
Operating System Process and Thread Migration in
Heterogeneous Platforms

Robert Lyerly, Antonio Barbalace, Christopher Jelesnianski
Vincent Legout, Anthony Carno, Binoy Ravindran

Dept. of Electrical and Computer Engineering
Virginia Tech, Virginia, USA

{rlyerly, antoniob, bielsk1, vlegout, acarno, binoy}@vt.edu

ABSTRACT
Parallel and heterogeneous computing are here to stay. More-
over, diverse computational units are increasingly tighter-
integrated in emerging heterogeneous platforms, sharing ac-
cess to the memory bus. We argue that the traditional way
we use heterogeneous platforms is obsolete. We propose new
system software that enables programming these platforms
as if they were an SMP, via the multi-threaded shared-
memory programming model. Using this model provides
better programmability, flexibility, and exploitability. We
first provide an overview of the state transformation problem
when migrating a thread between different-ISA processors.
We then propose, build and evaluate a series of offline and
runtime mechanisms that implement our design on top of
Popcorn Linux ARM/x86. Results show that the overheads
are minimal, thus proving the viability of our architecture.

1. INTRODUCTION
Heterogeneous computing platforms are now ubiquitous,

powering systems from mobile devices to servers, and are
here to stay [40]. Similar to parallel computing, heteroge-
neous computing strictly depends on software to fully ex-
ploit the hardware, complicating programming these sys-
tems. Hence, in this paper we advocate system software
that improves the programmability of emerging heteroge-
neous platforms. Specifically, we propose OS and compiler
mechanisms that enable the shared memory multi-threading
programming model on such platforms, and thus process and
thread migration among ISA-diverse processors.

Architectures Landscape. CPU/GPU setups are by
far the most popular heterogeneous platform. However, new
platforms deploying heterogeneous CPUs have begun to en-
ter the market, e.g., ARM big.LITTLE [38], Intel Xeon and
Xeon Phi [25], and x86 and ARM [31, 13]. In heterogeneous
CPU/CPU platforms, each processor is general purpose and
able to run an operating system (OS-capable [31]). Pro-
cessors in heterogeneous computing platforms are becoming
increasingly tightly-coupled [2, 38, 29, 3], i.e., they are in-
terconnected through the memory bus, and therefore share
memory which can be cache-coherent. Although platform-
wide shared memory is a definite trend [20, 22], cache-coherency
has been pinpointed as a fundamental issue hampering scal-
ability to higher core counts [9, 15], opening the way to soft-
ware programmed coherency [11, 33]. To exploit emerging
heterogeneous platforms, applications should be able to use
all available processor resources by seamlessly running across
different processors to exploit diversity and by mapping data

and optimizing sharing to reduce hardware overheads.
Heterogeneous Programming. The common practice

in heterogeneous platforms is to start the application on the
main processor (CPU) and during execution, offload parts
of the application to a specific accelerator (e.g., GPU) that
atomically executes a computation and returns the result.
Offloading requires providing the remote processor with the
code to be executed and the data on which it has to operate;
in most architectures this requires a data copy. This com-
putational model is acceptable for devices that provide lim-
ited control (non general-purpose), e.g., present-day GPUs.
However, forcing the execution flow to return to the source
processor at the end of each offloaded function is too rigid for
emerging heterogeneous platforms [8]. In CPU/CPU plat-
forms, the application can gain advantages by freely migrat-
ing between processors – execution migration on CPU/CPU
platforms has been shown to enable better performance [8,
17] and lower power consumption [13, 42]

Contributions. Due to these trends, we argue that with
increasingly heterogeneous and tighter-integrated platforms
offloading should be substituted by execution migration. Hence,
this paper introduces a system software architecture for pro-
cess and thread migration in a multiple-kernel operating sys-
tem (e.g., [7, 9]), atop OS-capable heterogeneous-ISA pro-
cessors. Similarly to traditional SMP OSs, threads migrate
among processors of different ISAs without any restriction.
Therefore, we extend the multi-threaded shared memory
programming model to heterogeneous platforms. We fur-
thermore identify and evaluate the required system software
mechanisms. This software design exploits a replicated-
kernel OS which provides atomic operating system services [21]
for thread migration. A prototype has been built atop Pop-
corn Linux on an ARM/x86 platform. We choose these two
ISAs due to their popularity in today’s server market and
for their remarkable differences [13]. Note that this work
does not address scheduling in these systems, but instead
focuses on the mechanisms required for migration.

In Section 2 we survey the design space of the software
for heterogeneous-ISA platforms, in Section 3 we describe
the state transformation problem, and in Section 4 we in-
troduce our system software architecture, which implements
a specific solution in the design space. Section 5 discusses
our implementation and Section 6 reports the costs of some
of the proposed mechanisms. Section 7 concludes.

