
A Unified Proof System for QBF Preprocessing?

Marijn J.H. Heule1, Martina Seidl2, and Armin Biere2

1 Department of Computer Science, The University of Texas at Austin
marijn@cs.utexas.edu

2 Institute for Formal Models and Verification, JKU Linz
martina.seidl@jku.at biere@jku.at

Abstract. For quantified Boolean formulas (QBFs), preprocessing is es-
sential to solve many real-world formulas. Application of a preprocessor,
however, prevented the extraction of proofs to independently validate
correctness of the solver’s result. Especially for universal expansion proof
checking was not possible so far. In this paper, we introduce a unified
proof system based on three simple and elegant quantified asymmetric
tautology (QRAT) rules. In combination with an extended version of uni-
versal reduction, they are sufficient to efficiently express all preprocessing
techniques used in state-of-the-art preprocessors including universal ex-
pansion. Moreover, these rules give rise to new preprocessing techniques.
We equip our preprocessor bloqqer with QRAT proof logging and provide
a proof checker for QRAT proofs.

1 Introduction

Effectively checking the result returned by a QBF solver has been an open chal-
lenge for a long time [1,2,3,4,5,6,7]. The current state-of-the art is to simply
dump Q-resolution proofs and to validate their structure. This approach has
two major drawbacks. On the one hand the proofs might get extremely large
and cannot be produced due to technical limitations. On the other hand, there
are solving and preprocessing techniques for which it was not known if and how
they translate to resolution.

Due to the diversity of the different techniques [8], it is not straight forward to
provide a checker which verifies the actions of the preprocessor. In fact, it would
be preferable to translate the different preprocessing techniques to a canonical
representation which then can be checked easily. Some efforts go in this direction
by using Q-resolution. If a resolution proof is available, then checking is poly-
nomial with respect to the proof size. However, the proof itself might become
exponentially large and already writing down the proof might be costly. Fur-
thermore, it is not known for all preprocessing techniques how to express them
in terms of resolution, what is for example the case for universal expansion [9]
which plays a crucial role as preprocessing technique.

? This work was supported by the Austrian Science Fund (FWF) through the na-
tional research network RiSE (S11408-N23), Vienna Science and Technology Fund
(WWTF) under grant ICT10-018, and DARPA contract number N66001-10-2-4087.

In propositional logic, the RUP proof checking format [10] is extremely suc-
cessful because it simply logs the learnt clauses and provides an easy checking
criterion. For optimization purposes, recently, the DRUP extension has been
presented [11] which provide elimination criteria for redundant clauses. It has
been recognized that RUP and DRUP can be characterized with the redundancy
asymmetric tautology property (RAT) which has been originally developed in
the context of propositional preprocessing for characterizing and comparing the
strength of the various techniques. In this paper, we extend RAT [12] to QRAT,
the quantified redundant property and introduce novel clause addition and elim-
ination techniques. On this basis, we capture the state-of-the-art preprocessing
techniques [8] in a uniform manner what allows us to develop a checker verifying
the correctness of a QBF preprocessor. Moreover, the size of QRAT proofs and
the checking time of QRAT proofs is polynomial in the preprocessing time. We
integrate QRAT-based tracing in our preprocessor bloqqer [8] and implemented
an efficient checker for QRAT proofs.

2 Preliminaries

We consider QBFs in prenex conjunctive normal form (PCNF). A QBF in PCNF
has the structure Π.ψ where the prefix Π has the form Q1X1Q2X2 . . . QnXn

with disjoint variable sets Xi and Qi ∈ {∀,∃}. The formula ψ is a propositional
formula in conjunctive normal form, i.e., a conjunction of clauses. A clause is
a disjunction of literals and a literal is either a variable (positive literal) or a
negated variable (negative literal). The variable of a literal is denoted by var(l)
where var(l) = x if l = x or l = x̄. The negation of a literal l is denoted by l̄.
The quantifier Q(Π, l) of a literal l is Qi if var(l) ∈ Xi. Let Q(Π, l) = Qi and
Q(Π, k) = Qj , then l ≤Π k if i ≤ j. We sometimes write formulas in CNF as
sets of clauses and clauses as sets of literals. We consider only closed QBFs, so
ψ contains only variables which occur in the prefix. The variables occurring in
the prefix of φ are given by vars(φ). The subformula ψl consisting of all clauses
of matrix ψ containing literal l is defined by ψl = {C | l ∈ C,C ∈ ψ}. By >
and ⊥ we denote the truth constants true and false. QBFs are interpreted as
follows: a QBF ∀xΠ.ψ is false iff Π.ψ[x/>] or Π.ψ[x/⊥] is false where Π.ψ[x/t]
is the QBF obtained by replacing all occurrences of variable x by t. Respectively,
a QBF ∃xΠ.ψ is false iff both Π.ψ[x/>] and Π.ψ[x/⊥] are false. If the matrix
ψ of a QBF φ contains the empty clause after eliminating the truth constants
according to standard rules, then φ is false. Accordingly, if the matrix ψ of QBF
φ is empty, then φ is true. Two QBFs are satisfiability equivalent iff they have
the same truth value.

Models and countermodels of QBFs can either be described intensionally in
form of Herbrand and Skolem functions [1] or extensionally in form of subtrees
of assignment trees. An assignment tree of a QBF φ is a complete binary tree
of depth |vars(φ) + 1| where the non-leaf nodes of each level are associated with
a variable of φ. The order of the associated variables in the tree respects the
order of the variables in the prefix of φ. A non-leaf node associated with variable

x has one outgoing edge labelled with x and one outgoing edge labelled with
x̄. Each path starting from the root of the tree represents a (partial) variable
assignment. We also write a path as a sequence of literals. A path τ from the
root node to a leaf is a complete assignment and the leaf is labelled with the
value of the QBF under τ . Nodes associated with existential variables act as OR-
nodes, while universal nodes act as AND-nodes. Respectively, a node is labelled
either with > or with ⊥. A QBF is true (satisfiable) iff its root is labelled with
>. A QBF is false (unsatisfiable) iff its root is labelled with ⊥. By τx and τx
we denote the partial assignments obtained from the complete assignment τ
with τ = τxlτx where var(l) = x. A QBF φ with vars(φ) = {x1, . . . , xn} under
(partial) assignment τ is the QBF φ[x1/t1, . . . , xn/tn] where ti = > if xi ∈ τ ,
ti = ⊥ if x̄i ∈ τ , and ti = xi otherwise.

