 sites are up)

+ . . .

+ Probability k + z sites are up)
+.. .

+ Probability(2 k + 1 sites are up).

The above probabilities are the binomial terms, i.e.,

()_ 2k+l—
k+l ()P’+’(I +’+ . . + 2::: ~k+(~ -P)k-z+’ + . . . +P,k+,,

Figure 4 illustrates the availability of the majority quorum algorithm for

systems with different configurations.

The availability of the tree quorum algorithm can be computed by formu-

lating a recurrence relation. The recurrence relation is in terms of the

availabilities of forming quorums in the subtrees of a binary tree. Let A ~ be

the availability of forming a quorum in a tree of level 1. Thus, the availabil-
ity A ~+ ~ of forming a quorum in a tree of level 1 + 1 is given as

Probability (root is up) * Availability (Left subtree)
* Unavailabllity(Right subtree)

+ Probability (root is up) * Unavailability (Left subtree)
* Availability (Right subtree)

+ Probability (root is up) * Availability (Left subtree)
x Availability (Right subtree)

+ Probability (root is down) * Availability (Left subtree)
* Availability (Right subtree).

Using p as the probability of the root being up, A ~ as the availability of a

subtree of level 1, and 1 – A ~ as the unavailability of a subtree of level 1, we

ACM TransactIons on Computer Systems, Vol 9, No 1, February 1991

An Efficient and Fault-Tolerant Solutlon for Distributed Mutual Excluslon . 11

t[Avdabhty of k eJt-
*.

.
.

, 09 .
\
, .

08
1

‘
a #
b 07

1 0.
t
) 05
“
f 04

; 03

1, 02 #
m .

IJ1 s
.

. .
01 02 03 04 05 Oh U- 08 09

Probab,Ltythat a ,,t. ,. OPeratmmi

.
.

‘

‘

,

●

i <,.ulabdm d Htwn s,te, . *8-**
. .

, 0,0 ,.

0
, ,1S(1 ,
)
a o
b U-O

.
1 *
, u,>0

: ~50 *
>
r 040 ;
q. ,370
0 4

‘J 020 b
. 6

010 ad
m,

4!.
u1O 020 030 040 050 0~ U70 080 0’30

Pmb.bihy that as,teMop.trabmd

Pmb.b,l,ty that a ,,tc mOPC1.t40d

+1
-; &----

.%vdabhtyof thrtw.e mtes “.
AOw
“ .0
.3
) 080
1 P
a
b U-O *

4
: 06U
t
y 050 *

I[I
d

30 b

o
20

101-_LLOIIJ0.!003$040 050 Ofa 070 owl 0!30

Pmbab,!syttmt a mte,s cpratmrd

Fig. 4. Availability of majority and tree quorums

can write the above expression as

A/+l =pAl(l – Al) +P(l – Al)At +PA; + (~ –P) A;,

i.e.,

A /+1 = 2pAl+ (1 – 2p) A;.

Note that the availability in a tree with a single site is AO = p. The above

recurrence involves a nonlinear term and therefore we illustrate the avail-

abilities of logical trees with various configurations in Figure 4. The avail-

aloility graphs in Figure 4 show that, in general, the algorithms attain

ACM Transactions on Computer Systems, Vol 9, No 1, February 1991

12 . Divyakant Agrawal and Amr El Abbadl

comparable levels of availability. The availability of the tree quorum algo-

rithm becomes inferior to the majority quorum algorithm for the values of p

approximately in the range (O.5, 0. 75). However, these values correspond to a

network where a site is down 50 to 25 percent of the time. For p > 0.75, the

availabilities attained by the two algorithms become indistinguishable.

Figures 3 and 4 illustrate that the tree quorum algorithm can achieve

comparable degree of availability as the majority quorum algorithm but at

substantially lower costs. In particular, in systems with site availability

greater than 0.9, the tree quorum algorithm provides the same availability

as the majority quorum algorithm at approximately logarithmic costs. Thus,

the tree quorum algorithm significantly reduces the cost of forming a quorum

in a large network without sacrificing availability.

4.3 Comparison with Other Approaches

In the previous subsections, we compared the tree quorum algorithm primar-

ily with the majority quorum algorithm [7, 25]. In this section, we compare

the availability of the tree quorum algorithm with some other simple and

straightforward approaches for constructing quorums.