2. HETEROGENEOUS PLATFORMS
Heterogeneous platforms are historically built with mul-

tiple processors (e.g., a CPU and GPU), each of which has



its own memory. These platforms increasingly resemble dis-
tributed systems, and previous works [10, 27] proposed ap-
plying distributed systems principles to heterogeneous plat-
forms. In particular, message passing has been advocated as
a way to hide diversity and enable scalability. However, it
is unclear how programmers will be able to efficiently utilize
emerging platforms with such a software architecture.

Programming Models. Most application software for
heterogeneous platforms uses one of two programming mod-
els for execution. Message-Passing, popular in distributed
systems, uses hard-coded communication channels to share
data between multiple processes, each of which may be exe-
cuting on a different ISA. Data is transferred between pro-
cesses at programmer-defined intervals and in pre-agreed for-
mats. Additionally, the mapping of processes to processors
is done only at application startup and does not change dur-
ing execution. Code Offloading is widespread in single-node
heterogeneous platforms. Similarly to message-passing, of-
floading requires the developer to decouple an application
into multiple execution environments with hard-coded data
transfer points and pre-agreed data formats. Offloaded ex-
ecution runs to completion and cannot be interrupted or
migrated. However, offloading differs from message-passing
in that code is passed along with data to processors. Nei-
ther programming model provides the flexibility of shared-
memory, which allows applications to migrate among avail-
able processors at any time according to a scheduler policy,
thus enhancing execution flexibility.

System Software. Traditional system software for het-
erogeneous platforms moves the burden of handling diver-
sity outside the OS while providing minimal system abstrac-
tions to communicate with remote processors (e.g., devices
in Linux). Each set of different-ISA processors runs a dis-
tinct and independent operating system. Hence, recent re-
search in system software proposes tightly coupling distinct
execution environments [9, 23, 31, 6], even if they are not
OS-capable [34, 36, 26].

The Way Ahead. On emerging heterogeneous platforms
[25, 24, 1, 20, 22], software running on different processors
may share access to global memory. This means execution
environments on different processors are no longer restricted
to message passing for low-level communication, allowing de-
velopers to exploit shared memory. These new architectures
also allow more execution flexibility – message-passing and
offloading restricts migration and communication to pre-
defined locations, whereas a shared memory model allows
transparent migration at any code instruction. In [8] we
demonstrated the advantages of the shared memory pro-
gramming model compared to offloading.

2.1 Data Sharing and Conversion
Processors implementing different ISAs not only have dif-

ferent instructions and register sets, but different native data
storage formats, defined as the ISA’s application binary in-
terface (ABI). Even if different-ISA processors share mem-
ory, they must agree on a common data storage convention
or data must be converted between formats upon execution
migration (this requirement extends to executable code, al-
though in our design the compiler is responsible for the con-
version by generating machine code for each architecture).
Thus, the question is: how must applications be built and
run in order to make processes and thread migratable among
processors in a heterogeneous platform?

The space of possible solutions includes two dimensions:
data storage format and data sharing. In the data storage
format dimension, data is either stored in a common for-
mat or data is dynamically converted between ABIs at run-
time. In the data sharing dimension, threads either share
all data (and therefore all program data), or no data is
shared and replication is required, necessitating consistency
via message-passing. In this design space there are three so-
lutions often used today: shared everything using a common
format (e.g., SMP multithreaded software), shared nothing
using a custom format (e.g., the Internet), and shared noth-
ing using a common format (e.g., PGAS models in a cluster).

Execution on heterogeneous processors requires data con-
version. The knowledge for conversion can be either embed-
ded in the code by the compiler (e.g., a common format and
application layout), or retrieved at runtime through meta-
data lookup [37]. The former has less runtime overhead than
the latter, but potentially limits architecture-specific opti-
mization. A middle-ground solution can retain performance
benefits while allowing execution flexibility.

2.2 Level of Abstraction
In a heterogeneous platform, data sharing and conversion

can be implemented at any level of the software stack –
where should data sharing and conversion fit into the soft-
ware stack to best enhance efficiency and programmability?
Two main approaches have been proposed in the literature
for heterogeneous and homogeneous systems.

Application. As mentioned before, applications are tra-
ditionally the main users of platform heterogeneity (although
several works have explored accelerator usage in kernel space [39]).
Seminal work from Attardi et al. [4] advocated for user-
space process migration among heterogeneous processors,
which was implemented by Smith and Hutchinson in the
TUI system [37]. The TUI system implements a shared
nothing model with full state conversion when an applica-
tion migrates between processors. More recently, DeVuyst
et al. [17], Venkat and Tullsen [42], and Barbalace et al. [13]
introduced application migration among heterogeneous ISA
processors that share memory, enforcing a (partially) com-
mon address space for threads running on each ISA.

