
4/12/04

1

4/12/04 1

CS395t: Secret Sharing

Razvan Surdulescu

surdules@cs.utexas.edu

March 10, 2004

4/12/04 2

How to Share a Secret

Adi Shamir, MIT

Communications of the ACM

November 1979, Vol. 22, Nr. 11

4/12/04 3

Motivation

We have a safe that contains a secret

We wish to give n people access to this
safe

Access is granted only if k (or more) of
the n people are present (k <= n)

4/12/04 4

Motivation cont’d

In general, the secret is some data D

We wish to divide D into n pieces (D1,
…, Dn) such that:

Knowledge of k (or more) Di pieces makes
D easily computable

Knowledge of k-1 (or fewer) Di pieces
leaves D completely undetermined

This is a (k, n) threshold scheme

4/12/04

2

4/12/04 5

Applications

Reliability

Protecting a secret key that resides in a single
location is difficult

By splitting the key in n=2k-1 pieces, we can re-

construct it even if half the pieces are lost

Convenience

Use a (3, n) scheme to share the company’s
digital signature among n executives

At least 3 executives must be present to sign

4/12/04 6

Applications cont’d

Threshold schemes are ideal when
mutually suspicious individuals, with
conflicting interests, must cooperate

A sufficiently large majority can take
action

A sufficiently large minority can veto

4/12/04 7

Implementation

Polynomial interpolation
Given k 2D points (x1, y1), …, (xk, yk), with distinct
xi’s, there is only one polynomial q(x) of degree k-
1 such that q(xi) = yi for all i.

Assume the secret data D can be made into a
number

Let q(x) = D + a1x + … + ak-1x
k-1, where ai are

randomly chosen

Let Di = q(i)

Note that q(0) = D

4/12/04 8

Implementation cont’d

Given k (or more) Di values, we can uniquely
determine the coefficients of the polynomial
q(x), and therefore, D

The computations are performed over a field
[0, p)

p is a prime number greater than both D and n

If k-1 (or fewer) Di values are known
For each D’ in [0, p), we can construct one
polynomial q’(x) of degree k-1 with the required
properties, therefore nothing is revealed about the
real value of D

4/12/04

3

4/12/04 9

Implementation cont’d

Efficient interpolation schemes run in O(n
log2n) time

Even naïve O(n2) schemes are generally
sufficiently fast

Large values of D can be broken down into
shorter pieces that are handled separately

Individual Di pieces can be deleted without
affecting the other Di pieces

4/12/04 10

Implementation cont’d

All the Di pieces can be changed at
once without affecting the original D

The Di pieces can be shared differently
based on their importance

The CEO gets 3 pieces

The VPs get 2 pieces

The middle managers get 1 piece

4/12/04 11

Efficient Dispersal of
Information for Security, Load
Balancing, and Fault Tolerance

Michael O. Rabin, Harvard

Journal of the ACM

April 1989, Vol. 36, Nr. 2

4/12/04 12

Information Dispersal

Consider a distributed network

Nodes are sparsely connected (not every
two nodes are connected by a single edge)

A user sends a file F from node A to B via
some path consisting of 1 or more edges

Although the probability of any edge failing is
low, the probability of the path failing can be
high

4/12/04

4

4/12/04 13

Information Dispersal cont’d

In case of failure
Re-transmit the file

Loss of time

Choose k paths i and send the file along each
one simultaneously

Loss of bandwidth

IDA disperses the file F into n pieces
The file can be reconstructed from any m pieces

Each piece is of size |F|/m, and the total amount
of information sent is (n/m) * |F|

4/12/04 14

Information Dispersal cont’d

Space efficiency

We can choose n and m such that (n/m)~1,
therefore the overhead is low

Time efficiency

The splitting and reconstruction algorithms are
efficient (more later)

File pieces can be transmitted in parallel,
which better utilizes network resources

4/12/04 15

IDA Theory

Let F=b1b2…bN be a file, where bi are in
the range [0, B]

We want to disperse pieces of F with
the assumption that no more than k
pieces will be lost in transmission