Example 1. Consider the QBF ∃a∀b∃c∀d∃e.(a∨ b∨ c̄∨ d̄∨ e) and the path from
the root τ = a, b̄, c̄, d, ē. The assignments τ c = a, b̄ and τc = d, ē.

A pre-model M of QBF φ is a subtree of the assignment tree of φ such that
(1) for each universal node in M , both children are in M ; (2) for each existential
node in M , exactly one of the children is in M ; and (3) the root of the assignment
tree is in M . A pre-model M of QBF φ is a model of φ if in addition each node
in M is labelled with >. Obviously, only a true QBF can have a model. A false
QBF has at least one countermodel, which is defined dually as follows. In a pre-
countermodel M existential nodes have two children, whereas universal nodes
have only one and the root of the assignment tree is in M . A pre-countermodel
M is a countermodel if each node is labelled with ⊥. Two QBFs are logically
equivalent iff they have the same set of (counter) models modulo variable names.

3 QRAT: Quantified Resolution Asymmetric Tautologies

The QRAT proof system, introduced below, provides the basis for satisfiability
equivalence preserving clause addition, clause deletion, and clause modification
techniques. To this end, we first have to recapitulate the notion of QBF resolvents
(resolvents for short) and introduce the concept of asymmetric literal addition.

Definition 1 (Resolvent). Given two non-tautological clauses C and D with
x ∈ C and x̄ ∈ D, the resolvent over pivot variable x is (C\{x}) ∪ (D\{x̄}).

Note that we do not restrict the pivot element to existential variables as it is
usually done in the literature. Furthermore, for the moment, we do not consider
the universal reduction rule which is additionally necessary for the completeness
of the resolution calculus for QBFs.

Definition 2 (Asymmetric Literal Addition). Given a QBF Π.ψ and a
clause C. The clause ALA(ψ,C) is the unique clause obtained by repeatedly ap-
plying the extension rule

C := C ∪ {l̄} if ∃l1, . . . , lk ∈ C and (l1 ∨ . . . ∨ lk ∨ l) ∈ ψ

called asymmetric literal addition to C until fixpoint.

Asymmetric literal addition is well understood for propositional logic [13].
For QBF, a variant called hidden literal addition has been described in [8] where
it is (unnecessarily) required that the li occur to the left of l in the prefix.

The new definition for QBF used in this paper is the same in the propositional
case. Thus φ[C/C ′] has exactly the same (propositional) models as φ, which lifts
to QBF equivalence, since the values of the QBF formula at the leafs do not
change. As consequence we have the following lemma.

Lemma 1. Let φ = Π.ψ∪{C} be a QBF and C ′ = ALA(ψ,C) be obtained from
C by asymmetric literal addition. Further, let φ′ = φ[C/C ′]. Then φ and φ′ are
logically equivalent.

ALA and resolution as introduced above are sufficient to define the RAT
proof system for propositional logic. For QBFs, we must additionally consider
quantifier dependencies which we capture by the notion of outer clauses and
outer resolvents.

Definition 3 (Outer Clause). Let C be a clause occurring in QBF Π.ψ. The
outer clause of C on literal l ∈ C, denoted by O(Π,C, l), is given by the clause
{k | k ∈ C, k ≤Π l, k 6= l}.

Definition 4 (Outer Resolvent). Let C be a clause with l ∈ C and and D a
clause occurring in QBF Π.ψ with l̄ ∈ D. The outer resolvent of C with D on
literal l w.r.t. Π, denoted by R(Π,C,D, l), is given by the clause O ∪ (C\{l}) if
Q(Π, l) = ∀ and by O ∪ C if Q(Π, l) = ∃ assuming O = O(Π,D, l̄).

Definition 5 (Quantified Resolution Asymmetric Tautology (QRAT)).
Given a QBF Π.ψ and a clause C. Then C has QRAT on literal l ∈ C with
respect to Π.ψ iff it holds for all D ∈ ψl̄ that ALA(ψ,R) is a tautology for the
outer resolvent R = R(Π,C,D, l).

The intuition behind these definitions is almost identical to the propositional
case [14]: consider potential resolvents of a clause on a certain literal with res-
olution candidates containing the negation of the picked literal. If all of them
are “redundant”, or more precisely asymmetric tautologies in the context of this
paper, then this clause is redundant too and can be added or removed.

The important difference to the propositional case is that inner variables,
w.r.t. the pivot variable resolved upon, might have different values for differ-
ent choices of universal literals, and thus one can not simply apply resolution
blindly before checking for redundancy of the resolvent. Inner literals in the reso-
lution candidates should be ignored. This is the same restriction as for quantified
blocked clauses [8]. As it turns out, for existential pivots, it is possible to have a
slightly more general version, i.e., the pivot literal can be included in the outer
resolvent, while in previous work this was not the case, and for universal pivots,
it is not allowed. The QRAT proof system uses this observation to establish syn-
tactical redundancy detection criteria to safely add, remove, and modify clauses.

Lemma 2. Given a clause C and existential literal l ∈ C with var(l) = x such
that l has QRAT w.r.t. a QBF Π.ψ. If there is an assignment σ = τx l̄τx that
falsifies C, but satisfies ψ then assignment σ′ = τxlτx satisfies both C and ψ.