We consider an approach in which a set of sites are designated as distin-

guished sites. We can choose 2 f(n) + 1 distinguished sites among n sites

where the choice of f(n) is based on several factors such as communication

costs and availability. We will consider two specific instances of this ap-

proach to construct quorums in the system. The first approach provides

constant levels of availability and communication costs, which are indepen-

dent of the number of sites in the system. In this approach, 2 c + 1 sites are

chosen as distinguished sites among n sites such that any set of c + 1

distinguished sites form a quorum. For example, if c is three then seven sites

are chosen as the distinguished sites and any site that needs to enter critical

section must access at least four of the seven distinguished sites. Note that if

c = O the above approach reduces to a primary site approach. Another

variation we consider is when f(n) is ~log n] and 2 ~log n] + 1 sites are

chosen as distinguished and any [log n 1 + 1 distinguished sites form a

quorum. This approach would guarantee communication costs identical to

the best case of the tree quorum algorithm. However, the availability in the

two approaches are different.

Figure 5 illustrates the availability of the tree quorum algorithm with

respect to the two approaches discussed above. We refer to them as the

2 c + 1 and 2 (log n 1 + 1 protocols, Note that c is chosen as three. The four

graphs illustrate the availability in each of these algorithms for different site

availabilities. In general, the availability of the tree quorum algorithm is

higher for a large number of sites. However, the difference in availabilities

becomes less significant between the tree quorum algorithm and the 2 ~log n]

+ 1 protocol when the site availability is high. Thus, the tree quorum

algorithm will be useful for large networks and will provide a scalable

solution since it has low communication overhead. On the other hand, the

ACM TransactIons on Computer Systems, Vol 9, No 1, February 1991

An Efficient and Fault-Tolerant Solution for Distributed Mutual Exclusion . 13

A

093
A
“
a 091

1
. 089
b

1 087

; 085

; 083 8

q 081
u
o e..
r,, u 7s
In
, .

077

.

. 0

u

e

. . ●

I
~16 32 48 64 80 96 112

L

099
A
,
a u98

1
. 097
b

I 0%

; 095

: 094

q 093
u
o
: 032
m
s

u91

Numberof S,1,,

.

9 0

0

* e

t
Y

f
.q

u
o
r
u
m
,

k

093

0’38

097

0!36

095

091

093

092

P

.-e

6

Nmber of S,tes

e * e

Eg 0’11I
163248 S480 96 112 16 32 48 64 80 96 112

Numberof S,tcs Numb+,of S>ta

Fig. 5 Comparison with simple algorithms.

high availabilities attained by the simple algorithms demonstrate that they

may be good candidates for certain applications. Note, however, that the

choice of distinguished sites becomes crucial in attaining high levels of

availability especially when network partitions are considered. The tree

qucrum algorithm requires no such choice.

5. .APPLICATIONS

In this section, we start by describing how tree quorums can be used to

achieve mutually exclusive access to a resource in a distributed system. We

ACM TransactIons on Computer Systems, Vol 9, No 1, February 1991

14 . Divyakant Agrawal and Amr El Abbadi

then use tree quorums for other applications that need distributed mutual

exclusion: replicated data management and atomic commitment in dis-

tributed databases.

5.1 Mutual Exclusion

In this subsection, we describe how a process can acquire mutually exclusive

access to a resource. Our approach is similar to Maekawa [121 and Sanders

[19] and is free from deadlocks and starvation. A process is allowed to access

the resource only when executing in a critical section. Without loss of

generality, we assume that there is only one process per site. As in the

standard model for distributed mutual exclusion protocols, we assume first-in

first-out message delivery between any pair of processes. To enter its critical

section, a process at a site s, must send request messages, Req, to a quorum

of sites, which is determined using the tree quorum algorithm. Each Req

message is timestamped with a unique local timestamp (each site has a

logical clock [10]). Each site maintains a request queue, where Req messages

are ordered in timestamp order. When a Req message is at the head of the

queue, the site sends a reply message, Reply, to the requesting site. A process

requesting to enter its critical section waits until it receives Reply messages

from a set of sites that form a tree quorum before entering its critical section.

Once a process exits from its critical section, it sends relinquish messages,

Relinq, to all sites in the quorum, so that they may remove the corresponding

Req message from the head of the queue.

