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Abstract. Single-writer k-quorum protocols achieve high availability without
incurring the risk of read operations returning arbitrarily stale values: in partic-
ular, they guarantee that, even in the presence of an adversarial scheduler, any
read operation will return the value written by one of the last k writes. In this
paper, we expand our understanding of k-quorums in two directions: first, we
present a single-writer k-quorum protocol that tolerates Byzantine server fail-
ures; second, we extend the single-writer k-quorum protocol to a multi-writer
solution that applies to both the benign and Byzantine cases. For a system with
m writers, we prove a lower bound of

�
(2m − 1)(k − 1) + 1

�
on the staleness

of any multi-writer protocol built over a single-writer k-quorum system and pro-
pose a multi-writer protocol that provides an almost matching staleness bound of�
(2m − 1)(k − 1) + m

�
.

1 Introduction

Quorum systems have been extensively studied, with applications that include mu-
tual exclusion, coordination, and data replication in distributed systems [1,2,3,4]. sys-
tems [1,2,3,4]. A traditional, or strict, quorum system is simply a collection of servers
organized in sets called quorums. Quorums are accessed either to write a new value to a
write quorum or to read the values stored in a read quorum: in strict quorums, any read
quorum intersects with a write quorum.

Important quality measures of quorum systems are availability, fault tolerance, load,
and quorum size. lower size have measures are conflicting in strict quorum systems [5].
For instance, the majority quorum system provides the highest availability of all strict
quorum systems when the failure probability of individual nodes is lower than 0.5, but
it also suffers from high load and large quorum size—and this tension holds true in
general [6]. When the failure probability of individual nodes is higher than 0.5, the
quorum system with highest availability is the singleton, in which one node handles all
requests in the system.

Probabilistic [7] and signed [8] quorum systems have been proposed to achieve
high availability while guaranteeing system consistency (non-empty intersection of
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quorums) with high probability. These probabilistic constructions offer much better
availability than the majority system at the cost of providing only probabilistic guar-
antees on quorum intersection. If a probabilistic quorum system is used to implement
a distributed register with read and write operations, then, with high probability, a read
operation will return the value most recently written.

To achieve a high probability of quorum intersection, probabilistic constructions as-
sume, either implicitly (probabilistic quorum systems [7]) or explicitly (signed quorum
systems [8]), that the network scheduler is not adversarial. If the scheduler is adver-
sarial, both constructions can return arbitrarily old values, even if servers fail only by
crashing. If instead servers can also be subject to Byzantine failures, the situation is
a bit more complicated. Signed quorum systems are simply not defined under these
circumstances; probabilistic Byzantine quorum systems [7] must instead be configured
to prevent read operations from returning values fabricated by Byzantine servers. Note
that returning a fabricated value can be much more problematic than returning an ar-
bitrarily old value, especially if readers are required to write back what they read (as
it is common to achieve strong consistency guarantees): in this case, the system can
become contaminated and quickly loose its consistency guarantees1. Fortunately, the
parameters of probabilistic quorums systems can be chosen to eliminate the possibil-
ity of contamination; unfortunately, doing so results in a loss of all the gains made in
availability.

k-quorum systems, which we have recently introduced [9], guarantee that a read op-
eration will always return one of the last k written values – even if the scheduler is
adversarial. If the scheduler is not adversarial and read quorums are chosen randomly,
as is the case with probabilistic systems, k-quorums can guarantee a high probabil-
ity of intersection with the quorum used by the latest write. In a sense, k-quorums
have some of the best features of both strict systems and probabilistic constructions
and they can be thought of as a middle ground between them. Like probabilistic con-
structions, they achieve high availability by performing their writes to small quorums,
(called partial-write-quorums), and therefore weaken the intersection property of tra-
ditional strict quorum systems; unlike probabilistic constructions, however, k-quorums
can still provide deterministic intersection guarantees: in particular, they require the
set of servers contacted during k consecutive writes—the union of the corresponding
partial write quorums—to form a traditional strict write quorum. Using this combina-
tion, k-quorum systems can bound the staleness of the value returned by a read, even in
the presence of an adversarial scheduler: a read operations that contacts a random read
quorum of servers is guaranteed to return one of the values written by the last k preced-
ing writes; furthermore, during periods of synchrony the returned value will, with high
probability, be the one written by the last preceding write.

In the absence of an adversarial scheduler, probabilistic systems can have higher
availability than k-quorum systems. k-quorums make a tradeoff between safety and
liveness. By allowing for lower availability than probabilistic systems, they guaran-

1 This is not a problem if the returned values are simply old values because in that case
timestamps can be used to prevent old values from overwriting newer values. Timestamps
cannot be used with fabricated values because the timestamps of the fabricated values can
themselves be fabricated.
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tee a bound on the staleness of returned values even in the presence of an adversarial
scheduler. In the absence of an adversarial scheduler, k-quorum systems have higher
availability than strict quorum systems when the frequency of write operations is not
high (in a sense well defined in [9]). In the same paper, we also propose k-consistency
semantics and provide a single-writer implementation of k-atomic registers over servers
subject to crash failures.