Proof. LetD ∈ ψ be a clause with l̄ ∈ D and σ(C) = ⊥. In order to show σ′(D) =
> by contradiction we assume the opposite σ′(D) = ⊥, e.g. σ(D\{l̄}) = ⊥. This
leads to σ(O) = ⊥ for the outer resolvent R = R(Π,C,D, l) = O(Π,D, l̄) ∪ C
too (note that we do not remove l from C). By induction on the order of literals
added to R in computing ALA(ψ,R) we show that σ(l′) = ⊥ for all literals l′

in ALA(ψ,R). This is clear for all l′ ∈ R. Assume l1, . . . , lk−1 are from R or
have been added through ALA extensions and further assume there is a clause
E = {l1, . . . , lk−1, lk} ∈ ψ which is used to add ¬lk next. Observe that σ(E) =
σ(ψ) = > and by the induction hypothesis we have σ(l1) = · · · = σ(lk−1) =
⊥, which leads to σ(lk) = >. This concludes the induction proof resulting in
σ(ALA(R)) = ⊥, which is impossible for the tautology ALA(R). The assumption
is invalid and thus σ′(D) = σ′(ψ) = σ′(C) = >. ut

Theorem 1. Given a QBF φ = Π.ψ and a clause C ∈ ψ with QRAT on an
existential literal l ∈ C with respect to QBF φ′ = Π ′.ψ \ {C} where Π ′ is Π
without the variables of C not occurring in ψ. Then φ and φ′ are satisfiability
equivalent.

Proof. If φ is satisfiable then φ′ is also satisfiable, since all models of φ are also
models of φ′. In the following, we show that if φ′ is satisfiable then φ is also
satisfiable. Let M be a model for φ′, which is not a model for φ. Then for every
assignment τx l̄τx in M which satisfies ψ \ {C} and falsifies C we use Lemma 2
to show that σ′ = τxlτx satisfies both ψ and C because C has QRAT w.r.t. φ′.
Thus for all the τx l̄τx which falsify a C we modify M by flipping the label l̄ to
l of the (single) child edge leaving the node corresponding to τx. The resulting
pre-model M ′ turns out to be a model of φ′. ut

The elimination of a clause which has QRAT w.r.t. a QBF φ is called QRATE.

We write QRATE also as Π.ψ ∪{C} QRATE−−−−→ Π.ψ. Analogously, QRAT allows the
introduction of clauses. The addition of a clause which has QRAT w.r.t. a QBF

φ is called QRATA. We write QRATA also as Π.ψ
QRATA−−−−→ Π ′.ψ ∪ {C}. Note that

the added clause may contain variables which do not occur in the original QBF.
Then the prefix has to be extended by these variables for getting a closed QBF
again. These variables may be quantified arbitrarily and put at any position
within the prefix.

Example 2. Consider the true QBF Π.ψ = ∀a∃b, c.(a ∨ b̄) ∧ (ā ∨ c) ∧ (b ∨ c̄).
Clause (ā ∨ b) has QRAT on b w.r.t. ψ: The only clause that contains literal b̄
is (b ∨ c̄), which produces the outer resolvent (ā ∨ b ∨ c̄). ALA(ψ, (ā ∨ b ∨ c̄))
is a tautology. Therefore, QRATA can add (ā ∨ b) to ψ. Now consider a new
existential variable d in a new outermost quantifier block. The clause (d∨ b̄∨ c)
has QRAT on c w.r.t. ψ. Adding (d ∨ b̄ ∨ c) to ψ will result in the true QBF
∃d∀a ∃b, c.(a ∨ b̄) ∧ (ā ∨ c) ∧ (b ∨ c̄) ∧ (d ∨ b̄ ∨ c).

Both QRATA and QRATE require the literal on which a clause has QRAT to
be existential. The following example illustrates that it would not be sound either
to allow for universal variables or to ignore the variable dependency restrictions.

Example 3. Consider the false QBF ∃x∀y.(x ∨ y) ∧ (x̄ ∨ ȳ). Clause (x ∨ y) has
QRAT on y w.r.t. (x̄∨ȳ), but eliminating (x∨y) does not preserve unsatisfiability.
Hence, one cannot remove clauses based on QRAT on a universal literal. If we
would drop the variable dependency restriction, then (x ∨ y) would have QRAT
on x w.r.t. (x̄ ∨ ȳ). Again, removing (x ∨ y) does not preserve unsatisfiability.

However, as we will show below, one can remove universal literals if they have
QRAT. This is similar to the pure literal elimination rule (see next section) which
is a clause elimination technique if the pure literal is existentially quantified and
which is a literal elimination technique if the pure literal is universally quantified.

For the proof of the following theorem we need the concept of “dual assign-
ment”. The dual of an assignment σ in a model for a universal literal is the
unique τ in the same model obtained from flipping this literal in σ but keeping
all literals before l and all universal literals after l untouched, or more formally:

Definition 6. Given a model M of a QBF and σ = σxlσx ∈ M and a literal l
with σ(l) = > then τ = σx l̄τx ∈M is the dual of σ w.r.t. l iff all universal literals
in σx are the same in τx, e.g. for all universal literals k we have σx(k) = τx(k).

Note, that existential literals in σx and τx might have opposite signs.

Theorem 2. Given QBF φ0 = Π.ψ and φ = Π.ψ ∪{C} where C has QRAT on
a universal literal l ∈ C with respect to φ0. Further, let φ′ = Π.ψ ∪ {C ′} with
C ′ = C \ {l}. Then φ and φ′ are satisfiability equivalent.

Proof. We need to show that if φ is satisfiable, then φ′ is satisfiable. The reverse
is trivial. Let M be a model of φ. We are going to define a model M ′ for φ′

from M as follows. All assignments σ in M with σ(C ′) = > are kept in M ′.
If σ(C ′) = ⊥ and τ = σx l̄τx is the dual assignment of σ w.r.t. l in M , then
we replace σ by σ′ = σxlτx, which is the same as the dual τ of σ w.r.t. l but
with l flipped. It is apparent that the set of assignments M ′ defined this way
actually forms a tree and thus a pre-model. Further, note, that C ′ is satisfied
on all paths in M ′, since either σ(C ′) = > or otherwise (if σ(C ′) = ⊥) we
have σ′(C ′) = τ(C ′) = τ(C) = >. As in the proof of Theorem 1 we assume
that the pre-model M ′ defined above is not a model. Then we have σ′ ∈ M ′,
a clause D ∈ ψ with σ′(D) = ⊥, and σ′ was obtained from σ, by replacing
σ by the dual τ of σ w.r.t. l with l flipped and σ(C ′) = ⊥. Since τ(D) = >
and σ′ differs from τ only for l, we know that l̄ single satisfies D in σ′, thus
l̄ ∈ D. The outer clause O = O(Π,D, l̄) ⊂ D has the property σ′(O) = ⊥ and
since σx = σ′x we derive that σ(R) = ⊥. Observe that σ(R) = ⊥ for the outer
resolvent R = R(Π,C,D, l) = O ∪ C ′ (note that l is removed, e.g., l 6∈ C ′).
Using similar arguments as in the proof of Lemma 2 we can show that all the
literals added to R are false under σ. This is in contradiction to the assumption
that ALA(ψ,R) is a tautology. As a consequence M ′ is a model of φ′ and φ′ is
satisfiable too. ut