Kernel service. Operating system-level sharing of data
structures amongst diverse processors has also been explored.
Chapin et al. [16], K42 [44], Corey [14], and Bauman et al. [9]
explored sharing on homogeneous ISA processors to attack
scalability issues, while [23, 31, 10, 13, 28] extended this field
to heterogeneous ISA processors. Barrelfish [9] proposed a
shared nothing model amongst kernels, K2 [28] selectively
implemented services in the shared nothing or shared every-
thing design, and Popcorn Linux [6] implemented a strict
shared nothing model. None of these works describe how
to handle heterogeneity with completely disjoint ISAs. Ker-
righed [30] proposed a shared mostly model based on dis-
tributed shared memory in cluster computing.

3. MODEL
In this section we discuss a model for multi-threaded ap-

plications running on a multiple-kernel OS. Kernels may run
on different-ISA CPUs, with threads and processes migrat-
ing freely among these kernels. We consider an OS model in
which the OS completely mediates IO, such that an appli-
cation’s address space exclusively maps main memory (i.e.,
no memory mapped devices). Kernel services provide appli-



cations with access to devices across kernels.
Application. The state of an application is a collection

of variables and machine code. Each multi-threaded applica-
tion includes per-thread state and per-process state. If the
application is multi-process the model extends to sharing
between multiple processes and includes a per-application
state. The per-thread state includes thread local storage
(TLS), user-space stack, and the user-space visible state of
the CPU. The TLS data includes per-thread variables (e.g.,
GCC’s declared __thread variables) as well as program li-
braries (e.g., malloc has per-thread variables to speed up
memory allocation). The per-process state includes all other
user-visible state that makes up the application’s address
space, such as all global data allocated in the heap or in the
program’s data sections and the application’s machine code
(i.e., the .text section).

Kernel Service. Each application also has a per-thread
and per-process OS state. Moreover, the kernel has a per-
CPU and a kernel-wide state. For an application thread
executing in kernel-space, the per-thread OS state includes
the stack, CPU registers, and per-thread OS data. The OS
state of an interrupted application thread (e.g., signal) in-
cludes only the per-thread OS data. Note that in message-
passing kernels, a thread’s receiver buffer state belongs to
either per-thread or per-process OS state, for both a thread
executing in kernel-space or one that has been interrupted.
The replicated-kernel OS design [7, 6] replicates OS services
so that the per-application state of each service is the same
on each kernel within kernels where the process is active.
However, this design does not guarantee consistency of the
kernel-wide system state among kernels. Instead, this de-
pends on the service and the degree of sharing (i.e., for
shared-everything, all kernels share a single OS state).

4. ARCHITECTURE
We propose a system software architecture for emerging

heterogeneous-ISA CPU/CPU platforms that deploys one
kernel per-ISA and uses distributed kernel services (a shared-
nothing multiple kernel OS [8]). Application threads can
migrate freely among kernels, and application threads on
different kernels share memory. We enforce a common ad-
dress space layout at compile or load time. For an applica-
tion, each kernel configures the virtual memory system to
map data at the same virtual addresses on all architectures.
However, the .text section contains per-ISA code and is
mapped per-architecture (shared-everything in userspace).

Previous approaches exploring execution migration [37]
focused on migrating an entire process – we expand the
scope to target thread migration. Hence we argue for a com-
mon per-process state, without which a distributed protocol
(which maintains consistent views of the per-process state)
and per-ISA format conversion routines must be deployed,
which will likely add non-trivial execution overheads. Be-
cause per-thread state is exclusively accessed by the thread
itself, the per-thread state need not be kept in a common for-
mat between ISAs. During migration, each member of the
per-thread state can be converted to the destination format
as needed (see Section 5). Moreover, a distributed shared
memory (DSM) protocol will provide cache-coherent shared
memory when not available in hardware (see Section 4.1).

Heterogeneous Continuations. This work extends Linux,
a process model OS [21]. Each application thread has a user-
space stack as well as a kernel-space stack. The proposed

Figure 1: Program address space mapping.

software architecture manages each stack differently. To fa-
cilitate process and thread migration, threads use the same
user-space stack regardless of the ISA on which they are run-
ning. This design requires encoding the user-space stack in
a common format or converting it during migration. Con-
versely, each thread has a per-ISA kernel-space stack. This
is handled similarly to a continuation [19]. However, we as-
sociate a group of continuations with the same thread that
runs on different-ISA CPUs (versus different threads).