Whenever a new request arrives with a timestamp earlier than the request

at the head of the queue, an Inquire message is sent to the process whose

request was previously at the head of the queue and waits for either a Yield

or a Relin q message. If a site r receives an Inquire message, it sends back a

Yield message to the inquiring site if r has not yet collected enough replies

from its quorum. If r had actually acquired all of its necessary replies to

access the resource, then it simply ignores the inquire message, and proceeds

normally, i.e., by accessing the resource and then sending a Relin q message.

When a site receives a Yield message, it puts the pending request (on behalf

of whom the Inquire message was sent) at the head of the queue and sends

Reply message to the requestor. The proof of correctness and freedom from
deadlocks and starvation follows from Maekawa [12] and Sanders [19].

5.2 Tree Quorums and Replication

We consider a distributed database, which is a collection of objects stored at
different sites in a network. Each object in the database may be replicated

and stored at several sites in the network. With each object x we associate a

replication tree denoted l“ree[x], which could be an extension of the name

directory of objects. It lists the sites where copies of x are resident and stores

the logical tree organization of these copies. We assume that each copy has

associated with it a version number which is initialized to zero. In order to

perform a read operation on x, the transaction initiating the operation must

apply the algorithm of Figure 1 to l“ree[x], and obtain a read quorum. The

ACM TransactIons on Computer Systems, Vol 9, No 1, February 1991

An Efficient and Fault-Tolerant Solubon for Distributed Mutual Exclusion . 15

cop,y read is the one which is associated with the highest version number.

Write operations are carried out similarly and all copies in the tree quorum

are updated with the new value and a version number greater than any

previous version number in the quorum. The requirement that read and

write operations overlap at least at one copy of x is guaranteed by the

intersection property of the tree quorum algorithm. A further discussion of

using logical structures to organize replicated data is presented by Agrawal

and El Abbadi [1, 2].

5.3 Tree Quorums and The Commit Protocol

In distributed databases, atomic commitment is necessary to ensure consis-

tent and fault-tolerant termination of distributed transactions. The two phase

commit [8] and three phase commit [21] protocols are used to solve the atomic

commitment problem in distributed databases. Blocking occurs when a site

participating in the commitment of a transaction cannot terminate (commit

or abort) the transaction due to failures. The three phase commit protocol

was designed to overcome the problem of blocking, which is inherent in the

two phase commit protocol when site failures occur. However, the three

phase commit protocol may still block if failures occur that lead to network

partitions. A termination protocol, which uses quorums, is executed to consis-

tently terminate a transaction across partitions. During the execution of the

commit protocol, sites participating in a transaction may be in one of the

following four states: commit, abort, committable and abortable. After a

partitioning failure, Skeen [2’2] proposes the execution of a termination

protocol, which chooses a coordinator to determine the state of all partici-

pants in the partition. If there is a site with a committed (aborted) state, or a

majority of sites with committable (abortable) states, the transaction is

committed (aborted) in that partition. Otherwise, the transaction may still

remain blocked. We now apply the tree quorum approach to the problem of

committing such transactions. We assume that initially all participants of a

transaction are logically ordered in a tree structure (note that this might be

already the case for nested transactions [15, 11]). To commit, transactions

execute the three phase commit protocol, and if a partitioning failure occurs a

termination protocol is executed. The termination protocol requests the state

of sites in a tree quorum instead of a majority of sites. As presented by Skeen

[22], if a committed (aborted) state, or a tree quorum of committable (aborta-

ble) states is collected, the transaction can be committed (aborted), otherwise

it is blocked. Thus, the termination protocol may terminate a transaction

with as few as flog rzl sites when tree quorums are used.

6. EXTENSIONS TO THE BINARY TREE QUORUM ALGORITHM

We now generalize the tree structure from binary trees to trees where each

node has degree d. The algorithm is extended in a straightforward way. Any

set of sites, which contains a path from the root to a leaf forms a tree quorum.
Furthermore, whenever a node is inaccessible, the set must contain paths

starting from all d children to the leaves. This generalization reduces the

ACM TransactIons on Computer Systems, Vol 9, No 1, February 1991

16 . Divyakant Agrawal and Amr El Abbadl

size of a tree quorum in the best case to (log ~ nl, and hence may tolerate the

failure of up to n – (log ~ nl sites. However, in the worst case, as many as

~[(d - l)n + 1]/dl sites may be necessary to form a quorum,
If a bound is known on the number of failures in the system then we can