Principally, a universal literals which have QRAT w.r.t. QBF φ may be safely
added to C or removed from C. In the following, we only need the elimination
of universal literals. The elimination of a universal literal from a clause C which
has QRAT w.r.t. a QBF φ is called QRATU. We write QRATU also as Π.ψ ∪
{C} QRATU−−−−→ Π.ψ ∪ {C \ {l}}.

The definition of outer resolvent depends on quantification. QRATU is not
sound if we allow the existential variant of outer resolvent for a universal literal.

Example 4. Let true QBF ∀x∃y, z.(x̄ ∨ ȳ) ∧ (x̄ ∨ z̄) ∧ (x ∨ y) ∧ (x ∨ y ∨ z). If we
allow the existential variant of outer resolvent for (x∨ y ∨ z) on universal literal
x, then it would have QRAT. Removing x from (x∨ y ∨ z) makes the QBF false.

4 Preprocessing for QBFs

For successfully solving quantified Boolean formulas (QBF), the introduction of
an additional preprocessing step has been shown to be extremely beneficial to
focus the search of many solvers. The techniques realized in the preprocessors
preserve the CNF structure, but in general, the preprocessed formula is not
logically equivalent, but satisfiability equivalent. Often, the preprocessing is so
effective, that the preprocessed formula becomes solvable within a certain time
frame what has not been the case for the original formula. In this section, we
introduce the most prominent techniques for preprocessing. We do not focus on
one single preprocessor, but consider the techniques used in different tools.

We can distinguish three types of rules: (1) clause eliminate rules; (2) clause
modification rules; and (3) clause addition rules. Table 1 summarizes the pre-
processing techniques and their necessary preconditions. We omit showing their
soundness as this is extensively discussed in the referenced literature.

Clause Elimination Rules remove clauses while preserving unsatisfiability.
Tautology elimination (E1) removes clauses containing a positive and negative
occurrence of a variable. Subsumption (E2) removes clauses that are a super-
set of other clauses. Existential pure literal elimination (E3) removes all clauses
with an existential literal that occurs only positive or only negative in the for-
mula. Quantified blocked clause elimination (E4) removes clauses which contain
a variable producing only tautological resolvents when used as pivot.

Clause Modification Rules add, remove, and rename literals. The universal
reduction rule (M1) removes a universal literal if it is the innermost literal in
a clause. The strengthening rule (M2) relies on clauses produced by resolution
which subsume one of its antecedents. If an existential literal l occurs in a clause
of size one, then unit literal elimination (M3) allows to remove clauses containing
l and literal occurrences l̄. Universal pure literal elimination (M4) removes a uni-
versal literal if it occurs only in one polarity in the whole formula. Covered literal
addition (M5) extends a clause with literals that occur in all non-tautological
resolvents. Finally, the equivalence replacement rule (M6) substitutes the occur-
rence of a literal l (and l̄) by a literal k (and k̄) if clauses of the form (l∨ k̄) and
(l̄ ∨ k) are in the formula. Literal l must be existentially quantified and l ≥Π k.

Table 1. Preprocessing Rules.

name rewriting rule precondition

E1.
tautology
elimination

Π.ψ,C ∨ l ∨ l̄ Taut
===⇒ Π.ψ none

cl
a
u
se

el
im

in
a
ti

o
n

E2. subsumption Π.ψ,C,D
Subs

===⇒ Π.ψ,C C ⊆ D

E3.
existential pure
literal elimination

Π.ψ,C1 ∨ l, . . . , Cn ∨ l
Pure∃===⇒ Π.ψ

Q(Π, l) = ∃,
l̄ 6∈ ψ ∧ C1 ∧ . . . ∧ Cn

E4.
blocked clause
elimination

Π.ψ,C
QBCE

===⇒ Π.ψ
∃y ∈ C with Q(Π, y) = ∃,
∀D ∈ ψ with ȳ ∈ D:
l, l̄ ∈ C ⊗y D with l ≤Π y

M1.
universal
reduction

Π.ψ,C ∨ l URed
===⇒ Π.ψ,C

Q(Π, l) = ∀,
6 ∃k ∈ C with l <Π k

cl
a
u
se

m
o
d
ifi

ca
ti

o
n

M2.strengthening Π.ψ, l ∨ C, l ∨D Str
==⇒ Π.ψ,C, l ∨D C ⊆ D

M3.
unit literal
elimination

Π.ψ, l, C1 ∨ l̄, . . . , Cn ∨ l̄,
D1 ∨ l, . . . , Dm ∨ l

Unit
==⇒ Π.ψ,C1, . . . , Cn

Q(Π, l) = ∃

M4.
universal pure
literal elimination

Π.ψ,C1 ∨ l, . . . , Cn ∨ l
Pure∀===⇒ Π.ψ,C1, . . . , Cn

Q(Π, l) = ∀,
l̄ 6∈ ψ ∧ C1 ∧ . . . ∧ Cn

M5.
covered literal
addition

Π.ψ,C
QCLA

===⇒ Π.ψ,C ∨ l

∃y ∈ C with Q(Π, y) = ∃,
∀D ∈ ψ with ȳ ∈ D:
l ∈ D or k, k̄ ∈ C ⊗y D

with k, l ≤Π y

M6.
equivalence
replacement

Π.ψ, l̄ ∨ k, l ∨ k̄ Equiv
===⇒ Π.ψ[l/k] Q(Π, l) = ∃, k ≤Π l

A1.
variable
elimination

Π∃y.ψ,C1 ∨ ȳ, . . . , Cn ∨ ȳ,
D1 ∨ y, . . . , Dm ∨ y

VElim
===⇒ Π.ψ

∧
1≤i≤n
1≤j≤m

(Ci ∪Dj)
Q(Π, y) = ∃,
y 6∈ vars(ψ)

