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Most recent work in learning for semantic parsin
has focused on “shallow” analysis such ssnan-
tic role labeling(Gildea and Jurafsky, 2002). In this
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Abstract

We introduce a learning semantic parser,
ScissoR that maps natural-language sen-
tences to a detailed, formal, meaning-
representation language. It first uses
an integrated statistical parser to pro-
duce a semantically augmented parse tree,
in which each non-terminal node has
both a syntactic and a semantic label.
A compositional-semantics procedure is
then used to map the augmented parse
tree into a final meaning representation.
We evaluate the system in two domains,
a natural-language database interface and
an interpreter for coaching instructions in
robotic soccer. We present experimental
results demonstrating thatc&SsoR pro-
duces more accurate semantic representa-
tions than several previous approaches.

I ntroduction

g

robotic soccer developed for the RoboCup Coach
Competition, in which Al researchers compete to
provide effective instructions to a coachable team of
agents in a simulated soccer domain (Chen et al.,
2003).

We present an approach based on a statisti-
cal parser that generatessamantically augmented
parse tree(SAPT), in which each internal node in-
cludes both a syntactic and semantic label. We aug-
ment Collins’ head-driven model 2 (Collins, 1997)
to incorporate a semantic label on each internal
node. By integrating syntactic and semantic inter-
pretation into a single statistical model and finding
the globally most likely parse, an accurate combined
syntactic/semantic analysis can be obtained. Once
an SAPT is generated, an additional step is required
to translate it into a final formaheaning represen-
tation (MR).

Our approach is implemented in a system called
SCISSOR (Semantic Composition that Integrates
Syntax and Semantics to get Optimal Representa-
tions). Training the system requires sentences an-
notated with both gold-standard SAPT'’s and MR'’s.
We present experimental results on corpora for both
geography-database querying and Robocup coach-
ing demonstrating that3ssorproduces more ac-

paper, we address the more ambitious task of legrfRurate semantic representations than several previ-

ing to map sentences to a complete formaianing-
representation languagéMRL). We consider two
MRL's that can be directly used to perform useful,2
complex tasks. The first is a Prolog-based language

ous approaches based on symbolic learning (Tang
and Mooney, 2001; Kate et al., 2005).

Target MRL’s

used in a previously-developed corpus of queries /e used two MRLSs in our experimentsLANG and
a database on U.S. geography (Zelle and Moone§GEOQUERY. They capture the meaning of linguistic
1996). The second MRL is a coaching language fantterances in their domain in a formal language.



S-bowner

2.1 CLANG: the RoboCup Coach Language

RoboCup {wwv. r obocup. org) is an interna-
tional Al research initiative using robotic soccer NP-player VP-bowner
as its primary domain. In the Coach Competition,

. PRP$-teamNN-player CD-unum VB-bowner P-null
teams of agents compete on a simulated soccer
field and receive advice from a team coach in a ‘
formal language called CANG. In CLANG, tactics our player 3 has the all
and behaviors are expressed in terms of if-thefkigyre 1: An SAPT for a simple CANG sentence.
rules. As de_scrlbed in (Chen e_t al., 2003), 't:’crunction:BwLDMR(N,K)
grammar consists of 37 non-terminal symbols andnput: The root nodeV of an SAPT:

DT-null NN-null

133 productions. Below is a sample rule with itg Nota predicate_-arﬁurp/leélt l;nO\:jvledgK,, for the MRL.
: . otation: Xy r Is the of nodeX.
English gloss: output: Narn

C; :=theith child node ofN,1 < i< n

((bpos (penalty-area our)) Cp, = GETSEMANTICHEAD(N) // see Section 3

(do (pl ayer-except our {4}) Chyr = BUILDMR(Ch, K)
(pos (half our)))) for each other child’; where: # h
. Ciynr = BUILDMR(C, K)
“If the ball is in our penalty area, all our players COMPOSEMR(Ch,, 1, » Cinsr»> K) /I se€ Section 3
except player 4 should stay in our half” Nur = Chyp

Figure 2: Computing an MR from an SAPT.