Our previous paper left several important questions unanswered—in particular, it did
not discuss how to handle Byzantine failures, nor how to provide a multi-writer/multi-
reader construction with k-atomic semantics. The first question is particularly important
in light of the contamination problem that can affect probabilistic Byzantine quorum
systems. Answering these questions is harder than in strict quorum systems because the
basic guarantees provided by k-quorum systems are relatively weak and hard to lever-
age. For example, in the presence of multiple writers it is hard for any single writer to
guarantee that k consecutive writes (possibly performed by other writers) will constitute
a quorum: because of the weaker k consistency semantics, a writer cannot accurately
determine the set of servers to which the other writers are writing.

In this paper, we answer both questions. We begin by showing a protocol that im-
plements single-writer k-atomic semantics and tolerates f Byzantine servers and any
number of crash-and-recover failures as long as read and write quorums intersect in at
least 3f + 1 servers. Like its crash-only counterpart, the protocol can provide better
availability than strict quorum systems when writes are infrequent, and unlike prob-
abilistic solutions, can bound the staleness of the values returned by read operations.
Byzantine faults add another dimension to the comparison with probabilistic solutions:
the cost, in terms of loss of availability, of preventing reads from returning a value that
has never been written by a client, but has instead been generated by Byzantine servers
out of thin air. We show that, for equally sized quorums, this cost is considerably higher
for probabilistic constructions than for k-quorum systems.

We then investigate the question of k-atomic semantics in a multi-writer/multi-reader
setting by asking whether it is possible to obtain a multi-writer solution by using a
single writer solution as a building block—that is, by restricting read and write oper-
ations in the multi-writer case to use the read and write partial quorums of the single
writer solution. This approach appears attractive, because, if successful, would result in
a multi-writer system with availability very close to that of a single writer system.

We first show a lower bound on the price that any such system must pay in terms of
consistency: we prove that no m-writer protocol based on a solution that achieves k-
atomic semantics in the single writer case can provide better than

(
(2m−1)(k−1)+1

)
-

atomic semantics. We then present an m-writer protocol that provides
(
(2m − 1)(k −

1) + m
)
-atomic semantics, using a construction that, through a clever use of vector

timestamps, allows readers and writers to disregard excessively old values.

2 System Model

We consider a system of n servers. Each server (or node) can crash and recover. We
assume that servers have access to a stable storage mechanism that is persistent across
crashes. We place no bound on the number of non-Byzantine failures and, when
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considering Byzantine faults, we assume that there are no more than f Byzantine
servers—all remaining servers can crash and recover.

Network Model. We consider an asynchronous network model that may indefinitely
delay, or drop, messages. We require that the protocols provide staleness guarantees
irrespective of network behavior.

For purposes of availability, we assume there will be periods of synchrony, during
which, if enough servers are available, operations execute in a timely manner.

Access Model. A read or write operation needs to access a read or a (partial) write
quorum in order to terminate successfully. If no quorum is available the operation has
two options: it can either abort or remain pending until enough servers become available
(not necessarily all at the same time). The operation can abort unless it has already taken
actions that can potentially become visible to other clients.

Clients operations may have timeliness constraints. This does not contradict the
asynchrony assumption we make about the network but simply reflects the expecta-
tion that operations should execute in a timely manner if the system is to be considered
available. A client considers any operation that does not complete in time to have failed,
independent of whether these operations abort or eventually complete. Note that an op-
eration may be aborted and fail before being actually executed if the operation remains
locally queued for too long after being issued.

We assume for simplicity that clients do not crash in between operations, although
our protocols can be extended to tolerate client crash and recovery by incorporating a
logging protocol.

Finally, we assume that writes are blocking. In other words, a writer will not start
the next write until the current write has finished. While this assumption is not overly
restrictive, we need to make it for a technical reason, as our protocols require a write
operation to know exactly where the previously written values have been written to.

Availability. Informally, a system is available at time t if operations started at t execute
in a timely manner. Consider an execution ρ in a given time interval (possibly infinite)
in which a number of operations are started. The system’s availability for execution ρ is
the ratio of the number of operations that complete in a timely manner in ρ to the total
number of operations in ρ. If the number of operations is infinite, then the system’s
availability is the limit of the ratio, if it exists.

The read and write access patterns are mappings from the natural numbers to the
set of positive real numbers (denoting the duration between the requests). The failure
pattern of a given node is a mapping from the positive real numbers (denoting global
time) to {up, down}; the system’s failure pattern is a set of failure patterns, one for
each node.

Given probability distributions on the access patterns (read or write) and failure pat-
terns, the system’s availability is the expected availability for all pairs of access patterns
and failure patterns.

For the purposes of estimating availability, we assume that nodes crash and recover
independently, with mean time to recover (MTTR) α and mean time between failures
(MTBF) β. We also assume the periods between two consecutive reads or writes to
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be random variables with means MTBR and MTBW respectively and that MTBW is
large compared to MTBF; in other words, writes are infrequent. We define the sys-
tem’s availability in periods in which the network is responsive; i.e. in periods in which
the roundtrip delay is negligible compared to MTBF and MTTR. In other words, the
availability we are interested in depends on whether nodes are up or down, and not on
how slow is the network: indeed, in the presence of an adversarial network scheduler
measuring availability becomes meaningless, since the scheduler could always cause it
to be equal to zero. We assume that the time allowed for successful completion of an
operation is negligible compared to MTBF and MTTR.