cl
a
u
se

a
d
d
it

io
n

A2.
universal
expansion

Π∀x∃Y.ψ,C1 ∨ x̄, . . . , Cn ∨ x̄,
D1 ∨ x, . . . ,Dm ∨ x,E1, . . . , Ep

UExp
===⇒
Π∃Y Y ′.ψ, C1, . . . , Cn, D

′
1, . . . , D

′
m,

E1, . . . , Ep, E
′
1, . . . , E

′
p

Q(Π,x) = ∀,
∃yi ∈ vars(Ej), yi 6∈ vars(ψ)
x 6∈ vars(ψ ∧ Ci ∧Dj ∧Ek),
D′i = Di[y1/y

′
1, . . . , yn/y

′
n],

E′i = Ei[y1/y
′
1, . . . , yn/y

′
n]

Clause Addition Rules extend the formula with new clauses, while modifying
and removing old ones. The variable elimination rule (A1), also known as DP
resolution, replaces the clauses in which a certain existential variable occurs by
all non-tautological resolvents on that variable. The universal expansion rule
(A2) removes an innermost universal variable by duplicating and modifying all
clauses that contain one or more innermost existential variables.

5 Representing Preprocessing Techniques with QRAT

The QRAT proof system as presented above provides clause elimination and
addition rules as in propositional logic when the pivot variable is existentially
quantified. Further, QRAT allows for the removal/addition of variables in the
case of universal pivots. This is almost sufficient to express the preprocessing
rules introduced in the previous section. The only missing element is universal
reduction, which is also makes the difference between propositional resolution
and resolution for QBF. To this end, we introduce the concept of extended univer-
sal resolution what is based on Theorem 4.9 of Van Gelder’s work on resolution
path dependency schemes [15]. In the following, we do not introduce the concept
of resolution path dependencies, but we describe the universal literal elimination
criterion according to the terminology used in the rest of the paper.

Definition 7 (Inner Clause). Let C be a clause occurring in QBF Π.ψ. The
inner clause of C on literal l ∈ C, denoted by I(Π,C, l), is given by the clause
{k | k ∈ C, k = l̄ or k >Π l}.

Lemma 3. Given a QBF formula Π.ψ, let E(Π,C, l) be the unique clause ob-
tained by repeatedly applying the extension rule

C := C ∪ I(Π,D, l) where k ∈ C, k̄ ∈ D,Q(k) = ∃, and D ∈ ψ

until fixpoint. Given a QBF Π.ψ ∧ {E} with a universal literal l ∈ E such that
l̄ 6∈ E(Π,E, l). Then, the removal of l from E is satisfiability preserving.

Lemma 3 is a generalization of the universal reduction rule which we call
extended universal reduction in the following. For the application of extended

universal reduction we write Π.ψ ∪ {C} EUR−−→ Π.ψ ∪ {C \ {l}}.
Now we are able to express the preprocessing techniques shown in Table 1

with only four rules: QRATE, QRATA, QRATU, and EUR. Table 2 shows the
translations for the clause elimination techniques, Table 3 for the clause modi-
fication techniques, and Table 4 for the clause addition techniques. We refer to
Table 1 for the preconditions for the application of the preprocessing rules.

Tautologies, subsumed clauses as well as blocked clauses have QRAT, so only
one application of QRATE is necessary for their removal. If an existential literal
is pure than all clauses in which it occurs are blocked w.r.t. this literal and
therefore can be omitted by multiple applications of QRATE.

For strengthening a clause C ∨ l, we first add the resolvent with D ∨ l̄ which
is C. Now, C ∨ l is subsumed and can, as we have discussed before, be removed
by QRATE. To express unit literal elimination, we first add clauses Ci, i.e., the
resolvents of Ci ∨ l̄ and l. Then Ci ∨ l̄ become QRAT and can be removed. Now
the literal l occurs only in one polarity and hence, the clauses containing l can
be removed by QRATE (cf., existential pure literal elimination). Universal pure
literal elimination simply maps to multiple applications of QRATU such that l
does not occur in the formula anymore. If a universal literal l is removed from a
clause C, this can naturally be expressed by extended universal resolution.

Table 2. Clause Elimination Rules.

preprocessing rule rewriting

Π.ψ,C ∨ l ∨ l̄ Taut
===⇒ Π.ψ Π.ψ,C ∨ l ∨ l̄ QRATE−−−−→ Π.ψ

Π.ψ,C,D
Subs

===⇒ Π.ψ,C Π.ψ,C,D
QRATE−−−−→ Π.ψ,C

Π.ψ,C1 ∨ l, . . . , Cn ∨ l
Pure∃===⇒ Π.ψ Π.ψ,C1 ∨ l, . . . , Cn ∨ l

QRATE∗−−−−−→ Π.ψ

Π.ψ,C
QBCE

====⇒ Π.ψ Π.ψ,C
QRATE−−−−→ Π.ψ

Table 3. Clause Modification Rules.

preprocessing rule rewriting

Π.ψ,C ∨ l,D ∨ l̄
Str

==⇒ Π.ψ,C,D ∨ l̄
Π.ψ,C ∨ l,D ∨ l̄
QRATA−−−−→Π.ψ,C,C ∨ l, D ∨ l̄ QRATE−−−−→ Π.ψ,C,D ∨ l̄

Π.ψ, l, C1∨ l̄, . . . , Cn∨ l̄,
D1 ∨ l, . . . , Dm ∨ l

Unit
==⇒ Π.ψ,C1, . . . , Cn

Π.ψ,C1 ∨ l̄, . . . , Cn ∨ l̄, D1 ∨ l, . . . Dm ∨ l, l
QRATA∗−−−−−→
Π.ψ,C1 ∨ l̄, . . . , Cn ∨ l̄, D1 ∨ l, . . . Dm ∨ l, l, C1, . . . , Cn
QRATE∗−−−−−→ Π.ψ, l, C1, . . . , Cn