2.2 GEOQUERY. aDB Query Language )
from the semantic label of the node and the MR’s

GEOQUERY is a logical query language for a smallyf jis children. Syntactic structure provides infor-

database of U.S. geography containing about 8QQation of how the parts should be composed. Am-
facts. This domain was originally chosen to tespgities arise in both syntactic structure and the se-
corpus-based semantic parsing due to the avajsantic interpretation of words and phrases. By in-
ability of a hand-built natural-language interfaceeqrating syntax and semantics in a single statistical
GEOBASE, supplied with Turbo Prolog 2.0 (Borland parser that produces an SAPT, we can use both se-
International, 1988). The BOQUERY language mantic information to resolve syntactic ambiguities

consists of Prolog queries augmented with severghy syntactic information to resolve semantic ambi-
meta-predicates (Zelle and Mooney, 1996). Belo‘ﬁuities.

is a sample query with its English gloss: In an SAPT, each internal node in the parse tree

answer (A count (B, (city(B),loc(B,C), isannotated with a semantic label. Figure 1 shows
const (C, countryid(usa))),A)) the SAPT for a simple sentence in the ANG do-
“How many cities are there in the US?” main. The semantic labels which are shown after
dashes areonceptdn the domain. Somg/pe con-
ceptsdo not take arguments, likeeamand unum
(uniform number). Some concepts, which we refer
to aspredicates take an ordered list of arguments,
This section describes our basic framework for sdike playerandbowner(ball owner). The predicate-
mantic parsing, which is based on a fairly stanargument knowledgek’, specifies, for each predi-
dard approach to compositional semantics (Juragate, the semantic constraints on its arguments. Con-
sky and Martin, 2000). First, a statistical parsestl’aints are specified in terms of the concepts that
is used to construct an SAPT that captures the sean fill each argument, such playerteam unum)
mantic interpretation of individual words and theandbowne(player). A special semantic labelull
basic predicate-argument structure of the sentendgé.used for nodes that do not correspond to any con-
Next, a recursive procedure is used to compositioré€pt in the domain.
ally construct an MR for each node in the SAPT Figure 2 shows the basic algorithm for build-

3 Semantic Parsing Framework



N8-bowner(player(our,2) nations and anaphora resolution. Due to space lim-

itations, we do not present the straightforward tech-
niques we used to handle them.

N7-player(our,2) N3-bowner(_)
N5-team N4-player(_,_) N6-unum N1-bowner( ) N2=null 4 Corpus Annotation
null null . . . o
‘ L This section discusses how sentences for training
our player has the al

Scissor were manually annotated with SAPT's.
Figure 3: MR’s constructed for each SAPT Node. Sentences were parsed by Collins’ head-driven
model 2 (Bikel, 2004) (trained on sections 02-21
ing an MR from an SAPT. Figure 3 illustrates theof the WSJ Penn Treebank) to generate an initial
construction of the MR for the SAPT in Figure 1.syntactic parse tree. The trees were then manually

Nodes are numbered in the order in which the corcorrected and each node augmented with a semantic
struction of their MR’s are completed. The firstjgpel.

step, GETSEMANTICHEAD, determines which of a  First, semantic labels for individual words, called

node’s children is itsemantic headased on hav- semantic tagsare added to the POS nodes in the
ing a matching semantic label. In the example, nod@ee. The tagwill is used for words that have no cor-
N3 is determined to be the semantic head of thgsponding concept. Some concepts are conveyed
sentence, since its semantic ladewner matches phrases, like “has the ball” fdownerin the pre-
N8's semantic label. Next, the MR of the semanyjoys example. Only one word is labeled with the
tic head is constructed recursively. The semantigoncept; the syntactic head word (Collins, 1997) is
head of N3 is clearly N1. Since N1 is a part-of-preferred. During parsing, the other words in the

speech (POS) node, its semantic label directly dgsmrase will provide context for determining the se-
termines its MR, which becomédmwne(_). Once mantic label of the head word.

the MR for the head is constructed, the MR of all | jhels are added to the remaining nodes in a
other (non-head) children are computed recursively,ottom_up manner. For each node. one of its chil-

and ®MPOSEMR assigns their MR's to fill the ar- grep js chosen as the semantic head, from which it
guments in the head’s MR to construct the COMy;jj| inherit its label. The semantic head is chosen
plete MR for the node. Argument constraints arg the child whose semantic label can take the MR’s
used to determine the appropriate filler for each ags the other children as arguments. This step was

gument. Since, N2 hasraull label, the MR of N3 - qone mostly automatically, but required some man-
also becomesowne(.). When computing the MR 5| corrections to account for unusual cases.
for N7, N4 is determined to be the head with the

MR: player(_,.). CompPoseEMR then assigns N5’'s

MR to fill the teamargument and N6’s MR to fill

theunumargument to construct N7’s complete MR:
player(our, 2). This MR in turn is composed with

the MR for N3 to yield the final MR for the sen-
tence:bownefplayer(our,2)).