Relaxed Consistency Semantics. The semantics of shared objects that are implemented
with quorum systems can be classified as safe, regular or atomic [10]. For applications
that can tolerate some staleness, these notions of consistency are too strong and one can
use define relaxed consistency semantics as follows [9]:

1. k-safe: A read that does not overlap with a write returns the result of one of the
latest k completed writes. The result of a read overlapping a write is unspecified.

2. k-regular: A read that does not overlap with a write returns the result of one of
the latest k completed writes. A read that overlaps with a write returns either the
result of one of the latest k completed writes or the eventual result of one of the
overlapping writes.

3. k-atomic: A read operation returns one of the values written by the last k preceding
writes in an order consistent with real time (assuming there are k initial writes with
the same initial value).

3 K-quorums for Byzantine Faults

We define a k-quorum construction that tolerates f Byzantine servers, while providing
k-atomic semantics, as a triple

(W ,R, k
)
, where W is the set of write quorums, R is

the set of read quorums, and k is a staleness parameter such that, for any R ∈ R, and
W ∈ W , |R ∩ W | ≥ 3f + 1 and |R|, |W | ≤ (n − f).
Server side protocol Figure 1 shows the server-side protocol. Each server s maintains in
the structure current data information about the last write the server knows of, as well
as the k − 1 writes that preceded it. READ REQUEST messages are handled using
a “listeners” pattern [11]. The sender is added to s’s Reading set, which contains the
identities of the clients with active read operations at s. A read operation r is active at
s from when s receives r’s READ REQUEST to when it receives the corresponding
STOP READ. On receipt of a WRITE message, s acknowledges the writer. Then, if
the received information is more recent than the one stored in current data, s updates
current data and forwards the update to all the clients in Reading; otherwise, it does
nothing.

Writer’s Protocol. Figure 2 shows the client-side write protocol. Each write operation
affects only a small set of servers, called a partial write quorum, chosen by the writer
so that the set of its last k partial write quorums forms a complete write quorum. The
information sent to the servers contains not just a new value and timestamp, but also ad-
ditional data that will help readers distinguish legitimate updates from values fabricated
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by Byzantine servers. Specifically, the writer sends to each server in the partial write
quorum, k tuples—one for each of its last k writes. The tuple for the i-th of these writes
includes: i) the value vi; ii) the corresponding timestamp tsi; iii) the set Ei of servers
that were not written to in the last k − 1 writes preceding i; and iv) a hash of the tuples
of the k − 1 writes preceding i. The write ends once the set of servers from which the
writer has received an acknowledgment during the last k writes forms a complete write
quorum2.

Thus, the value, timestamp, E, and hash information for write i are not only written
to i’s partial write quorum, but will also be written to the partial write quorums used for
the next k − 1 writes. By the end of these k writes this information will be written to
a complete write quorum which is guaranteed to intersect any read quorum in at least
3f + 1 servers.

Reader’s Protocol. The reader contacts a read quorum of servers and collects from each
of them the k tuples they are storing. The goal of the read operation is twofold: first, to
identify a tuple ti representing one of the last k writes, call it i, and return to the reader
the corresponding value vi; second, to write back to an appropriate partial write quorum
(one comprised of servers not in Ei) both ti and the k−1 tuples representing the writes
that preceded i—this second step is necessary to achieve k-atomicity.

The read protocol computes three sets based on the received tuples. The Valid set
contains, of the most recent tuples returned by each server in the read quorum, only
those that are also returned by at least f other servers. The tuples in this set are legiti-
mate: they cannot have been fabricated by Byzantine servers.

The Consistent set also contains a subset of the most recent tuples returned by each
server s in the read quorum. For each tuple ts in this set, the reader has verified that the
hash of the k − 1 preceding tuples returned by s is equal to the value of h stored in ts.

The Fresh set contains the 2f +1 most recent tuples that come from distinct servers.
Since a complete write quorum intersects a read quorum in at least 2f + 1 correct
servers, legitimate tuples in this set can only correspond to recent (i.e. not older than k
latest) writes.

The intersection of these three sets includes only legitimate and recent tuples that can
be safely written back, together with the k − 1 tuples that precede them, to any appro-
priate partial write quorum. The reader can choose any of the tuples in this intersection:
to minimize staleness, it is convenient to choose the one with the highest timestamp.

Because of space limitations, we must refer the reader to our extended technical
report [12] for the proofs of the following theorems.

Theorem 1. The single-writer Byzantine k-quorum read protocol in Figure 3 never
returns a value that has not been written by the writer.

Theorem 2. The single-writer Byzantine k-quorum read protocol in Figure 3 never
returns a value that is more than k-writes old.

