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Introduction

Object stored on a single server

What if the server fails ?

Request

Reply X

Introduction

Replicate the object

• Availability

• Performance
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Introduction

Replicate the object
• Availability

• Performance

But what about consistency
(failures, msg reordering) ?
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Quorum Systems

Client only needs a quorum of

servers to access the object

Example of a Quorum

Request

Reply

Quorum Systems

Client only needs a quorum of
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Quorum Systems

Definition

Given a set of servers

A quorum system              is a set of subsets of

such that

Each             is called a quorum

2121
:, QQQQ I

P
2

},,{ 1 n
PP K=

Q



4

Coterie

Definition

Given a set of servers

A coterie              is a quorum system such that

Coteries are quorums of minimal size
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Example Quorum Systems

Singleton

Majority

                  tolerates              faulty servers

Weighted Majority

                  Every server    is assigned       votes
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Example Quorum Systems

Tree Quorum

tolerates                             (*) faulty
servers

Grid

 A         x          grid of       servers

Quorum size
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Voting and Quorums

Weighted Majority

             Every server     is assigned       votes

Majority Voting

       Let  V  be the total number of votes

Define,  r and w, the quorums required for read and write ops respectively

2w > V

w + r > n
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Voting and Quorums

Vote assignments and quorums are not equivalent

Quorum systems are strictly more general than voting
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Measures on Quorum Systems

Load

    Probability of accessing the busiest server in the best

case (an optimal strategy of accessing the servers)

Resilience

    Maximum number of faulty servers that the quorum
system can tolerate

Failure Probability

    Probability that at least one server of every quorum fails

Load

Access strategy     : probability distribution on elements of

The load induced by strategy     on a server

The load induced by     on

The system load (or load) on a quorum system       is
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How do quorums work ?

A quorum system implements a shared

read-write register in an asynchronous

point-to-point network

Linearizability

Each method call on an object should appear to

• “take effect”

• Instantaneously

• Between invocation and response events

Any such concurrent object is linearizable

Two operations that

• Non-Overlap: must be ordered in an order consistent

with their real-time precedence

• Overlap: can be ordered either way

Sequential consistency

Two operations that

• Non-Overlap: must be ordered in that order

(need not be their real-time precedence)

• Overlap: can be ordered either way

Linearizability is stronger

time

Sequentially consistent but not linearizable

q.enq(x)q.enq(x)

q.enq(y)q.enq(y) q.deq(y)q.deq(y)

time

(6)

q.enq(y)q.enq(y) q.deq(y)q.deq(y) q.enq(x)q.enq(x)
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Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

linearizable

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

(6)

Serializability

A transaction is a finite sequence of
method calls to a set of shared objects

Serializable if
• transactions appear to execute serially

Strictly serializable if
• order is compatible with real-time

Used in databases

Linearizability: single method, single object

Strict Serializability even stronger

x.read(0)

y.read(0) x.write(1)

y.write(1)

Non-serializable

Transactions: A, B Shared Objects: x, y

Semantics

Safe:
A read not concurrent with any write returns most recently written value

Regular:
Safe + a concurrent read (with a write) obtains either old or new value

Atomic:

Safe + reads and writes behave as if they occur in some definite order

write(0)

read(1)

write(1)

read(0)
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Semantics

Safe:
A read not concurrent with any write returns most recently written value

Regular:
Safe + a concurrent read (with a write) obtains either old or new value

Atomic:

Safe + reads and writes behave as if they occur in some definite order

write(1) write(2)

read(2)

Semantics

Safe:
A read not concurrent with any write returns most recently written value

Regular:
Safe + a concurrent read (with a write) obtains either old or new value

Atomic:

Safe + reads and writes behave as if they occur in some definite order

write(1) write(2)

read(2)

write(3)

read(?)

read(2) 

read(3)

Semantics

Safe:
A read not concurrent with any write returns most recently written value

Regular:
Safe + a concurrent read (with a write) obtains either old or new value

Atomic:

Safe + reads and writes behave as if they occur in some definite order

write(1) write(2)

read(2) read(?)

read(2) 

read(3)

read(?)

read(2) 

read(3)

read(3) 

read(2)

write(3)