Kernel threads do not migrate between kernels. However,
application threads executing in kernel space can migrate
under specific conditions. The replicated-kernel OS design
distributes OS services, replicating global state among each
kernel while maintaining local state per-kernel. Hence, an
application thread that is executing code in kernel space can-
not migrate during execution of a kernel service; otherwise,
service atomicity is lost. This design does allow migration
when the OS services are in a fully consistent state, such as
just before or after an OS service (i.e., in the syscall layer).

4.1 Thread migration service and hDSM
A thread control block (TCB) exists on every kernel for a

migrating application thread (struct task_struct in Linux).
A task migration kernel service keeps TCBs consistent among
kernels. For each ISA in the platform, the TCB refers to
a different user-space machine code virtual memory area,
kernel-space stack, and kernel- and user-space register state.

An application provides a per-ISA version of an appli-
cation’s machine code. When execution migrates between
kernels, the machine code mappings are switched to those
of the destination ISA. This is implemented by our hetero-
geneous distributed shared memory (hDSM) kernel service
that aliases the .text section of each ISA at the same vir-
tual address range. To provide the illusion of a single ad-
dress space (despite the aliased regions), the hDSM service
shares the same physical memory pages between kernels for
cache-coherent systems, or implements a DSM protocol for
non cache-coherent systems. Figure 1 depicts this mecha-
nism, which is transparent to the application and portrays
the exact same address space on each kernel.

Placing each symbol of the program at the same virtual
address in each binary enables threads to transition from
one ISA’s binary to another. Alternatives exist, such as
using dereferencing tables for each symbol; however, we be-
lieve this will increase the execution overhead for negligible
gains in flexibility. This architecture considers migration
only at equivalence points [43] (points at which an equivalent
code continuation exists in another ISA’s binary). Function
boundaries are convenient migration points – the runtime
system can decide if migration is worthwhile and explicitly
call the kernel’s migration service. The compiler should be
modified to prepare such special binaries. To remove the



limitation of migrating only at equivalence points, we pro-
pose emulating the source ISA up until a migration point.

Kernel-space thread migration. Thread migration in
kernel-space is only provided at points where the stack con-
tains few frames and state transformation is trivial (e.g., the
syscall layer or anywhere the scheduler is called). At these
points, even if the thread in kernel-space is executing a ser-
vice, the action will appear to be atomic by the application.

5. IMPLEMENTATION
In this section we discuss the mechanisms that we imple-

mented in our prototype to provide a common state and
state transformation for execution migration.

5.1 Offline Mechanisms
One kernel per ISA and distributed services. Oper-

ating system services should be written in order to be either
distributed or centralized. In the latter case, a kernel that
does not implement a service will send a request for the ser-
vice to a remote kernel that implements it (i.e., a remote
procedure call). In a replicated-kernel OS such as Popcorn
Linux [8], services are mostly distributed, with a few be-
ing centralized. The server location is not fixed, although
it is constant after being defined. A kernel should be com-
piled for, and run on, each ISA. The messaging layer and
distributed services create the illusion of a single system [6].

Native compilation and common layout. An ap-
plication that runs heterogeneously requires machine code
for each ISA in the platform (similarly to multi-arch li-
braries implemented in Linux). A multi-architecture com-
piler toolchain produces a binary for each ISA in the plat-
form, each of which contains a different .text section. Each
program symbol has the same virtual address in every bi-
nary. This is achieved by enforcing a specific symbol order
and alignment at linking time. Alternatively, symbol ad-
dresses can be resolved at load time (similarly to shared
memory library loading).

Other requirements, such as data types having the same
size and alignment (including processor word size), stack
growth direction, and consistent endianness, are guaranteed
by our prototype. Moreover, TLS can be laid out in a com-
mon format or transformed at runtime – we chose the former.

5.2 Runtime Mechanisms
Register Transformation. When an application’s thread

reaches a migration point, the operating system executes the
migration service which transfers the thread’s state between
kernels. If the kernels are running on different ISAs, state
conversion, including register contents, is required in order
to resume execution on the destination ISA. However, mi-
grating at function boundaries narrows down the number
of registers to be converted, including the program counter,
stack pointer, and frame base pointer.

Stack Transformation. If stack frames are not laid out
according to a common ABI, the runtime must convert be-
tween frame layouts. In order to do the conversion, per-ISA
metadata describing stack frame layout (i.e., locations of ar-
guments and local variables) and the procedure to unwind
frames from the stack is kept in the binary. The runtime re-
peatedly rewrites a single frame from the source ISA’s stack
to the destination ISA’s stack, and can be applied eagerly to
rewrite the entire stack (i.e., rewrite all activations on the
stack) or rewrite on-demand if the cost must be amortized.