If the network is behaving asynchronously, or if the required number of servers is
not available, then our protocols will just stall until the systems comes to a good con-

2 Byzantine servers may never respond. The writer can address this problem by simply contact-
ing f extra nodes for each write while still only waiting for a partial quorum of replies. For
simplicity, we abstract from these details in giving the protocol’s pseudocode.
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1 static Reading = ∅
2 static c u r r e n t d a t a [ 1 . . k ] ;
3 wh i l e ( t r u e ) {
4 ( msg , s e n d e r ) = r e c i e v e M e s s a g e ( ) ;
5
6 i f ( msg i n s t a n c e o f READ REQUEST)
7 Reading ∪ = {sender} ;
8 sen d c u r r e n t d a t a t o s e n d e r .
9 e l s e i f ( msg i n s t a n c e o f STOP READ )

10 Reading = Reading \ {sender} ;
11 e l s e i f ( msg i n s t a n c e o f WRITE )
12 / / say msg i s WRITE

〈Tuple[tsnew, . . . , tsnew − k + 1]〉
13 i f ( tsnew.ts > c u r r e n t d a t a [ 1 ] . t s )
14 c u r r e n t d a t a [ 1 . . k ] =

Tuple[tsnew, . . . , tsnew − k + 1] ;
15 sen d ACK( tsnew ) t o s e n d e r ;
16 fo rward c u r r e n t d a t a t o a l l i n Reading .
17 e l s e
18 sen d ACK( tsnew ) t o s e n d e r ;
19 }

Fig. 1. K-quorum protocol for non-Byzantine
servers

1 static ts : = 0 ;
2 static Tu p l e [ ] ;
3 void Write ( v a l u e v )
4 begin
5 ts : = ts + 1 ;
6 h = h ash ( Tu p l e [ ts − 1, . . . , ts − k + 1 ] ) ;
7 / / E i s t h e s e t o f s e r v e r s NOT u sed f o r t h e

p r e v i o u s k − 1 w r i t e s

8 E = P \ �j=ts−1
j=ts−k+1 Wj

9 Tu p l e [ts ] = (v, ts, E, h) ;
10 d e l e t e Tu p l e [ ts − k ] t o sav e sp ace
11
12 Fi n d a s e t PW , su ch t h a t :

13 |PW
�∪j=ts−1

j=ts−k+1Wj | = Qw

14 sen d WRITE〈Tuple[ts, . . . , ts − k + 1]〉 t o a l l
s e r v e r s i n PW .

15
16 / / w a i t f o r ack n o wl ed g emen t s
17 Wts = ∅
18 do
19 r e c v ACK(ts) f rom s e r v
20 Wts = Wts ∪ {serv}
21 u n t i l ( | ∪j=ts

j=ts−k+1 Wj | ≥ Qw − f )

22 return
23 end

Fig. 2. K-quorum write protocol tolerating up
to f Byzantine servers

figuration. If, during periods of synchrony, all non-Byzantine nodes recover and stay
accessible, then our protocols eventually terminate.

Theorem 3. If the network behaves synchronously and all non-Byzantine nodes re-
cover and stay accessible, then the Byzantine k-quorum protocol for the writer in Fig-
ure 2 eventually terminates.

Theorem 4. If the network behaves synchronously and all non-Byzantine nodes re-
cover and stay accessible, then the Byzantine k-quorum protocol for the reader in Fig-
ure 3 eventually terminates.

Theorem 5. The construction for Byzantine k-quorum systems shown in Figures 1, 2, 3
provides k-atomic semantics.

3.1 Comparison to Probabilistic Quorum Systems

In the Byzantine version of probabilistic quorum systems—(f, ε)-masking quorum sys-
tems [7]—write operations remain virtually unchanged: values are simply written to
a write quorum chosen according to a given access strategy. Read operations contact
a read quorum, also chosen according to the access strategy, and return the highest
timestamped value that is reported by more than p servers, where p is a safety para-
meter3. Choosing any value of p lower than f + 1 can be hazardous as, under these
circumstances, read operations may return a value that was never written by a client,
but instead fabricated by Byzantine nodes. While the probability of an individual read

3 The original paper [7] uses k to denote this safety parameter. We use p to avoid confusion
with the staleness parameter of k-quorum systems. We also use f to denote the threshold on
Byzantine faults instead of the original b.
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1 / / p r o t o c o l f o r a r e a d e r
2 r e c e i v e d [ ] / / s t o r e s t h e r e s p o n s e s from s e r v e r s
3 C a n d i d a t e V a l u e s / / h o l d s t h e s e t o f c a n d i d a t e v a l u e s
4 Read ( )
5 begin
6 ch o o se a r e a d quorum R .
7 sen d READ REQUEST t o s e r v e r s i n R .
8
9 r e c e i v e d [ i ] = n u l l , 1 ≤ i ≤ |R|

10 C a n d i d a t e V a l u e s = ∅
11 / / r e c e i v e v a l u e s from a l l t h e s e r v e r s i n R
12 wh i l e ( |{i : received[i] �= null}| < |R| ) ;
13 b eg i n
14 r e c e i v e Tu p l e [ tss, . . . , tss − k + 1 ] f rom s e r v e r s ;
15 r e c e i v e d [ s ] = Tu p l e [tss, . . . , tss − k + 1 ] ;
16 i f ( i s V a l i d ( Tu p l e [tss, . . . , tss − k + 1 ] ) )
17 add Tu p l e [ tss ] t o t h e s e t C a n d i d a t e V a l u e s
18 end
19
20 / / t r y t o ch o o se a v a l u e
21 / / i f u n s u c c e s s f u l , w a i t f o r more r e s p o n s e s .
22 tshighest = Larg es t Ti mes t amp ( r e c e i v e d ) ;