Choose p such that p > B
If the file consists of bytes, p = 257

All the following computations are in Zp

4/12/04 16

IDA Theory cont’d

Choose n and m

Choose n vectors ai = (ai1, …, aim) in
Zp

m such that every m different vectors
are linearly independent (with high
probability)

F is segmented into sequences of
length m

F = (b1, …, bm),(bm+1, …, b2m),…=S1,S2,…

4/12/04

5

4/12/04 17

IDA Theory cont’d

Let Fi=aiS1,aiS2,…,aiSN/m=ci1,ci2,…,ciN/m

|Fi| = |F|/m

Say we have m pieces of F (F1,…,Fm)

Let A be the m * m matrix whose ith

row is ai

==

1

11

1

1

1

111

 therefore,

mmmm
c

c

A

b

b

c

c

b

b

A MMMM

4/12/04 18

IDA Theory cont’d

The matrix A-1 can be computed once

For sufficiently large F, the cost of this
computation is majorized by the cost of
reconstructing F, even if we use an O(m3)
inversion algorithm

Each character of F requires 2m mod p-
operations

The split and reconstruction involve just inner

products that are readily optimized in hardware

4/12/04 19

IDA Theory cont’d

In order for the matrix A to be invertible, it is
necessary that the vectors ai be linearly
independent

Select ai randomly from Zp
m!

It can be shown that A is nonsingular (invertible)
with probability nearly 1 – (1/p)

The randomness of the ai vectors further prevents
eavesdroppers from reconstructing some of F by
intercepting some of the Fi pieces

4/12/04 20

IDA Theory cont’d

The vector ai can be included as the
header of the piece Fi

The matrix A can be constructed when all
m pieces Fi are received

It is obviously essential that all Fi’s be
encrypted in this case, to prevent against
eavesdropping

4/12/04

6

4/12/04 21

Securing Replicated Data

Two major issues in distributed systems
data security:

Secrecy: cannot observe confidential data

Integrity: cannot corrupt or modify data

Distributed data across multiple
computers compounds the risk of data
theft/corruption and availability

4/12/04 22

Routing for Parallel Computers

PCn = parallel computer with N=2n nodes

Each node x contains a processor Cx and memory
Mx

A node is of the form {0, 1}n

E.g. {0, 1, 0, 1}

The notation x//i means that we flip bit i

{0, 1, 0, 1}//2 = {0, 0, 0, 1}

Each node x is connected by two-way links to
each of the nodes x//i, where 1<=i<=n

4/12/04 23

RPC cont’d

Seminal paper by L. Valiant
Each node x has a packet of information Px that
has to be sent to a destination node (x) (:Cn-
>Cn is a permutation over the nodes of Cn)

Two phase approach:
1. Route packets from x to a random node R(x)

2. Route packets from R(x) to (x)

With probability 1-N-k each packet reaches its
destination in time c log2(N) and the queues at
each node are shorter than d log2(N)

k is a function of c and d

4/12/04 24

RPC using IDA

The packets Px are large
Break them into pieces Pxi, such that
m= 5n/6 pieces suffice to reconstruct Px

Each piece Pxi has a ticket Txi and is
routed independently

The ticket is a vector of integers from 0 to n of
length 2(n+1)

Txi specifies the route from the source node (x)
to the destination node (y)

Pxi x // Txi[0] x // Txi[0] // Txi[1] … y

4/12/04

7

4/12/04 25

RPC using IDA cont’d

At any time 1 <= t <= 2(n+1), there
are pairs (P, T) at any node Cy

For 1 <= j <= n, if T[t] = j, send P to to
y//j

By time t+1, this completes for all nodes
and all links from y to its neighbors

Assume each node has a buffer large
enough to hold 6 packets

4/12/04 26

RPC using IDA cont’d

Simultaneously for all x in Cn
Split Px into Px1, …, Pxn

Randomly choose n pairwise different nodes R1(x),
…, Rn(x)

Select pairwise vertex-disjoint paths D1(x), …,
Dn(x) from x to R1(x), …, Rn(x), each of length at
most n+1

Select vertex-disjoint paths E1(x), …, En(x) R1(x),
…, Rn(x), to (x), each of length at most n+1

Attach appropriate ticket Txi to Pxi for routing
from x to (x) along Di(x), then Ei(x)