In order for CoMPOSEMR to be able to construct
the MR for a node, the argument constraints for
its semantic head must identify a unique concept
to fill each argument. However, some predicates
take multiple arguments of the same type, such as
point.nunfnumnun), which is a kind of point that
represents a field coordinate in GlG.

For MRL’, such as CBNG, whose syntax does  |n this case, extra nodes are inserted in the tree
not StriCtIy follow a nested set of predicates and akyith new type Concepts that are unique for each ar-
guments, some final minor syntactic adjustment Qjument. An example is shown in Figure 4 in which
the final MR may be needed. In the example, thehe additional type conceptaimlandnumz2are in-
final MR is (bowner (player ouq2})). In the fol-  troduced. Again, during parsing, context will be
lowing discussion, we ignore the difference betweeQsed to determine the correct type for a given word.
these two. Thepointlabel of the root node of Figure 4 is the

There are a few complications left which requireconcept that includes all kinds of points iInL&ANG.
special handling when generating MR’s, like coordi-Once a predicate has all of its arguments filled, we



PRN-point S-bowner(has)

-LRB-—point.num CD‘—numl ' CD‘—numZ -RRB-—nul NP-player(player) VP-bowner(has)
CD-num CD-num PRP$-team NN-player CD-unumVB-bowner NP=null(ball)
‘ ‘ DT-null NN-null
-LRB- 0.5 ’ 0.1 -RRB-
Figure 4: Adding new types to disambiguate argu- g player 2 has the ball
ments. Figure 5: A lexicalized SAPT.

use the most general @GNG label for its concept
(e.g. pointinstead ofpoint.nunm. This generality
avoids sparse data problems during training.

2. The probabilities of choosing the left and right
subcat frames LC and RCP,.(LC|P, H,h)
andP,.(RC|P, H,h).

5 Integrated Parsing M odel

3. The probabilities of generat-
In this section, we first summarize Collins’ Model 2, ing the left and right modifiers:
and then present our extension to integrate semantics [1._, . P.(R;(r;)|H, P,h,A;—1,RC) x
into it [y i1 P(Lillo)| H, P, Aiy, LO).

Where A is the measure of the distance from

5.1 CollinsHead-Driven Modd 2 .
NS v the head word to the edge of the constituent,

Collins’ head-driven model 2 is a generative, lexi- andLy.1(lps1) andRpm1(rm.1) are STOP.
calized model of statistical parsing. In the following The model stops generating more modifiers
section, we follow the notation in (Collins, 1997). whenSTOP is generated.

Each non-terminak in the tree is a syntactic label,
which is lexicalized by annotating it with word, 5.2 Integrating Semanticsintothe Model

w, a_nd aPOS tag tsyn. T_hus, we erte & NoN- \we extend Collins’ model to include the genera-
terminal asX (z), where X is a syntactic label and ;.\ ot semantic labels in the derivation tree. Un-
z = (w,tsyn). X(z)is then what is generated by g5 otherwise stated, notation has the same mean-
the generative model. ) . ing as in Section 5.1. The subscripgn refers to
. Each productionll HS = RHS in the PCFG is the syntactic part, andem refers to the semantic
in the form: part. We redefineX and z to include semantics,
P(h)— Ly (ly)...L1(I1)H(h)Ry(r1) ... R (7)) each non-terminak is now a pair of a syntactic la-
bel X,,, and a semantic labeX,.,,. Besides be-
ing annotated with the wordy, and the POS tag,
tsyn, X IS also annotated with the semantic tag,
tsem, Of the head child. ThusX (z) now consists of
= (Xoyn, Xsem), andz = (w, teyn, tsem). Fig-
ure 5 shows a lexicalized SAPT (but omitting,,

dtsem)'
Similar to the syntactic subcat frames, we also

where H is the head-child of the phrase, which in-
herits the head-word from its parentP. L;...L,
andR;...R,, are left and right modifiers off.