23 t r y C h o o s i n g ( ) ;
24 wh i l e ( v a l u e c h o s e n == n u l l )
25 b eg i n
26 r e c e i v e Tu p l e [ tss, . . . , tss − k + 1 ] f rom s e r v e r s ;
27 i f ( tss ≤ tshighest )

28 r e c e i v e d [ s ] = Tu p l e [tss, . . . , tss − k + 1 ] ;
29 t r y C h o o s i n g ( ) ;
30 end
31
32 sen d STOP READ t o s e r v e r s i n R .
33
34 / / w r i t e back t h e ch o sen v a l u e t o a p a r t i a l−w r i t e−quorum
35 Fi n d a p a r t i a l−w r i t e−quorum , PW, s u i t a b l e f o r v a l u e c h o s e n .
36 sen d WRITE〈chosenvalue〉 t o PW
37 − w a i t f o r ack s from PW
38
39 return v a l u e c h o s e n
40 end
41
42 void tryChoosing ( )
43 begin
44 ( 1 ) Fresh = { Tu p l e [tss, . . . , tss − k ] ∈ Received | tss i s one o f t h e 2 f +1 l a r g e s t t ime−stamped

e n t r i e s i n Received r e c e i v e d from d i f f e r e n t s e r v e r s }
45 ( 2 ) Val i d = { Tu p l e [tss, . . . , tss − k ] ∈ Received | Tu p l e [tss ] o c c u r s i n t h e r e s p o n s e s o f a t l e a s t

f + 1 s e r v e r s }
46 ( 3 ) C o n s i s t e n t = { Tu p l e [ tss, . . . , tss − k ] ∈ Received | t h e hash , h , i n Tu p l e [tss ] mat ch es
47 h ash ( Tu p l e [tss − 1, . . . , tss − k ] ) }
48 ( 4 ) if ( V alid ∩ F resh ∩ Consistent �= ∅ )
49 v a l u e c h o s e n = v ∈ V alid ∩ F resh ∩ Consistent , w i t h t h e l a r g e s t t i mes t amp .
50 end

Fig. 3. K-quorum read protocol tolerating up to f Byzantine servers

operation returning a fabricated value can be low, if enough reads occur in the system,
the probability that one of them will do so becomes significant, even in the absence
of an adversarial scheduler. Byzantine k-quorums are immune from such dangers: read
operations may return slightly stale values, but never fabricated values. This property
allows for the safe use of write backs to achieve stronger consistency guarantees.

Availability. Although it is possible to tune probabilistic Byzantine quorum systems
by choosing p > f so that they never return fabricated values, such a choice of p

cannot guarantee that the read availability always increases with n: if p > q2

n , then read
availability actually tends to 0 as n increases, because even a reader able to contact a
read-quorum is highly unlikely to receive at least p identical responses [7]. To ensure
that, with high probability, there are at least f +1 identical responses in a read quorum,
probabilistic Byzantine quorum systems would have to choose large quorum sets—
requiring the size of the quorum q to be significantly larger than

√
nf . Thus, if the

number of Byzantine failures f is large, then the quorum size for probabilistic quorum
systems needs to be large in order to avoid fabricated values.
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In summary, if probabilistic Byzantine systems are to have high availability when
the scheduler is not adversarial, they run the risk of returning fabricated values, and
if a value that is dependent on a fabricated value is written to the system, the system
becomes contaminated. Also, if they are designed for high availability and the sched-
uler happens to be adversarial, probabilistic Byzantine systems can always be forced to
return fabricated values.

Our system provides high availability for both reads and writes while guaranteeing
that we always return one of the latest k values written to the system. There are two main
reasons for the higher availability of k-quorums. First, each of their write operations
also writes tuples for the preceding k − 1 writes, causing a write to become visible at
more locations than in a probabilistic quorum system with similar quorum sizes and
load. Second, k-quorums reads are content to return one of the last k writes, not just
the latest one. Read operations will therefore be likely to yield Valid, Consistent, and
Fresh sets with a non-empty intersection. In (f, ε)-masking quorums a read can return a
legitimate value only if the read quorum intersects with a single write-quorum in more
than p nodes. This is a much rarer case and the availability of probabilistic quorum
systems is consequently lower.

Probability of returning the latest value. The definition of k-atomicity only bounds the
worst-case staleness of a read. However, since the choice of read quorums is not de-
pendent on any other quorums chosen earlier, k-quorums can also use a random access
strategy to choose read quorums, as in [7]. A random access strategy guarantees that,
when the network is not adversarial, a read which does not overlap with a write returns,
with high probability, the latest written value.

Let r and wp denote, respectively, the sizes of the read quorum and of the partial-
write-quorums. We can use Chernoff bounds in a manner similar to [7] to establish the
following theorem, whose proof is contained in our extended technical report [12].