QRATE−−−−→ Π.ψ, C1, . . . , Cn

Π.ψ,C1 ∨ l, . . . , Cn ∨ l
Pure∀===⇒ Π.ψ,C1, . . . , Cn

Π.ψ, l ∨ C1, . . . , l ∨ Cn
QRATU∗−−−−−→ Π.ψ,C1, . . . , Cn

Π.ψ,C ∨ l
URed

===⇒ Π.ψ,C

Π.ψ,C ∨ l
EUR−−→ Π.ψ,C

Π.ψ, l̄ ∨ k, l ∨ k̄
Equiv

===⇒ Π.ψ[l/k]

Π.ψ,C1 ∨ l, . . . , Cn ∨ l,D1 ∨ l̄, . . . , Dm ∨ l̄, l̄ ∨ k, l ∨ k̄
QRATA∗−−−−−→ Π.ψ,C1 ∨ l, . . . , Cn ∨ l,D1 ∨ l̄, . . . , Dm ∨ l̄,
l̄ ∨ k, l ∨ k̄, C1 ∨ k, . . . , Cn ∨ k,D1 ∨ k̄, . . . , Dm ∨ k̄

QRATE∗−−−−−→
Π.ψ, l̄ ∨ k, l ∨ k̄, C1 ∨ k, . . . , Cn ∨ k,D1 ∨ k̄, . . . , Dm ∨ k̄
QRATE∗−−−−−→ Π.ψ,C1 ∨ k, . . . , Cn ∨ k,D1 ∨ k̄, . . . , Dm ∨ k̄

Π.ψ,C
QCLA

====⇒ Π.ψ,C ∨ l
Π.ψ,C
QRATA−−−−→ Π.ψ,C,C ∨ l QRATE−−−−→ Π.ψ,C ∨ l

If l is a covered literal for C w.r.t. Π.ψ, then C∨l has QRAT w.r.t. Π.ψ. After
adding C ∨ l using QRATA, C gets QRAT and can be removed using QRATE.
Quantified covered clause elimination [8] is a clause elimination procedure that
extends clauses with covered literals until clauses become blocked. To represent
this procedure, we add an intermediate clause for each covered literal addition.
When the clause is blocked, it can be eliminated using QRATE.

If a literal l shall be substituted by a literal k due to equivalence replacement,
the formula has to contain the binary clauses (l ∨ k̄) and (l̄ ∨ k). Then first the

Table 4. Clause Addition Rules. Clauses are added / removed in order of appearance.

preprocessing rule rewriting

Π∃y.ψ,C1 ∨ ȳ, . . . , Cn ∨ ȳ,
D1 ∨ y, . . . , Dm ∨ y

VElim
===⇒ Π.ψ

∧
1≤i≤n
1≤j≤m

(Ci ∪Dj)

Π∃y.ψ,C1 ∨ y, . . . , Cn ∨ y,D1 ∨ ȳ, . . . , Dm ∨ ȳ
QRATA∗−−−−−→ Π∃y.ψ,C1 ∨ y, . . . , Cn ∨ y,
D1 ∨ ȳ, . . . , Dm ∨ ȳ, C1 ∪D1, . . . , Cn ∪Dm

QRATE∗−−−−−→ Π.ψ,C1 ∪D1, . . . , Cn ∪Dm

Π∀x∃Y.ψ,
C1 ∨ x̄, . . . , Cn ∨ x̄,
D1 ∨ x, . . . ,Dm ∨ x,
E1, . . . , Ep

UExp
===⇒
Π∃Y Y ′.ψ, C1, . . . , Cn,
D′1, . . . , D

′
m,

E1, . . . , Ep,
E′1, . . . , E

′
p

Π∀x∃Y.ψ,C1 ∨ x̄, . . . , Cn ∨ x̄, D1,∨x, . . . ,Dm ∨ x,
E1, . . . , Ep

QRATA∗−−−−−→ Π∀x∃Y Y ′.ψ, C1 ∨ x̄, . . . , Cn ∨ x̄,
D1∨x, . . . ,Dm∨x,E1, . . . , Ep, E1∨x̄, . . . , Ep∨x̄,
x ∨ y1 ∨ ȳ′1, . . . , x ∨ y|Y | ∨ ȳ′|Y |,
x ∨ ȳ1 ∨ y′1, . . . , x ∨ ȳ|Y | ∨ y′|Y |,
D′1 ∨ x, . . . ,D′m ∨ x,E′1 ∨ x, . . . , E′p ∨ x

QRATE∗−−−−−→ Π∀x∃Y Y ′.ψ, C1 ∨ x̄, . . . , Cn ∨ x̄,
E1 ∨ x̄, . . . , Ep ∨ x̄, D′1 ∨ x, . . . ,D′m ∨ x,
E′1 ∨ x, . . . , E′p ∨ x

EUR∗−−−→ Π∃Y Y ′.ψ, C1, . . . , Cn, E1, . . . , Ep,
D′1, . . . , D

′
m, E

′
1, . . . , E

′
p

clauses Ci ∨ k and Dj ∨ k̄ are added by resolution, i.e., by QRATA. All clauses
containing l and l̄ are asymmetric tautologies, because k, k̄ ∈ ALA(ψ,Ci ∨ l) and
can therefore be removed by QRATE.

Variable elimination is rewritten as follows. First all possible non-tautological
resolvents on elimination variable y are added with QRATA. Then all clauses
containing y or ȳ become QRAT and can be eliminated by QRATE.