derive a logical tree structure that will always guarantee the successful

formation of a quorum. More specifically, if the maximum number of possible

failures is t,then the tree must be of level t. Any tree of level fewer than t

will be unable to provide a quorum if all sites in a path from the root to a leaf

have failed. The degree d of such a tree is computed from the total number of

sites n in the network and t by using the following expression:

dt+l _ ~

Hd–l
==n

Such an approach guarantees the formation of a quorum as long as there are

less than t failures. However, as was described in the previous section, there

are cases where a quorum can be formed in spite of more than t failures. The

best case quorum size is t + 1 in the above tree while the worst case quorum

size occurs when all t failures are near the root of the tree. Let t failures be

such that a complete subtree starting from the root is of level 1< t is

inaccessible, where 1 is the smallest integer such that t s (dz+ 1 – I)/(d – 1).

The size of the quorum in this case is d~(t – 1 + 1).The worst case quorum

size is illustrated in Figure 6.

An optimization to the algorithm of Figure 1 is that the site initiating the

request to form a tree quorum be always included in the final set. This can

be achieved by ensuring that whenever there is a choice of a subtree, pick the

one that contains the requesting site. If none of the subtrees contain the

requesting site then the choice should be made randomly. The random choice

helps in distributing the load evenly in the network. Another extension we

have made is that the trees are not required to be complete. A site in the tree

organization can have arbitrary number of children. Tree quorums can be

formed for arbitrary trees as long as a failed site is substituted by all possible

paths emanating from all children of the failed site. Figure 7 combines these

extensions to form a quorum on a tree with degree greater than two. Note

that for each node in the tree there is a field Degree that indicates the

number of children of that node. Thus, each failed node is substituted by

Degree number of paths starting from the children of the failed node. The

proof of the intersection property for the quorums generated by the algorithm
in Figure 7 can be easily established by extending Theorem 1 to arbitrary

trees. Note, however, the minimality property may not hold. However, this

property is needed only for reducing message costs but is not required for
correctness. The minimality property is violated only when a node with only

one child fails. This property could be enforced by additionally requiring the

algorithm to terminate with an error condition when a node with a single

child fails.

The algorithms described above do not require that the trees be complete.

However, for the purpose of analysis we made the assumption that the trees

ACM l’ransact,ons on Computer Systems, Vol 9, No 1, February 1991

An Efficient and Fault-Tolerant Solution for Distributed Mutual Exclusion 17

t

level t

f

Fig. 6. A worst-case quorum in

(d /+1 – I)/(d – 1).

L-J
d’ subtrees

a tree of level t and

I
level 1

level t -1

I
degree d; 1 M computed from t s

FUNCTION GetQuorum(Tree: TREE; Requester : SITE) : Quorum Set;

VAR

ChildQuorum : ARRAY[l.. MaxDegree] OF QuorumSet;

BEGIN

IF Empty (Tree) THEN

RETURN({ });

ELSE IF Grantspermzsszon(Tree T NODE) THEN

Pick Z such that either:
o Requester is in the subtree rooted at Tree T Child[11, or

e I is a random number in [1.. Tree t Degree];

RETURN({ Tree ? Node} U GetQuorum(Tree T’ Chzld[1], Requester));

ELSE

V i e [1., Tree T Degree]: ChzkiQuorum[i] + GetQuorum(Tree t Child[z], Requesfor);

IF (3 i e [1.. Tree ? Degree]: ChzklQuorum[Z] = O) THEN

(* Unsuccessful in establishing a quorum*)

EXIT(error);

ELSE

RETURN(U~&f t “g’” ChildQuorum[z]);

END; (*IF *)
END; (*IF *)

END GetQuorum;

Fig 7. The algorithm for constructing a quorum on an arbitrary tree.

are complete, since it simplifies the analysis significantly. If the tree under

consideration is incomplete, then the above analysis provides appropriate

bounds. A side effect of this observation is that our algorithm can use any

spanning tree [24] in a network. A spanning tree with a minimum radius (or

ACM Transactions on Computer Systems, Vol 9, No 1, February 1991

18 . Dwyakant Agrawal and Amr El Abbadl

a minimum level) is most appropriate for our algorithm and will result in

minimum sized quorums.