Sparse data makes the direct estimation
P(RHS|LHS) infeasible. Therefore, it is decom-
posed into several steps — first generating the he
then the right modifiers from the head outward,

then the Ieft m-od|f|ers in the same way. Synt"’lcn%ondition the generation of modifiers on semantic
subcategorization frames, LC and RC, for the Iefgubcat frames. Semantic subcat frames give se-

?nd ;I]ght mOd'f,'er rﬁﬁectlvzl_);z are geger?tfed b?ﬁantic subcategorization preferences; for example,
ore the generation of the modiers. subcat frame ayertakes aeamand aunum ThusZLC andRC

represent knowledge about subcategorization pref Lo now: (LCyyn, LCsem) aNd (RCiyms RCsem)
. syn sem syn;s sem/ -

ences. The final probability of a production is com-X(x) is generated as in Section 5.1, but using the
posed from the following probabilities: ;

new definitions ofX (z), LC and RC. The imple-
1. The probability of choosing a head constituentmentation of semantic subcat frames is similar to
label H: P (H|P, h). syntactic subcat frames. They are multisets speci-



fying the semantic labels which the head requires ithe paramete®;(L;(It;, lw;)|P, H,w,t,A, LC) is

its left or right modifiers. further smoothed as follows:
As an example, the probability of generating the

phrase “our player 2" using NP-[player](player} Pu(Li|P,H,w,t,A, LC) x

PRP$-[team](our) NN-[player](player) CD-[unum](2) Pio(lt;| P, H,w,t, A, LC, L;) X

is (omitting only the distance measure): Pra(lwi| P, H,w,t, A, LC, L;(It;))
Pn (NN-[player] NP-[player], playery Note this smoothing is different from the syntactic
Pic({{}.{tean}) INP-[player] playerk counterpart. This is due to the difference between
Pre(({}.{unun}) INP-[player] playerk POS tags and semantic tags; namely, semantic tags

are generally more specific.
Table 1 shows the various levels of back-off for
each semantic parameter. The probabilities from

P (PRP$-[team](outNP-[player],player{ } ,{team})) x
Pr (CD-[unum](2)NP-[player],player{},{unum})) x

P1(STORNP-[player]player{}.{})) x these back-off levels are interpolated using the tech-
P, (STORNP-[player],player{},{})) niques in (Collins, 1997). All words occurring less
than 3 times in the training data, and words in test
5.3 Smoothing data that were not seen in training, are replaced with

Since the left and right modifiers are independentijhe "UNKNOWN?” token. Note this threshold is
generated in the same way, we only discuss smootgmaller than the one used in (Collins, 1997) since
ing for the left side. Each probability estimation inthe corpora used in our experiments are smaller.
the above generation steps is callggbaameter To

reduce the risk of sparse data problems, the parani? POSTagging and Semantic Tagging

ters are decomposed as follows: For unknown words, gold-standard POS tags are
used, otherwise they are generated along with the

Pr(H|C) = Phyn(Hsyn|C) % words using the same approach as in (Collins,
Phoere (Hsem|C, Hoyn) 1997). When parsing, semantic tags for each known

m
Pi(LC|C) = Py, (LCsyn|C) x word are limited to those seen with that word dur-
Prer.. (LCsom|C, LCayn) ing training data. The.semantlc tags allow_ed _for an
Csem VI SEME T SYn unknown word are limited to those seen with its as-
PuLi(l)C) = Proyn (Ligyn (i, lwi) €)X sociated POS tags during training.
P.... (Li.... (It lw;)|C, Ly, (It;,,,))

n

lsem lsem?

6 Experimental Evaluation

For brevity,C is used to represent the context on
which each parameter is conditionéd, it;,,,and 61 Methodology
lt;,.,, are the word, POS tag and semantic tag genefwo corpora of NL sentences paired with MR’s
ated for the non-termindl;. The word is generated were used to evaluatecC8sorR For CLANG, 300
separately in the syntactic and semantic outputs. pieces of coaching advice were randomly selected

We make the independence assumption that tHieom the log files of the 2003 RoboCup Coach Com-
syntactic output is only conditioned on syntactic feapetition. Each formal instruction was translated
tures, and semantic output on semantic ones. Noit@o English by one of four annotators (Kate et al.,
that the syntactic and semantic parameters are s@i005). The average length of an NL sentence in
integrated in the model to find the globally mosthis corpus is 22.52 words. FOrE®QUERY, 250
likely parse. The syntactic parameters are the sangeiestions were collected by asking undergraduate
as in Section 5.1 and are smoothed as in (Collinstudents to generate English queries for the given
1997). database. Queries were then manually translated