Finally, we describe universal expansion using redundancy elimination and
addition rules. Consider the QBF Π∀x∃Y.ψ from which we want to eliminate the
innermost universal variable x. Let E = {Ei | Ei ∈ ψY , x /∈ Ei, x̄ 6∈ Ei}. In the
first step, we add clauses Ei∨ x̄ (which are subsumed by Ei) using QRATA. This
is necessary, because we later need to eliminate Ei. We introduce conditionally
equivalences represented by the clauses x∨ yj ∨ ȳ′j and x∨ ȳj ∨ y′j for all yj ∈ Y
and append ∃Y ′ to the prefix. Now we copy all original clauses with literal yj ,
but without x̄ and add literal x in case it is not already present. The conditional
equivalences allow to treat original and primed copies of clauses with x as al-
ternative. One version can be exchanged for the other as long the equivalence
clauses are there. We add the primed copies and afterwards remove the original
ones. Now all clauses Ei are asymmetric tautologies and can be removed. Next,
we remove the conditional equivalences x ∨ yj ∨ ȳ′j and x ∨ ȳj ∨ y′j which have
QRAT after removal of the Ei clauses. At this point, clauses containing variables
from Y do not contain x and clauses with variables from Y ′ do not contain x̄.
We can now apply extended universal reduction to remove the literals x and x̄.

6 QRAT Proofs

This section describes our new proof format for QBF formulas, how to check it
and an experimental evaluation. The syntax of the proof format is very similar
to the DRUP proof format [11] for CNF formulas. We extend the DRUP syntax
to express elimination of universal literals. Furthermore, the redundancy check
is different than proofs in DRUP because we deal with QBF formulas.

6.1 The QRAT Proof Format

Proofs are sequences of clause additions and deletions. They are build using three
kind of lines: addition (QRATA), deletion (QRATE), and universal elimination
(QRATU and EUR). Addition lines have no prefix and are unconstrained in the
sense that one can add any clause at any point in the proof. Clause deletion lines,
with prefix “d”, and universal elimination lines, with prefix “u”, are restricted.
The clause after a “d” or “u” prefix must be either present in the original formula
or as a clause added earlier in the proof.

Let Π.ψ be a QBF formula and P be a QRAT proof for Π.ψ. We denote the
number of lines in a proof P by |P |. For each i ∈ {0, . . . , |P |}, we define a CNF
formula ψiP below. Ci refers to the clause on line i of P and li refers to the first
literal on i of P .

ψiP :=


ψ if i = 0;

ψi−1
P \ {Ci} if the prefix of Ci is “d”;

ψi−1
P \ {Ci} ∪ {Ci \ {li}} if the prefix of Ci is “u”;

ψi−1
P ∪ {Ci} otherwise.

A proof P is called a satisfaction proof for QBF formula Π.ψ if the following
two properties hold. First, for all i ∈ {1, . . . , |P |}, if clause Ci has prefix “d”, then
it must have QRAT on li with respect to ψiP . In case li is universally quantified,

we check whether ALA(ψi−1
P , Ci) is a tautology. Second, ψ

|P |
P must be empty.

A proof P is called a refutation proof for QBF formula Π.ψ if the following
three properties hold. First, for all i ∈ {1, . . . , |P |}, if clause Ci has no prefix, then
it must have QRAT on li with respect to ψi−1

P . In case li is universally quantified,
we check whether ALA(ψi−1

P , Ci) is a tautology. Second, for all i ∈ {1, . . . , |P |}, if
clause Ci has has prefix “u”, then li must be universally quantified. Additionally,
Ci must have either QRAT on li with respect to ψi−1

P , or li can be removed using
EUR. Third, C|P | must be the empty clause (without a prefix). Fig. 1 shows a
true and a false QBF and a QRAT proof for both.

A universal elimination line in satisfaction proofs can be replaced by a clause
addition and deletion line to obtain another satisfaction proof. Simply add the
clause without its first literal, and afterwards delete the subsumed clause. For
example, consider the line “u 1 2 3 0” in a satisfaction proof. This line can
be replaced by “2 3 0” followed by “d 1 2 3 0”. Consequently, we can convert
any satisfaction proof into a satisfaction proof that contains only clause addition
and deletion lines.

true QBF formula

p cnf 3 3

a 1 0

e 2 3 0

1 2 0

-1 3 0

-2 -3 0

satisfaction proof

-1 -2 0

d 3 -1 0

d -3 -2 0

d -2 -1 0

d 2 1 0

false QBF formula

p cnf 3 3

a 1 0

e 2 3 0

1 2 0

1 3 0

-2 -3 0

refutation proof

-2 0

d -2 -3 0

1 0

u 1 0

0

Fig. 1. Two QBFs formulas and QRAT proofs. On the left a true QBF with a satis-
faction proof next to it. On the right a false QBF with a refutation next to it. The
formulas and proofs are spaced to improve readability. Proofs consist of three kind of
lines: addition (no prefix), deletion (“d ” prefix) and universal elimination (“u ” prefix).

Recall that QRATA can add clauses that contain new variables. The QRAT
proof format does not support describing the quantifier block for new variables.
For all known preprocessing techniques, newly introduced variables are placed in
the innermost active existential quantifier block. Consequently, the QRAT format
assumes this convention for all new variables.

6.2 Checking QRAT Proofs

Although the syntax for QRAT proof is identical for true and false QBFs, vali-
dating a proof is different. For true QBFs only the clause deletion lines (the ones
with a “d ” prefix) have to be checked, while for false QBFs, all the lines except
the clause deletion lines have to be checked.

The easiest, but rather expensive, method to validate proofs is by checking
the redundancy of each clause. This means for true QBFs checking all deletion
lines and for false QBFs all addition and universal elimination lines. However,
one can check proofs more efficiently my marking involved clauses during each
redundancy check. That way the checker can be restricted to validate marked
clauses only. The marking procedure is a bit tricky. In short, it marks all involved
clauses that were required to compute the last unique implication point from each
conflict.

Checking only marked clauses was proposed to check clausal proofs of CNF
formulas efficiently [10]. For false QBFs, the checking is similar to the SAT
case: during initialization the empty clause is marked. Refutation proofs should
be validated in reverse order, starting with the marked empty clause. For true
QBFs the procedure is different: initially all original clauses are marked and
satisfaction proofs are checked in chronological order. When a clause is deleted
that was not marked by any redundancy check, the clause can be skipped.

Example 5. Consider the true QBF Π.ψ = ∀a ∃b, c.(a ∨ b) ∧ (ā ∨ c) ∧ (b̄ ∨ c̄).
This is the same QBF as in Fig. 1 (left). Fig. 1 also shows the satisfaction proof
P := (ā ∨ b̄), d(c ∨ ā), d(c̄ ∨ b̄), d(ā ∨ b̄), d(a ∨ b). Satisfaction proofs are checked
in chronological order. So, first, (ā ∨ b̄) is added, afterwards (c ∨ ā) is removed,
until all clauses and all added clauses have been deleted.