TLS Transformation. Similarly, if the TLS is not en-
coded in a common format (as we implemented) a run-
time TLS transformation mechanism must be implemented.
Compared to stack transformation, the TLS layout informa-
tion is architecture-specific and encoded in the C library.

ISA Emulation. Emulation allows migration at any in-
struction in the code, therefore providing the same flexi-
bility as thread migration in an SMP platform. Above,
and in [6, 8], we propose to migrate exclusively at pre-
defined application points. However, there can be situations
in which more flexibility is needed to meet specific schedul-
ing/mapping goals. Therefore, in order to migrate at any
point in the code the runtime can emulate the source ISA
until reaching a migration point, where state conversion can
begin. Instruction emulation can be implemented by dy-
namic binary translation.

6. EVALUATION
We evaluated the cost of the mechanisms that implement

transparent execution migration in heterogeneous platforms.
All evaluations were run on a setup composed of an x86
64-bit machine and an ARM 64-bit machine interconnected
through an IXH610 PCIe-to-PCIe non transparent bridge
from Dolphin Interconnect Solutions [18]. The x86 CPU
is an Intel i7-4790K with 4 cores (2-way hyperthreaded) at
4GHz, while the ARM CPU is an Applied Micro ARMv8
X-Gene with 8 cores at 1.6GHz. Both have 24GB of RAM.
Microbenchmarks and the C version [35] of the applications
from the NPB suite [5] were used in the evaluation.

6.1 Stack Transformation
Two factors determine stack transformation latency: stack

depth and rewriting cost for individual frames. Stack depth,
i.e., the number of frames on the stack, is directly propor-
tional to cost – more frames must be re-written with a deeper
stack. Rewriting costs consist of meta-data lookup (which
varies depending on the number of arguments and local vari-
ables in a function) and re-writing (finding data in the source
frame and copying it to the destination frame). Rewriting
costs may be non-trivial due to deconstruction of complex
data types (e.g., structs) and compiler optimization.

Figure 2 shows stack transformation latency for several
microbenchmarks. Empty: functions have one argument
and no local variables, leading to small lookup and re-writing
costs. Lookup: functions have many arguments and local
variables that are not used, causing heavy lookup costs but
small re-writing costs. Copy: functions have many live ar-
guments and local variables, leading to both heavy lookup
and re-writing costs. The x-axis shows rewriting latency
with varying stack depths. Note that NPB applications have
an average stack depth of 3.71, with a worst-case of 6.

The high-powered x86 CPU outperforms the ARM CPU,
rewriting the entire stack in under a millisecond for the
majority of test cases. This means that the scheduler can
migrate threads from x86 to ARM frequently without sig-
nificant re-writing cost, increasing adaptability. The ARM
CPU has a several-millisecond latency for re-writing larger
stacks, meaning that migration from ARM to x86 should
happen infrequently in order to minimize migration over-
heads. We expect this performance gap to shrink as the
ARMv8 architecture evolves and compiler support becomes
more mature (a 2.4GHz X-Gene1 reduces latencies by 30%).



Figure 2: Stack transformation latency when eagerly
re-writing stacks of varying depths.

0.98

1

1.02

1.04

A B C

E
xe

cu
ti
o
n
 T

im
e
 R

a
ti
o
 

x86 ARM

Figure 3: ARM and x86 execution time ratio com-
piling w and w/o alignment. NPB IS and CG, class
A, B, and C. No optimizations (-O0) and with (-O3).

6.2 Common Layout
Imposing a strictly unified layout among binaries for dif-

ferent ISAs could potentially interfere with other optimiza-
tions when compiling a given application. To investigate
this hypothesis, we compiled and ran a number of NPB ap-
plications with various problem sizes (classes A, B, and C)
enabling different optimizations (GCC’s ”-O0”, ”-O3”). Fig-
ure 3 shows the execution time ratio of aligned vs. vanilla
compilations on x86 and ARM, for the IS and CG bench-
marks. Thus, a value greater than 1 indicates that an aligned
compilation is slower. Each scenario is averaged over 100
repetitions. Enforcing the alignment, with or without op-
timizations, either reduces the execution time (up to 1.5%)
or increases it (up to 2.1%). We noticed that long running
benchmarks (class C) are less impacted if not improved by
the alignment on both x86 and ARM.