4/12/04 27

RPC using IDA cont’d

Observations
m pieces of Px1, …, Pxn suffice to
reconstruct Px

A separate proof will be given to show that
such paths as Di(x) can be constructed

If length(Di(x)) = k < n+1, pad with zeros;
same for length(Ei(x))

If buffers overflow, packets are rejected
and lost

4/12/04 28

RPC using IDA cont’d

Theorem 1: for any given permutation ,

the probability that all packets reach
their destination is 1-(1/N4)

Let Y(y,x,t) = random variable showing
number of pieces Pxi arriving at node y at
time t

Trivial that Y(y,x,t) can only be 0 or 1

Let p(y,x,t) be probability that Y(y,x,t) = 1

4/12/04

8

4/12/04 29

RPC using IDA cont’d

If for some y, Y(y,x,t) >= 5n for all x

There are 5n |Pxi| = 5n |Px| / m = 5n |Px|
/ (5n / 6) = 6 |Px| packets at node y,
which means overflow at node y

We want to know the probability of the
condition above being true

At t = 1, we have n pieces Pxi at each
node, so p(y,x,t) = n for all x

4/12/04 30

RPC using IDA cont’d

The random variables Y(y,x,t) are
pairwise independent

Use Raghavan-Spencer theorem

If Y1, …, Yn are independent Bernoulli
trials with expected sum n, then for >0:

n

i

i

e
nY

+
+

+1)1(
)1(Pr

4/12/04 31

RPC using IDA cont’d

The probability of the buffer overflow
event (Y(y,x,t) >= 5n) is bounded by
 = 4

Using Spencer-Raghavan, the theorem
claim is immediate (for n >= 4)

The probability that all packets reach their
destination (enough IDA pieces reach the
destination to allow for reconstruction of
the original packet) is 1-(1/N4)

4/12/04 32

RPC using IDA cont’d

Theorem 2:
Assume that within a transmission round,
fewer than N/n links fail

We break Px into n pieces such that
m= n/2 pieces suffice for reconstruction

Allow for large enough buffers to make
buffer overflow very unlikely

Then the probability of all packets reaching
their destination is 1 – 2N(4e/n)n/4

4/12/04

9

4/12/04 33

RPC using IDA cont’d

Lemma:

Let Cn = {0, 1}n, S = {y1, …, yn} subset of
Cn, x in Cn – S.

There exist paths D1, …, Dn from x to y1, …,
yn so that for i j, Di and Dj only have

node x in common and length(Di) <= n+1
for 1 <= i <= n

4/12/04 34

How to Make Replicated Data
Secure

Maurice P. Herlihy, J. D. Tygar

August 1987

CMU-CS-87-143

4/12/04 35

Replication

Store long-lived data in multiple places
(repositories)

This provides fault-tolerance

Start with a threshold value t
An adversary cannot determine or corrupt the
original data by inspecting fewer than t
repositories

Analyze costs of
Replication for availability (tolerate t failures)

Replication for security (tolerate t compromised
sites)

4/12/04 36

Costs of replication

Secrecy is cheap
Private and public key encryption schemes

Key distribution is of particular interest,
since storing the key in a volatile medium
exposes it to compromise

Distribute the key directly in the replication
protocol

Integrity is expensive
Communicate with additional sites

4/12/04

10

4/12/04 37

Terminology

Bit security
No processor with randomized polynomial
resources can derive information about any bit in
the ciphertext with certainty greater than _ + ,
for any > 0

This assumes some generally accepted limits of
complexity theory (e.g. taking kth roots modulo pq
cannot be done in randomized polynomial time)

Perfect security
No processor with unlimited resources can derive
a probability distribution of the corresponding
cleartext other than a uniform distribution

4/12/04 38

Quorum Consensus Repl.

Repository
Long term storage for object state

Quorum
A set of repositories whose cooperation
suffices for an operation

Assignment
Associate an operation with a set of
quorums

4/12/04 39

Quorum Consensus Repl.