7. CONCLUSION

In this paper, we have proposed a simple and efficient algorithm for achiev-

ing mutual exclusion by introducing tree quorums. The algorithm for con-

structing tree quorums is novel in its use of a hierarchical structure of the

network. This hierarchical structure is a logical organization of the network,

and it does not imply that the underlying physical connections in the

network actually form a tree. In most networks there is already an informal

hierarchy, which is maintained for administrative purposes. For example, a

departmental network in a university will most probably be organized in

terms of fileservers, instructional workstations, faculty workstations, re -

search workstations, a node that serves as the gateway to the external world,

and so on. One of the maxims that is employed to construct such an informal

hierarchy is to use the most reliable site as the root and the least reliable

sites as the leaves. Thus, reliability generally increases from leaves to the

root in the tree. Our approach requires that this informal hierarchy be made

explicit, and should be used for distributed applications. Other distributed

applications can also benefit from this organization, and thus will distribute

the overhead of maintaining a logical control hierarchy in a network.

In a relatively failure-free environment the tree quorum algorithm achieves

distributed mutual exclusion by communicating with as few as [log n 1 sites.

This is not as good as the primary site approach, but is significantly better

than previously proposed fault-tolerant algorithms, e.g., the majority quorum

algorithm requires n/2 and Maekawa’s protocol requires v% sites. Note that

in the primary site approach there is a danger of the primary site becoming a

performance bottleneck. In contrast, this danger can be avoided by making

the tree quorum algorithm adaptive. For example, if a root of the hierarchy

becomes overloaded, it can ignore requests for mutual exclusion, and yet tree

quorums can still be formed by traversing down the network hierarchy.

Furthermore, the quorums never exceed the majority of sites in the network.

We now briefly examine the resiliency and fault-tolerance of the tree

quorum algorithm. The majority quorum algorithm [7, 25] is the only scheme

that is fault-tolerant to any n/2 site failures. Maekawa’s solution [12] can

withstand up to n – dn site failures, but only in specific cases. In particu-

lar, v n site failures may make it impossible to achieve mutual exclusion.

Another problem with Maekawa’s solution is that only one set is associated
with each site. Thus, if any site in a set is not available, the site correspond-

ing to that set cannot form a quorum. In our solution a site may be able to

obtain mutual exclusion even when there are n – (log n] site failures. On the

other hand, there may be situations when flog n] site failures make it

impossible to construct a quorum. However, unlike Maekawa’s solution, the

tree quorum algorithm provides several alternative sets to each site for

constructing quorums. Hence, the unavailability of one set on account of

certain failures will not prohibit a site from achieving mutual exclusion.

ACM TransactIons on Computer Systems, Vol 9, No. 1, February 1991

An Efficient and Fault-Tolerant Solution for Distributed Mutual Exclusion . 19

Finally, tree quorums have the property of graceful degradation [131. In a

failure-free environment the size of a tree quorum is minimal, i.e., (log n].

On the other hand, as failures occur the size increases to the maximum of

l(n + 1)/21. Thus, our algorithm permits operations to be executed at a low
cost, and the cost increases gradually with failures. In particular, our analy-

sis demonstrates that in systems with high site availability, the tree quorum

algorithm provides a comparable degree of availability to the majority quo-

rum algorithm at logarithmic costs.

ACKNOWLEDGMENT

We would like to thank Rajiv Gupta for helping with the availability

analysis of the tree quorums. We would also like to thank the anonymous

referees for their comments and criticisms, which helped in improving the

presentation of the paper. The analysis in Section 4.3 resulted from the

comments of one of the referees.

REFERENCES

1. AGRAWAL, D., AND EL ABBADI, A. Exploiting logical structures of replicated databases. Inf

Process. Lett. 33, 5 (Jan. 1990), 255-260

2. AGRAWAL, D., AND EL ABBADI, A The tree quorum protocol: An efficient approach for

managing replicated data. In Proceedings of Szxteen th In ternatzonal Con ference on Very

Large Data Bases (Aug. 1990), 243-254.
3 ALSBERG, P. A., AND DAY, J. D. A principle for resilient sharing of distributed resources, In

Proceedings of the Second International Conference on Software Engmeermg (Oct. 1976),
562-570.

4. BERNABEU-AUBLN, J. M., AND AHAMAD, M. Applying a path-compression technique to

obtain an efficient distributed mutual exclusion algorithm. In Proceedings of the Thzrd

International Workshop on Distributed Algorithms (Sept. 1989), 33-44.