Theorem 6. If the read quorum is chosen uniformly at random, then at times when the
network is non-adversarial, the probability that a read does not return the latest written

value is at most e
−wp(r−f)

2n (1− (f+1)n
wp(r−f) )

2

.

This probability can be high if f is small relative to n.

4 Multi Writer k-Quorums

We now study the problem of building a multi-writer k-quorum system using single-
writer k-quorum systems. This problem is interesting because the resulting multi-writer
system will have almost the same availability as the underlying single-writer systems.

A single-writer multi-reader k-quorum system implements two operations.

1. val sw-kread( wtr ): returns one of the k latest written values, by the writer wtr.
2. sw-kwrite( wtr, val ): writes the value val to the k-quorum system. It can only be

invoked by the writer wtr

We assume that the read and write availability of the single-writer k-quorum system is
asr = 1 − εsr and asw = 1 − εsw respectively.
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4.1 A Lower Bound

We show that using k-atomic single-writer systems as primitives for a multi-writer sys-
tem with m writers, one cannot achieve more than

(
(2m − 1)(k − 1) + 1

)
-atomic

guarantees.
We assume that the the multi-writer solution uses the single writer solution through

the sw-kread and sw-kwrite functions. We use these functions as black boxes, and we
assume that an invocation of sw-kread on a given register will return any one of the last
k writes to that register.

Since we are interested in a multi-writer solution that has the same availability as the
underlying single writer system, we should rule out solutions that require a write in the
multi-writer system to invoke multiple write operations of the single writer system. In
other words, a write operation in the multi-writer system should be able to successfully
terminate if a read quorum and a partial write quorum of the single writer system are
available. We require that a read quorum be available because otherwise writers would
be forced to write independently of each other with no possibility for one writer to see
other writes. We do not require that a read and a write quorum be available at the same
time. So, without loss of generality, we assume that the implementation uses only m
single-writer registers, one for each writer. The implementation of a write operation of
a the multi-writer register can issue a write operation to the issuing writer’s register
but not to the other writers’ registers; it can also issue read operations to any of the m
registers. The read operations on the multi-writer register can only issue read operations
on the single-writer registers.

In our lower bound proof, we assume that writers execute a full-information protocol
in which every write includes all the history of the writer, including all the values it
ever wrote and all the values it read from other writers. If the lower bound applies to
a full-information protocol, then it will definitely apply to any other protocol, because
a full-information protocol can simulate any other protocol by ignoring portions of the
data read. Also, we assume that a reader and a writer read all single-reader registers in
every operation, possibly multiple times; a protocol that does not read some registers
can simply ignore the results of such read operations.

For a writer wtr, we denote with vwtr,i the i’th value written by wtr. If a client reads
vx,i, then it will also read vx,j , j ≤ i. We denote with tswtr a vector timestamp that
captures the writer’s knowledge of values written to the system. tswtr[u] is the largest i
for which wtr has read a value vu,i. In what follows, we will simply denote values with
their indices. So, we will say that a writer writes a vector timestamp instead of writing
values whose indices are less than or equal to the indices in the vector timestamp.

We now describe a scenario where a reader would return a value that happens to be(
(2m − 1)(k − 1) + 1

)
writes old.

Consider a multi-writer read operation, where the timestamps for all the m values
that the reader receives are similar—specifically, the timestamps

Rcvd =

⎧
⎪⎨

⎪⎩

〈k − 1, 0, 0, . . . , 0〉,
〈0, k − 1, 0, . . . , 0〉,
〈0, 0, k − 1, . . . , 0〉,

.

.

.
〈0, 0, 0, . . . , k − 1〉

⎫
⎪⎬

⎪⎭
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< 1, 0, 0, . . . , 0 >  

< 3, 0, 0, . . . , 0 >  
< 2, 0, 0, . . . , 0 >  

< k−1, 0, 0, . . . , 0 >  

. .
 .

< 0, 1, 0, . . . , 0 >  

< 0, 3, 0, . . . , 0 >  
< 0, 2, 0, . . . , 0 >  

. .
 .

< 0, k−1, 0, . . . , 0 >  

< 0, 0, 0, . . . , 3 >  

< 0, 0, 0, . . . , k−1 > 

< 0, 0, 0, . . . , 2 >  
< 0, 0, 0, . . . , 1 >  

k−1 
more writes

k−1 
more writes

k−1 
more writes

k−1 
more writes  3

Phase

Phase

  2

T
IM

E

Phase
  0

Phase
  1

< 0,?, ?, . . . , ? >  

Writer 1

< ?, 0, ?, . . . , ? >  

Writer 2 

. .
 .

Writer m

< ?,?, ?, . . . , 0 >  

. .
 .

Read Occurs Now

Fig. 4. Write ordering in the multi-writer k quorum system

where the timestamp for the value received from the i-th writer contains information up
to the (k− 1)-th write by that writer, but only contains information about the 0-th write
for all remaining writers.