We modified the gold linker [41] in order to emit the
x86 64 TLS layout on ARM. Moreover, we updated the musl
C library in order to use this TLS. Using a similar experi-
ment as above, we observed that using the x86 64 TLS lay-
out has a negligible impact on performance. With modified
TLS, IS is 0.156%, 0.0238% and 0.00489% slower for class
A, B, and C, respectively. Though the standard TLS layout
is generally faster on ARM, the x86 64 layout has a small
and diminishing impact as execution time increases.

6.3 ISA Emulation
We investigated the costs of using dynamic binary trans-

lation (DBT) for emulation with a prototype based on the
QEMU machine emulator [12] (version 2.3). The prototype
executes entirely on x86 (64-bit) in user-space and attaches
to a running process, switching the process’ execution from
native to DBT (emulation). The prototype starts by paus-

ing the application thread and pulling its register state. The
register content is loaded into QEMU’s internal CPU struc-
tures. It then loads the pages of memory allocated to the
application into QEMU’s internal memory map structures.
At this point, QEMU begins translating and executing the
binary. We stop translation and execution after a single
basic block, though the prototype runs to completion.

We tested the prototype with the NPB IS class A bench-
mark. Our investigation showed that the primary costs of
this process involve loading the pages allocated to the appli-
cation into QEMU, 1200 µs, followed by the cost of starting
QEMU, 400 µs. Translating the code from one ISA to an-
other requires 60 µs and the costs of polling the registers and
executing the translated code are negligible. However, port-
ing this mechanism in kernel space will reduce such overhead
from 1690 µs to roughly 490 µs.

6.4 Migration overhead
To evaluate the costs of thread migration in Popcorn Linux

we migrated a thread from x86 to ARM, and back (thread
ping-pong). This operation takes on average 9.2 ms, and
consists of preparing for migration and migrating (1.2 ms),
creating a remote execution context and executing an empty
function on ARM, migrating back (7.7 ms in which execu-
tion is message-bounded), and resuming the execution on
x86 (0.3 ms). The cost of register transformation is negli-
gible. The inverse migration takes on average 8.7 ms. The
thread ping-pong cost includes the cost of migrating mem-
ory pages needed by the remote architecture. The current
hardware prototype does not have shared memory, therefore
distributed shared memory is required. However, handling
one page fault costs 140.9 µs on x86 and 80.2 µs on ARM.
Note, that future hardware without platform-wide cache co-
herence will require a software page-ownership protocol with
similar costs. However, these costs are biased by the hard-
ware used in the prototype – transferring pages over PCI
has a large impact on latencies, and having shared memory
will substantially reduce costs [32].

7. CONCLUSION
Heterogeneous processors are increasingly populating com-

puting systems at every scale, from mobile devices, to per-
sonal computers, to a rack, and the data center. Diverse pro-
cessors may also co-exist in the data center as newer technol-
ogy is integrated and brought online. Moreover, such diverse
processors increasingly share the memory bus. These trends
motivate us to reconsider process and thread migration in
heterogeneous-ISA platforms.

We show that process and thread migration is feasible and
we demonstrate that when exploiting shared memory, the
cost of program state transformation can be kept low. On
our prototype the mechanisms we employ introduce over-
heads of few milliseconds for stack transformation, common
address space and TLS layout enforcement, runtime ISA em-
ulation, and the OS migration service. With increasing pro-
gram execution time, these overheads vanish. We believe
that emerging hardware will further reduce these latencies.

8. ACKNOWLEDGMENTS
This work is supported by ONR under grant N00014-12-

1-0880 and by AFOSR under grant FA9550-14-1-0163.



9. REFERENCES
[1] The Machine. http://www.hpl.hp.com/research/

systems-research/themachine/, 2015.

[2] AMD. AMD Fusion Family of APUs: Enabling a
Superior, Immersive PC Experience.
http://www.amd.com/us/Documents/48423 fusion
whitepaper WEB.pdf.

[3] D. Andrews, D. Niehaus, R. Jidin, M. Finley,
W. Peck, M. Frisbie, J. Ortiz, E. Komp, and
P. Ashenden. Programming models for hybrid
FPGA-CPU computational components: a missing
link. IEEE Micro, 24(4):42–53, 2004.

[4] G. Attardi, I. Filotti, and J. Marks. Techniques for
Dynamic Software Migration. In In ESPRIT ’88:
Proceedings of the 5th Annual ESPRIT Conference,
pages 475–491. NorthHolland, 1988.

[5] D. H. Bailey, E. Barszcz, J. T. Barton, D. S.
Browning, R. L. Carter, L. Dagum, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. K.
Weeratunga. The NAS parallel benchmarks summary
and preliminary results. In Supercomputing ’91, 1991.