Semantics

Safe:
A read not concurrent with any write returns most recently written value

Regular:
Safe + a concurrent read (with a write) obtains either old or new value

Atomic:

Safe + reads and writes behave as if they occur in some definite order

write(1) write(2)

read(2) read(?)

read(2) 

read(3)

read(?)

read(2) 

read(3)

read(3) 

read(2)

write(3)
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Shared Read-Write Register

Replicated Variable  X

Each server stores (v, ts)

v – local copy of X

ts – timestamp

Operations

• Write (V, _)

• Read (X)

x

Shared Read-Write Register

Writer W:  Write (V,   )

• Picks a quorum Q to get ts

•    > max {({ts} from Q) ,prev    }
• Sends (Write, V,    ) operation to

some quorum Q’

• Each server checks ts <   ;sets

X = V; ts =

• W waits for |Q’| acks before

terminating the write

x

Shared Read-Write Register

Writer W:  Write (V,   )

• Picks a quorum Q to get ts

•    > max {({ts} from Q) ,prev    }
• Sends (Write, V,    ) operation to

some quorum Q’

• Each server checks ts <   ;sets

X = V; ts =

• W waits for |Q’| acks before

terminating the write

x

Shared Read-Write Register

Reader W:  Read (X)

• Sends (Read, X) to some
quorum Q to get all (v, ts)

• Selects (v, ts) such that

ts = max {({ts} from Q)}

• Writes (v, ts) to some quorum Q’

x
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Issues

Timestamp ts – break symmetry

• E.g. Node id in lower bits

Writer:     > max {(ts) from Q, prev     }

• Concurrent writes by single/multiple writers

Concurrent reads and writes

• Regular semantics

• Reader: writes to some quorum after reading

Can we do better ?

Minimize quorum size

Reduce communication cost

Graceful degradation

• more msgs only when failures increase

Outline

Motivation

Quorum Systems

Tree Quorums

Probabilistic Quorum Systems

Tree QuorumsTree Quorums
(trade time + storage for communication)(trade time + storage for communication)

Algorithm
• Impose a d-ary tree

logical structure

• Quorum calls

• GrantsPermission (Site s)

• Agrees to be in quorum

• GetQuorum (Root T)

• Initiate a quorum vote

… …

… …



11

Tree QuorumsTree Quorums

Algorithm
• Key Idea: On a failure, the algorithm substitutes for

that node with d-paths i.e. all it’s ‘d’ children.

X

Proof

T

RL
Quorum:

T U L

T U R

L U R

Tree QuorumsTree Quorums

Algorithm
• Impose a d-ary tree

logical structure

• Quorum calls

• GrantsPermission (Site

s)

• Agrees to be in quorum

• GetQuorum(Root T)

• Initiate a quorum vote

… …

… …

GetQuorum(Root T)

Tree QuorumsTree Quorums

Algorithm
• Impose a d-ary tree

logical structure

• Quorum calls

• GrantsPermission (Site

s)

• Agrees to be in quorum

• GetQuorum(Root T)

• Initiate a quorum vote

… …

… …

GetQuorum(Root T)

X
Failure
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Tree QuorumsTree Quorums

Algorithm
• Impose a d-ary tree logical

structure

• Quorum calls

• GrantsPermission (Site s)

• Agrees to be in quorum

• GetQuorum(Root T)

• Initiate a quorum vote

• Quorum: Path starting from

     top to a leaf. Size = nlog

… …

… …

GetQuorum(Root T)

X
Failure

Can we do even better ?

Quorum Q only functions when all |Q| nodes work
• No quorum exists (if all |Q| elements of any Q fail)

Implications:
• large quorum sizes : more reliable.

• Small quorum sizes : increase efficiency, reduce communication

Any strict quorum system with optimal load of

    has fault tolerance of only                [NW98]

tradeoff between low load and fault tolerance
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Probabilistic quorums [MRW97]

Relax Intersection: Quorums may not intersect

Property:

Pairs of quorums chosen according to a
specific access strategy     intersect w.h.p.

A probabilistic quorum system is defined
• w.r.t a consistency guarantee

• access strategy to achieve guarantee
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Example construction [MRW97]
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