Since all the m timestamp values are similar, the reader would have no reason to
choose one value over the other. Let us assume, without loss of generality, that the
reader who reads such a set of timestamp returns the value with the timestamp

〈k − 1, 0, 0, . . . , 0〉

written by the first writer.
We now show a set of writes to the system wherein the value returned would be(

(2m − 1)(k − 1) + 1
)

writes old. The writes to the system occur in 4 phases.
In phase 0, each of the m writers performs a write operation such that the writer’s

entry in the corresponding timestamp reads 0. For the sake of this discussion, the non-
positive values stored in the other entries of the timestamp are irrelevant. We refer to
this write as the 0-th write.

In phase 1, writer 1 – whose value is being returned by the read – performs (k − 1)
writes. During each of these writes, the reads of the k-atomic register of other writers
returns their 0-th write. The timestamp vector associated with each of these writes is
shown in Figure 4.

In phase 2, each of the remaining (m − 1) writers perform (k − 1) writes. Since
the underlying single-writer system only provides k-atomic semantics, also during this
phase all reads to the underlying single-writer system returns the 0-th write for that
writer. Hence the timestamp vector associated with these writes would be as shown in
Figure 4.
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At the end of phase 2, each writer has performed k − 1 writes. The total number of
writes performed in this phase is (m − 1)(k − 1).

Finally, in phase 3, each writer performs another k − 1 writes. There are a total of
m(k − 1) writes in this phase. The exact timestamps associated with these writes are
not important.

At the end of phase 3, the multi-writer read takes place. Since the underlying single-
writer system only provides k-atomic semantics, all the reads to the underlying single-
writer system during the read are only guaranteed to return a value which is not any
older than the (k − 1)-th write. Thus Rcvd could be the set of values received by the
reader where the reader chooses

〈k − 1, 0, 0, . . . , 0〉

which is
(
1 + (m − 1)(k − 1) + m(k − 1)

)
writes old.

4.2 Multiple Writer Construction

We present a construction for a m-writer, multi-reader register with relaxed atomic se-
mantics using single-writer, multi-reader registers with relaxed atomic semantics. Using
k-atomic registers, our construction provides

(
(2m−1)(k−1)+m

)
-atomic semantics,

which is almost optimal.
The single-writer registers can be constructed using the k-quorum protocols from [9],

if servers are subject to crash and recover failures, or using the construction from Sec-
tion 3 if servers are subject to Byzantine failures. In particular, using the single-writer
k-atomic register implementation for Byzantine failures described in Section 3, we ob-
tain an m-writer

(
(2m − 1)(k − 1) + m

)
-atomic register for Byzantine failures.

The Construction. The multi-write construction uses m instances of the single-writer
k-atomic registers, one for each writer wi.

It uses approximate vector timestamps to compare writes from different writers. Each
writer wi, 1 ≤ i ≤ m, maintains a local virtual clock ltsi, which is incremented by 1
for each write so that its value equals the number of writes performed by writer wi.

At a given time, let gts be defined by

∀i : gts[i] = ltsi

where the equality holds at the time of interest. The vector gts represents the global
vector timestamp and it may not be known to any of the clients or servers in the system.
The read and write protocols are shown in Figure 5.

Write Operation. To perform a write operation, the writer first performs a read to obtain
the timestamp information about all the writers (lines 4-5). Since the registers used are
k-atomic, each of the received timestamp information is guaranteed to be no more than
k writes old for any writer.

A writer wtri executing a write would calculate (lines 8-9) an approximate vector
timestamp ats, whose i-th entry is equal to ltsi and whose remaining entries can be
at most k older than the local time stamps of the entries at the time the write operation
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1 static ltsi = 0 ;
2 void mw-write ( writeri , val )
3 begin
4 f o r j = 1 t o m
5 〈valj, tsj〉 = sw−r e a d ( writerj )

6
7 / / E s t i m a t e t h e ap p r o x t ime−stamp
8 ∀j �= i : ats [ j ] = max p { tsp[j] }
9 ats [ i ] = ++ltsi

10
11 sw−w r i t e ( writeri , 〈val, ats〉 )
12 end

14 〈val, ts〉 mw-read ( )
15 begin
16 f o r j = 1 t o m
17 〈valj, tsj 〉 = sw−r e a d ( writerj )

18
19 R e j e c t = ∅
20 f o r i = 1 t o m
21 f o r j = 1 t o m

22 i f ( tsj < tsi || �
tsj [i] < tsi[i] − k

�
)

23 R e j e c t = Reject ∪ {〈valj, tsj〉}
24
25 return any 〈valj, tsj〉 �∈ Reject

26 end

Fig. 5. Multi-writer K-quorum protocols

was started. Let gtsbeg and gtsend denote the global timestamps at the start and end
of the write. Then,

ats[i] = gtsend[i]

ats[j] > gtsbeg [j] − k

gtsend ≥ gtsbeg

The writer then writes the value, val, along with the timestamp ats to the single-
writer k-atomic system for the writer.

Read operation. To perform a multi-writer read operation, a reader reads from all the m
single-writer k-quorum systems. Because of the k-atomicity of the underlying single-
writer implementation, each of these m responses is guaranteed to be one of the k latest
values written by each writer. However, if some writer has not written for a long time,
then the value could be very old when considering all the writes in the system. Finding
the latest value among these m values is difficult because the approximate timestamps
are not totally ordered.