[6] A. Barbalace, A. Murray, R. Lyerly, and
B. Ravindran. Towards Operating System Support for
Heterogeneous-ISA Platforms. In Proceedings of The
4th Workshop on Systems for Future Multicore
Architectures, 2014.

[7] A. Barbalace, B. Ravindran, and D. Katz. Popcorn: a
replicated-kernel OS based on Linux. In Ottawa Linux
Symposium, 2014.

[8] A. Barbalace, M. Sadini, S. Ansary, C. Jelesnianski,
A. Ravichandran, C. Kendir, A. Murray, and
B. Ravindran. Popcorn: Bridging the Programmability
Gap in heterogeneous-ISA Platforms. In Proceedings
of the Tenth European Conference on Computer
Systems, EuroSys ’15, pages 29:1–29:16. ACM, 2015.

[9] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The Multikernel: A New OS
Architecture for Scalable Multicore Systems. In
Proceedings of the ACM SIGOPS 22Nd Symposium on
Operating Systems Principles, SOSP ’09, pages 29–44.
ACM, 2009.

[10] A. Baumann, S. Peter, A. Schüpbach, A. Singhania,
T. Roscoe, P. Barham, and R. Isaacs. Your Computer
is Already a Distributed System. Why Isn’T Your OS?
In Proceedings of the 12th Conference on Hot Topics
in Operating Systems, HotOS’09, pages 12–12.
USENIX Association, 2009.

[11] N. Beckmann and D. Sanchez. Jigsaw: Scalable
Software-defined Caches. In Proceedings of the 22Nd
International Conference on Parallel Architectures and
Compilation Techniques, PACT ’13, pages 213–224.
IEEE Press, 2013.

[12] F. Bellard. QEMU, a Fast and Portable Dynamic
Translator. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference, ATEC ’05,
pages 41–41. USENIX Association, 2005.

[13] S. K. Bhat, A. Saya, H. K. Rawat, A. Barbalace, and
B. Ravindran. Harnessing Energy Efficiency of
heterogeneous-ISA Platforms. In Proceedings of the
Workshop on Power-Aware Computing and Systems,

HotPower ’15, pages 6–10. ACM, 2015.

[14] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao,
F. Kaashoek, R. Morris, A. Pesterev, L. Stein, M. Wu,
Y. Dai, Y. Zhang, and Z. Zhang. Corey: An Operating
System for Many Cores. In Proceedings of the 8th
USENIX Conference on Operating Systems Design
and Implementation, OSDI’08, pages 43–57. USENIX
Association, 2008.

[15] S. Boyd-Wickizer, A. T. Clements, Y. Mao,
A. Pesterev, M. F. Kaashoek, R. Morris, and
N. Zeldovich. An Analysis of Linux Scalability to
Many Cores. In Proceedings of the 9th USENIX
Conference on Operating Systems Design and
Implementation, OSDI’10, pages 1–8. USENIX
Association, 2010.

[16] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri,
D. Teodosiu, and A. Gupta. Hive: Fault Containment
for Shared-memory Multiprocessors. In Proceedings of
the Fifteenth ACM Symposium on Operating Systems
Principles, SOSP ’95, pages 12–25. ACM, 1995.

[17] M. DeVuyst, A. Venkat, and D. M. Tullsen. Execution
Migration in a heterogeneous-ISA Chip
Multiprocessor. In Proceedings of the Seventeenth
International Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS XVII, pages 261–272. ACM, 2012.

[18] Dolphin Interconnect Solutions. Express IX. http:
//www.dolphinics.com/download/WHITEPAPERS/
Dolphin Express IX Peer to Peer whitepaper.pdf.

[19] R. P. Draves. Control Transfer in Operating System
Kernels. Technical Report MSR-TR-94-06, Microsoft
Research, May 1994.

[20] P. Faraboschi, K. Keeton, T. Marsland, and
D. Milojicic. Beyond Processor-centric Operating
Systems. In Proceedings of the 15th USENIX
Conference on Hot Topics in Operating Systems,
HOTOS’15, pages 17–17. USENIX Association, 2015.

[21] B. Ford, M. Hibler, J. Lepreau, R. McGrath, and
P. Tullmann. Interface and Execution Models in the
Fluke Kernel. In Proceedings of the Third Symposium
on Operating Systems Design and Implementation,
OSDI ’99, pages 101–115. USENIX Association, 1999.

[22] S. Gerber, G. Zellweger, R. Achermann, K. Kourtis,
T. Roscoe, and D. Milojicic. Not Your Parents’
Physical Address Space. In Proceedings of the 15th
USENIX Conference on Hot Topics in Operating
Systems, HOTOS’15, pages 16–16. USENIX
Association, 2015.