5. DAVIDSON, S. B , GARCIA-M• LINA, H , AND SKEER, D. Consistency m partitioned networks.
ACM Comput. Sure,. 17, 3 (Sept. 1985), 341-370.

6. GARCIA-M• LIN~, H., AND BARBARA, D. How to assign votes in a distributed system J. ACM

32, 4 (Oct. 1985), 841-860.

7 GIFFORD, D K. Weighted voting for replicated data. In proceedings of the Seuenth ACM

Symposzzun on Operattng Systems Prmczples (Dec. 1979), 150-159.

8 GRAY, J. N Notes on database systems. In Operating Systems: An Advanced Course, vol.

60 of I,ecture Notes in Computer Science. R. Bayer, R. M. Graham, and G. Seegmuller, Eds.

Springer-Verlag, New York, 1978, 393-481

9. HELARY, J. M., PLOUZEAU, N., AND RAYNAL, M, A distributed algorithm for mutual exclu-

sion in an arbitrary network. Computer J. 31, 4 (1988), 289-295.

10. LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Commun.

ACM21, 7 (July 1978), 558-565.

11 LYNCH, N A., AND MERRrrT, M Introduction to the theory of nested transactions. Tech
Rep MIT-LCS-TR-367, MIT, Cambridge, Mass , 1986

12. MAEKAWA, M A v; algorithm for mutual exclusion in decentralized systems ACM
Trans. Comput. Syst. 3, 2 (May 1985), 145-159.

13 MAHANEY, S R., AND SCHNEIDEIt, F. B. Inexact agreement: Accuracy, precision, and
graceful degradation. In Proceedings of the Fourth ACM Symposwm on Prmclples of

Dwtr~butecl Computmg (Aug. 1985), 237-249.
14 MISRA, J Detecting termination of distributed computations using markers. In Proceed-

ings of the Second ACM Symposzum on Prmclples of Distributed Computing (Aug 1983),

290-294.

ACM TransactIons on Computer Systems, Vol. 9, No 1, February 1991.

20 . Divyakant Agrawal and Amr El Abbadl

15 MOSS, J E B Nested Transactions: An Approach to Relmble Dzstrlbuted Computmg MIT

Press, Cambridge, Mass,, 1985

16. NAIMI, M , AND TREH~L, M How to detect a fadure and regenerate the token m the log n
distmbuted algorithm for mutual excluslon In Proceedings of the Second International

Workshop on D1strlbuted Algorithms, Lecture Notes Ln Computer Sczence 312, Springer-
Verlag, New York, 1987, 155-166

17. RA~MOND, K A tree-based algorithm for distributed mutual excluslon ACM Trans Com-

put. S.vst 7, 1 (Feb 1989), 61-77

18 RIC.ART, G., AND A~RA.WALA, A K An optimal algorlthm for mutual excluslon m computer
networks Commun. ACM 24, 1 (Jan. 1981), 9-17.

19 SANDERS, B A The reformation structure of dmtributed mutual exclusion algorithms
ACM Trans Comput. Syst. 5 (Aug 1987), 284-299

20. SCHN~IDER, F B Synchronization in distributed programs. ACM Trans. Progrom Lan-

guages Syst. 4, 2 (April 1982), 125-148
21 SK~hN, D Non-blocking commit protocols In Proceedings of the ACM SIGMOD Conference

on Management of Data (June 1982), 133-147
22 S~~EN, D A quorum based commit protocol In Proceedings of the 6th Berkelej Workshop

on Dzstrzbuted Data Management and Computer Networks (Feb 1982), 69–80
23 SUZUKI, I , AI-JD KAs~MI, T. A distributed mutual exclusion algorlthm ACM Trans Com -

pUt. Syst. 3, 4 (NOV 1985), 344-349
24 T.AN~NBAUM, A S Computer Netuorks 2d ed. Prentice Hall, Englewood Chffs, N J , 1988
25 THOMAS,, R H A majority consensus approach to concurrency control for multlple copy

databases, ACM Trans. Database Syst 4, 2 (June 1979), 180-209

26 \’AN DE SNEPSCHEUT, J. L Fair mutual excluslon on a graph of processes Dzstrzbut

Comput 2 (1987), 113-115

Received February 1990; rewsed January 1991; accepted January 1991

ACM TransactIons on Computer Systems, Vol 9, No 1, February 1991