6.3 Implementation

We equipped our preprocessor bloqqer [8] with QRAT-based tracing as described
in Section 5. In contrast to previous extensions of bloqqer [7,16] we hardly had
to modify its internal behavior. In particular, we did not have to restrict the
application of any preprocessing technique including universal expansion. Hence,
with the QRAT-based tracing approach, we have the first QBF preprocessor
which fully supports proof generation for true and for false formulas.

We implemented an efficient QRAT checker QRATtrim on top of DRUPtrim [11],
a clausal proofs checking tool for CNF formulas. The implementation uses the
optimizations of Section 6, such as validating marked clauses only and checking
satisfaction and refutation proofs in chronological and reverse order, respectively.

Evaluations on the benchmark sets of the QBF evaluations 2010 and 2012
indicate that the power of the preprocessor is hardly reduced by enabling QRAT-
based tracing. The benchmark set of 2010 (resp. 2012) contains 64 (resp. 32) true
instances and 86 (resp. 36) false instances which can be solved by using only blo-
qqer. These formulas turn out to be extremely hard for conflict/solution-driven
clause/cube learning solvers like DepQBF [17], which can only solve 26 (resp. 2)
true formulas and 57 (resp. 14) false formulas. For the other formulas DepQBF
timed-out, given a time limit of 900 seconds. The resolution-proof producing
version of bloqqer which was presented in [7] is able to evaluate 28 (resp. 22)
true formulas and 57 (resp. 22) false formulas. Please note that bloqqer did not
time out for an unsolved formula, but returned the preprocessed formula. The
lower number of solved formulas is due to restricting the applied preprocessing
techniques to those that are supported [7]. Our new QRAT-based proof produc-
ing version of bloqqer solves 58 (resp. 31) true formulas and 84 (resp. 36) false
formulas. Our bloqqer extension, the proof checking tools as well as the details
on our experiments are available at http://fmv.jku.at/qrat-bloqqer.

7 Conclusion

We presented a proof system which captures recent preprocessing and solving
techniques for QBF in a uniform manner. Based on asymmetric tautologies, the
proof system consists only of four simple rules. We showed how state-of-the-art
preprocessing techniques can be represented within this proof system. Our rules
QRATE, QRATU, and QRATA may be applied as preprocessing rules themselves
similar as blocked clauses and we plan to integrate them in our preprocessor.
We deal with all the challenges regarding certificates and preprocessing for QBF
recently listed in [7], namely: can we (1) produce polynomially-verifiable certifi-
cates for true QBFs in the context of preprocessing, (2) narrow the performance
gap between solving with and without certificate generation; and (3) develop
methods to deal with universal expansion and other techniques. First, the size
of our certificates for true QBFs is polynomial in the solving time and certificate
checking can be done in polynomial time. Second, the overhead of emitting cer-
tificates is small and all existing preprocessing techniques are supported. Third,
our proof system can simulate universal expansion and other existing techniques.

http://fmv.jku.at/qrat-bloqqer

Future work will focus on rewriting search based QBF solver techniques [17] to
the QRAT proof system and extracting Skolem functions [4] from QRAT proofs.

References

1. Benedetti, M.: Extracting certificates from quantified boolean formulas. In: IJCAI,
Professional Book Center (2005) 47–53

2. Kleine Büning, H., Subramani, K., Zhao, X.: Boolean functions as models for
quantified boolean formulas. J. Autom. Reasoning 39(1) (2007) 49–75

3. Jussila, T., Biere, A., Sinz, C., Kröning, D., Wintersteiger, C.: A first step towards
a unified proof checker for qbf. In: SAT 2007. Volume 4501 of LNCS. Springer
(2007) 201–214

4. Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-Based
Certificate Extraction for QBF. In: SAT 2012. Volume 7317 of LNCS. (2012)

5. Janota, M., Grigore, R., Marques-Silva, J.: On checking of skolem-based models
of qbf. In: RCRA 2012. (2012)

6. Van Gelder, A.: Certificate Extraction from Variable-Elimination QBF Preproces-
sors. In: Proc. of the 1st Int. Workshop on Quantified Boolean Formulas (QBF
2013), http://fmv.jku.at/qbf2013/reportQBFWS13.pdf (2013) 35–39

7. Janota, M., Grigore, R., Marques-Silva, J.: On qbf proofs and preprocessing. In:
LPAR. Volume 8312 of LNCS., Springer (2013) 473–489

8. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: CADE
2011. Volume 6803 of LNCS., Springer (2011) 101–115

9. Biere, A.: Resolve and expand. In: SAT (Selected Papers. Volume 3542 of Lecture
Notes in Computer Science., Springer (2004) 59–70

10. Goldberg, E.I., Novikov, Y.: Verification of proofs of unsatisfiability for CNF
formulas. In: DATE. (2003) 10886–10891

11. Heule, M.J.H., Hunt, Jr., W.A., Wetzler, N.: Trimming while checking clausal
proofs. In: FMCAD. (2013)

12. Heule, M.J.H., Hunt, Jr., W.A., Wetzler, N.: Verifying refutations with extended
resolution. In: CADE. Volume 7898 of LNAI., Springer (2013) 345–359

13. Heule, M.J.H., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF
formulas. In: LPAR-17. Volume 6397 of LNCS., Springer (2010) 357–371

14. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Proceedings of
IJCAR 2012. Volume 7364 of LNCS., Springer (2012) 355–370

15. Van Gelder, A.: Variable independence and resolution paths for quantified boolean
formulas. In: CP’11. CP’11, Berlin, Heidelberg, Springer-Verlag (2011) 789–803

16. Könighofer, R., Seidl, M.: Partial witnesses from preprocessed quantified boolean
formulas. In: accepted for DATE 2014. (2014)

17. Lonsing, F., Biere, A.: Depqbf: A dependency-aware qbf solver. JSAT 7(2-3)
(2010) 71–76