Since the semantic parameters do not depend orto logical form (Zelle and Mooney, 1996). The
any syntactic features, we omit teem subscripts average length of an NL sentence in this corpus is
in the following discussion. As in (Collins, 1997), 6.87 words. The queries in this corpus are more



| BACK-OFFLEVEL | Pp(H|...) | Prc(LC|...) | Pra(Lil..) |  Pra(lti..) | Pra(lw;l...) |
1 Paw,t P,Huw,t PHw,tA,LC | PHwtALC, L; | PHw,tALC, L;, It;
2 Pt P,H{ P,Ht,ALC P,Ht,ALC, L; P,Ht,A,LC, L;, It;
3 P P,H P,HA,LC P,HA,LC, L; L;, lt;
4 - - - I; It;

Table 1: Conditioning variables for each back-off level$emantic parametersem subscripts omitted).

complex than those in the ATIS database-query cor- **
pus used in the speech community (Zue and Glass, *f
2000) which makes the € QUERY problem harder, T
as also shown by the results in (Popescu et al., 2004). [ *

S

ScissoRr was evaluated using standard 10-fold & .|
cross validation. NL test sentences are first parsed !
to generate their SAPT's, then their MR’s were built x|
from the trees. We measured the number of test sen- w} =
tences that produced complete MR’s, and the num- ..
ber of these MR’s that were correct. For S\G, _ o :
an MR is correct if it exactly matches the correcfigure 6: Precision learning curves fOEGQUERY.
representation, up to reordering of the arguments of ‘ ‘ ‘ T
commutative operators likand. For GEOQUERY, or
an MR is correct if the resulting query retrieved  «}
the same answer as the correct representation when _
submitted to the database. The performance of the
parser was then measured in termgufcision(the  :
percentage of completed MR’s that were correct) *f
andrecall (the percentage of all sentences whose =« #
MR'’s were correctly generated). ol 17

SCISSOR —+— 1
SILT-string ---x---
SILT-tree ---*---
CHILL &
GEOBASE -~

1 1 1 1
50 100 150 200 250
Training sentences

SCISSOR —+— 4
SILT-string ---%---
SILT-tree ---%---
CHILL --&
GEOBASE ---- o

. . .
0 50 100 150 200 250
Training sentences

We compared 8ISsORs performance to several Ei 7. Recall learnin os fOolE®OUERY,
previous systems that learn semantic parsers that can'9Ure /- recallearning Curves TorEe e '

map sentences into formal MRL's.HILL (Zelleand go Results

Mooney, 1996) is a system based on Inductive Logic

Programming (ILP). We compare to the versiorfigures 6 and 7 show the precision and recall learn-
of CHILL presented in (Tang and Mooney, 2001)ing curves for GOQUERY, and Figures 8 and 9 for
which uses the improved@kTAIL ILP systemand CLANG. Since GiiLL is very memory intensive,
produces more accurate parsers than the original véircould not be run with larger training sets of the
sion presented in (Zelle and Mooney, 1996).1Ss  CLANG corpus.

a system that learns symbolic, pattern-based, trans-Overall, Sissorgives the best precision and re-
formation rules for mapping NL sentences to formag¢all results in both domains. The only exception
languages (Kate et al., 2005). It comes in two vers with recall for GEOQUERY, for which CHILL is
sions, $LT-string, which maps NL strings directly slightly higher. However, 8issorhas significantly
to an MRL, and 8T-tree, which maps syntactic higher precision (see discussion in Section 7).
parse trees (generated by the Collins parser) to anResults on a larger BOQUERY corpus with 880
MRL. In the GEOQUERY domain, we also compare queries have been reported f®RECISE(Popescu et
to the original hand-built parserE&BASE al., 2003): 100% precision and 77.5% recall. On



100 - - - - - ever, ISSORrequires an extra training input, gold-
T standard SAPT's, not required by these other sys-
tems. Further automating the construction of train-
ing SAPT’s from sentences paired with MR’s is a
subject of on-going research.

PRECISE is designed to work only for the spe-

Precision (%)

a0ty . i

ol 7 : cific task of NL database intrefaces. By comparison,
ol e ccisson | ScissoRris more general and can work with other
; Shrsng MRL's as well (e.g. ClIaNG). Also, PRECISEIs not

10 | % 4

o CHILL &
0 ! ! ! ! !

alearning system and can fail to parse a query it con-

° T s ™ siders ambiguous, even though it may not be consid-
Figure 8: Precision learning curves for GLG. ered ambiguous by a human and could potentially be
" , , , , , resolved by learning regularities in the training data.
In (Lev et al., 2004), a syntax-driven approach
is used to map logic puzzles described in NL to
an MRL. The syntactic structures are paired with
hand-written rules. A statistical parser is used to