The reader uses elimination rules (lines 19-23) to reject values that can be inferred
to be older than other values. This elimination is guaranteed to reject any value that is
more than

(
(2m − 1)(k − 1) + m

)
writes old. Finally, after rejecting old values, the

reader returns any value that has not been rejected.

Lemma 1. If a writer wi performs a write, beginning at the (global) time gtsbeg and
ending at gtsend, with a (approximate) timestamp t, then

t ≤ gtsend; t[i] = gtsend[i]; and

∀j : t[j] ≥ gtsbeg [j] − k + 1

Lemma 2. Let 〈valj , tsj〉 be one of the m values read in lines 16-17. If a writer, say s,
has performed 2k writes after 〈valj , tsj〉 has been written (and before the read starts)
then 〈valj , tsj〉 will be rejected in lines 19-23.

Proof: Let gtsbeg
j ,gtsend

j and gtsbeg
s ,gtsend

s denote the global timestamp at the be-

ginning and end of the writes for 〈valj , tsj〉 and 〈vals, tss〉. Also, let gtsbeg
read be the

timestamp when the read is started.
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Since writer s has performed at least 2k − 1 writes after writing 〈valj , tsj〉 we have

gtsbeg
read[s] ≥ gtsend

j [s] + 2k

Also, from the k-atomic properties of the single writer system, we know that

tss[s] = gtsend
s [s] > gtsbeg

read[s] − k

⇒ tsj [s] ≤ gtsend
j [s] ≤ gtsbeg

read[s] − 2k

< gtsend
s [s] − k = tss[s] − k

Hence 〈valj , tsj〉 will be added to Reject in line 23. ��
Theorem 7. The multi-writer read protocol never returns a value that is more than(
(2m − 1)(k − 1) + m

)
writes old.

Proof: Let 〈valj , tsj〉 be the value returned by the read protocol.
The writer j cannot have written more than k−1 writes after 〈valj , tsj〉 (and before

the read begins). From Lemma 2 it follows that each of the remaining (m − 1) writers
could have written no more than 2k−1 writes after the write for 〈valj , tsj〉 (and before
the read begins).

Hence, 〈valj , tsj〉 can be at most
(
1 + (k − 1) + (m− 1)(2k − 1)

)
writes old. ��

Lemma 3. At least one of the m received values is not rejected.

Theorem 8. The multi-writer protocol described in Figure 5 provides
(
(2m − 1)(k −

1) + m
)
-atomic semantics.

Availability of a Multi-writer System We now estimate the availability of the multi-
writer system, assuming that the underlying single-writer k-quorum system has a read
and write availability of asr = 1 − εsr and asw = 1 − εsw respectively.

Each multi-writer write operation involves reading from all the m single-writer k-
quorum systems and writing to one single-writer system. Hence the write availability
of the multi-writer system, amw, is at least (asr)

m
asw. This is a conservative estimate

because we are assuming that, when the network is synchronous, we treat finding a read
quorum and finding a partial-write-quorum as independent events. In practice, however,
the fact that a particular number of servers (size of read quorum) are up and accessible
only increases the probability of being able to find an accessible partial-write-quorum.

Moreover, If the m underlying single-writer k-quorum systems are implemented
over the same strict quorum system, then the potential read quorums that can be used
for all the m systems will be the same.4 Thus, we can use the same read quorum to
perform all the m read operations. In this case, either all reads are available with proba-
bility asr or all reads fail with probability εsr. Hence the probability of the multi-writer
write succeeding is at least asrasw.

amw ≥ asrasw ≥ 1 − εsr − εsw

4 The partial-write-quorums could still be different, if the writers have chosen different partial-
write-quorums in the past.
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To perform a multi-writer read, our read protocol performs m reads from the m
single writer k-quorum implementations. Thus, along similar lines, we can argue that
the availability amr is at least asr

m. Using the same underlying strict quorum system
for all the m single-writer systems, we can achieve an availability of

amr = asr = 1 − εsr

Probabilistic freshness guarantees We now estimate the probability that our multi-
writer implementation of k-quorums provides the latest value, when all the writes that
occur are non-overlapping.

Let δsw denote the probability that a sw-read does not return the latest value written
to the single-writer system. Let δmw denote the probability that the multi-writer system
does not return the latest value written to the system.

Theorem 9. If the operations are non-overlapping, the probability that the multiple-
writer system does not return the latest value is at most mδsw

Once again, the proof can be found in our extended technical report [12].

5 Conclusion and Future Work

In this paper we expand our understanding of k-quorum systems in three key direc-
tions [9].

First, we present a single-writer k-quorum construction that tolerates Byzantine fail-
ures. Second, we prove a lower bound of

(
(2m − 1)(k − 1) + 1

)
on the staleness for a

m writer solution built over a single-writer k-quorum solution.
Finally, we demonstrate a technique to build multiple-writer multiple-reader k-

quorum protocols using a single-writer multiple-reader protocol to achieve
(
(2m −

1)(k − 1) + m
)
-atomic semantics.

One limitation of our approach is that it improves availability only when writes are
infrequent. Also, we have restricted our study of multi-writer solutions to those that built
over a single-writer k-quorum system; it may be possible that a direct implementation
can achieve a better staleness guarantee.
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