[23] G. C. Hunt and J. R. Larus. Singularity: Rethinking
the Software Stack. SIGOPS Oper. Syst. Rev.,
41(2):37–49, Apr. 2007.

[24] T. Instruments. OMAP Processors.
http://www.ti.com/lsds/ti/processors/dsp/media
processors/omap/products.page.

[25] Intel Corporation. Xeon Phi product family.
http://www.intel.com/content/www/us/en/
processors/xeon/xeon-phi-detail.html.

[26] S. Kim, S. Huh, Y. Hu, X. Zhang, E. Witchel,
A. Wated, and M. Silberstein. GPUnet: Networking
Abstractions for GPU Programs. In Proceedings of the
11th USENIX Conference on Operating Systems
Design and Implementation, OSDI’14, pages 201–216.



USENIX Association, 2014.

[27] R. Knauerhase, R. Cledat, and J. Teller. For Extreme
Parallelism, Your OS is Sooooo Last-millennium. In
Proceedings of the 4th USENIX Conference on Hot
Topics in Parallelism, HotPar’12, pages 3–3. USENIX
Association, 2012.

[28] F. X. Lin, Z. Wang, and L. Zhong. K2: A Mobile
Operating System for Heterogeneous Coherence
Domains. ACM Trans. Comput. Syst., 33(2):4:1–4:27,
June 2015.

[29] MediaTek. MediaTek Helio x20.
http://mediatek-helio.com/x20/.

[30] C. Morin, P. Gallard, R. Lottiaux, and G. Vallee.
Towards an efficient single system image cluster
operating system. In Algorithms and Architectures for
Parallel Processing, 2002. Proceedings. Fifth
International Conference on, pages 370–377, Oct 2002.

[31] E. B. Nightingale, O. Hodson, R. McIlroy,
C. Hawblitzel, and G. Hunt. Helios: Heterogeneous
Multiprocessing with Satellite Kernels. In Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP ’09, pages 221–234. ACM,
2009.

[32] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and
B. Grot. Scale-out numa. In Proceedings of the 19th
International Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS ’14, pages 3–18. ACM, 2014.

[33] N. Parris. Extended System Coherency - Part 1 -
Cache Coherency Fundamentals. https://community.
arm.com/groups/processors/blog/2013/12/03/
extended-system-coherency--part-1--cache-coherency-fundamentals,
12 2013.

[34] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and
E. Witchel. PTask: Operating System Abstractions to
Manage GPUs As Compute Devices. In Proceedings of
the Twenty-Third ACM Symposium on Operating
Systems Principles, SOSP ’11, pages 233–248. ACM,
2011.

[35] S. Seo, G. Jo, and J. Lee. Performance
characterization of the nas parallel benchmarks in
opencl. In Workload Characterization (IISWC), 2011
IEEE International Symposium on, pages 137–148,
Nov 2011.

[36] M. Silberstein, B. Ford, I. Keidar, and E. Witchel.
GPUfs: Integrating a File System with GPUs. In
Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’13, pages 485–498.
ACM, 2013.

[37] P. Smith and N. C. Hutchinson. Heterogeneous
Process Migration: The Tui System. Technical report,
1996.

[38] A. Stevens. Big.LITTLE processing with ARM
Cortex-A15 & Cortex-A7. Technical report, 2011.

[39] W. Sun, R. Ricci, and M. L. Curry. GPUstore:
Harnessing GPU Computing for Storage Systems in
the OS Kernel. In Proceedings of the 5th Annual
International Systems and Storage Conference,
SYSTOR ’12, pages 9:1–9:12. ACM, 2012.

[40] H. Sutter. Welcome to the Jungle.
http://herbsutter.com/welcome-to-the-jungle/, 2012.

[41] I. L. Taylor. A New ELF Linker. In Proceedings of the
GCC Developers’ Summit, 2008.

[42] A. Venkat and D. M. Tullsen. Harnessing ISA
Diversity: Design of a heterogeneous-ISA Chip
Multiprocessor. In Proceeding of the 41st Annual
International Symposium on Computer Architecuture,
ISCA ’14, pages 121–132. IEEE Press, 2014.

[43] D. G. Von Bank, C. M. Shub, and R. W. Sebesta. A
unified model of pointwise equivalence of procedural
computations. ACM Transactions on Programming
Languages and Systems (TOPLAS), 16(6):1842–1874,
1994.

[44] R. W. Wisniewski, D. da Silva, M. Auslander,
O. Krieger, M. Ostrowski, and B. Rosenburg. K42:
Lessons for the OS Community. SIGOPS Oper. Syst.
Rev., 42(1):5–12, Jan. 2008.