Replicated file

A collection of timestamped versions

To read: take latest version from read quorum

To write: generate new time-stamp, record new
version at write quorum

An assignment is correct iff each read
quorum has a non-empty intersection with
each write quorum

4/12/04 40

Private Key Secure Quorum
Consensus (SQC)

Protect secrecy against an adversary who can
observe < t repositories

Depends on a bit-secure, probabilistic private key
encryption scheme

Implementation

Front-ends: clients, volatile store

Repositories: connected, long-term store

Dealer: communicate with repositories, has a
source of random bits, volatile store

4/12/04

11

4/12/04 41

Private Key SQC cont’d

Phases

Object initialization: dealer chooses random key K,
uses (t, n) secret sharing to send it to each
repository; all data stored in each repository is
encrypted by K first

Front-end initialization: create K by reading t out
of n secret shares, store K in volatile cache

Operation execution: read data, decrypt, perform
the operation, encrypt, store data

4/12/04 42

Private Key SQC cont’d

An adversary can still glean data

For example, if the log timestamp entries
are not encrypted, they can provide hints

The frequency of read/write operations can
also provide hints

If the threshold is set to the smallest
quorum, there is no availability penalty

4/12/04 43

Examples

Example #1

Read and write operations are equally important

Read and write quorums, as well as the share
threshold require a majority of (n+1)/2

repositories

Registration does not incur an additional penalty,
since it can be done at the first quorum

Up to (n+1)/2 may fail or be compromised by an

adversary

4/12/04 44

Examples cont’d

Example #2
Read is more important than Write

Read quorums to have size 1, write
quorums have size n

Clearly, a threshold of size 1 is not prudent
since it can be spoofed, so the read
threshold is really somewhere between 2
and n

Registration incurs additional penalty

4/12/04

12

4/12/04 45

Public Key SQC

Instead of a single key K, use an encryption
key KE, and a decryption key KD

Similarly, use an encryption threshold tE, and
a decryption threshold tD to divide each key
into pieces

This provides more flexibility in terms of
performance, availability, and security trade-
offs

E.g. If integrity is not a concern, set tE = 1

4/12/04 46

On-the-Fly Reencryption

Used when there is reasonable doubt
that the encryption key has been
compromised

A file is replicated among n repositories,
with r read quorums, w write quorums,
and threshold t

A front-end that knows K, can reencrypt
with K’ if it has access to max(r, w, n-t+1)
repositories

4/12/04 47

Preserving Integrity

So far, we’ve been concerned with
preserving secrecy from snoopers

We now want to preserve integrity
against an active adversary

Detect modifications

Treat the repository as if it had crashed

4/12/04 48

Preserving Integrity cont’d

Encrypt cleartext along with internal
redundancy check

Rabin and Karp checksum

Define an integrity threshold ti
ti <= t (for private SQC) or tE (for public SQC)

Require quorum intersections to have cardinality
at least ti

Ensures that each read quorum includes at least
one uncompromised repository with the file’s
current data

4/12/04

13

4/12/04 49

Preserving Integrity cont’d

The adversary may take a snapshot of the
data and replace it at a later time

This means that old timestamps will also be
replaced, so the latest timestamp is correct

The protocol is optimal within the constraints
of the problem

May seem expensive due to larger minimum
intersection of read and write quorums

Anything weaker is subject to spoofing

4/12/04 50

Preserving Integrity cont’d

Compromise scenario
File replicated at n repositories

Read quorums of size r, write quorums of
size w, read intersect write at x
repositories: r+w-x=n

R, W, X are disjoint sets of repositories of
sizes r-x, w-x, and x

The repositories in X are controlled by an
adversary

4/12/04 51

Preserving Integrity cont’d

Compromise scenario cont’d

Client A writes the value a at some write quorum

Adversary snapshots X

Client B writes the value b at W union X

Adversary overwrites X with previous

Client C reads the (obsolete) value a from R union
X

Since B intersect C = X, C can be spoofed

4/12/04 52

4/12/04

14

4/12/04 53

RPC using IDA cont’d

Lemma follows from following claim

Let Un be the set of unit vectors in Cn

(vectors ei where ei[j] = ij)

Let U subset of Un, H subset Cn, |H| = |U|
= k, H intersect U = empty set

There exist k vertex disjoint paths F1, …, Fk

connecting the nodes in U to the nodes in
H