. generate syntactic parse trees, and then MR’s are
] built using compositional semantics. The meaning

70

60

50

40

Recall (%)

30
= X SCISSOR —+—

wl SILTsting > | of open-category words (with only a few exceptions)
e CHILL = i idered irrelevant to solving the puzzle and
oL A 5 | is considere g p
%’;r”u a their meanings are not resolved. Further steps would
%0 50 100 150 200 250 300 be needed to generate MR’s in other domains like

Training sentences

. X CLANG and GEOQUERY. No empirical results are
Figure 9: Recall learning curves for GNG.

reported for their approach.

the same corpus,3ssorobtains 92.1% precision Several machine translation systems also attempt
and 72.3% recall. However, the figures are not conf0 9generate MR’s for sentences. In (Gao et al,

parable. RECISE can return multiple distinct SQL 2002), an English-Chinese speech translation sys-
queries when it judges a question to be ambigdem for limited domains is described. They train a

ous and it is considered correct whany of these statistical parser on trees with only semantic labels
SQL queries is correct. Our measure only considef¥! the nodes; however, they do not integrate syntac-
the top result. Due to space limitations, we do ndiC and semantic parsing.

present complete learning curves for this corpus.  History-based models of parsing were first in-
troduced in (Black et al., 1993). Their original

7 Reated Work model also included semantic labels on parse-tree
nodes, but they were not used to generate a formal
We first discuss the systems introduced in SectioWR. Also, their parsing model is impoverished com-
6. CHILL uses computationally-complex ILP meth-pared to the history included in Collins’ more recent
ods, which are slow and memory intensive. Thenodel. FISSOR explores incorporating semantic
string-based version of IS uses no syntactic in- labels into Collins’ model in order to produce a com-
formation while the tree-based version generatespete SAPT which is then used to generate a formal
syntactic parse first and then transforms it into aMR.
MR. In contrast, 8I1ssORintegrates syntactic and The systems introduced in (Miller et al., 1996;
semantic processing, allowing each to constrain aridiller et al., 2000) also integrate semantic labels
inform the other. It uses a successful approach to steto parsing; however, their SAPT's are used to
tistical parsing that attempts to find the SAPT withproduce a much simpler MR, i.e., a single seman-
maximum likelihood, which improves robustnesdic frame. A sample frame is RTRANSPORTA
compared to purely rule-based approaches. How+ON which has three slots — the arrival time, ori-



gin and destination. Only one frame needs to be exuging Gao, Bowen Zhou, Zijian Diao, Jeffrey Sorensen, and

tracted from each sentence. which is an easier taskMichael Picheny. 2002. Mars: A statistical semantic pars-

. . . ing and generation-based multilingual automatic traistat
than our problem in which multiple nested frames  system Machine Translation17:185-212.

(predicates) must extracted. The syntactic model in

; i i P Daniel Gildea and Daniel Jurafsky. 2002. Automated lalgelin
(Miller et al., 2000) is similar to Collins’, but does of semantic roles. Computational Linguistics28(3):245—

not use features like subcat frames and distance mea-2ss.

sures. Also, the non-terminal lab#l is not further
Dapiel Jurafsky and James H. Martin. 2008peech and Lan-

decomposed into separa_tely-generated semantic anQuage Processing: An Introduction to Natural Language
syntactic components. Since it used much more spe-Processing, Computational Linguistics, and Speech Recog-

cific labels (the cross-product of the syntactic and Mition. Prentice Hall, Upper Saddle River, NJ.

semantic labels), its parameter estimates are potetohit J. Kate, Yuk Wah Wong, Ruifang Ge, and Raymond J.

tially subject to much greater sparse-data problems. Mooney. 2005. Learning to transform natural to formal lan-
guages. Available attp://wwv. cs. ut exas. edu/

8 Conclusion users/ m / paper s/ nl p- submi tted- 05. pdf.

S | istical hat i Iddo Leyv, Bill MacCartney, Christopher D. Manning, and Roge
CISSORIearns statistical parsers that integraté syn--| o\, 2004. Solving logic puzzles: From robust processing

tax and semantics in order to produce a semanti- to precise semantics. Im proc. of 2nd Workshop on Text
cally augmented parse tree that is then used to com-Meaning and Interpretation, ACL-Q8arcelona, Spain.

positionally generate a formal meaning representacott Miller, David Stallard, Robert Bobrow, and Richard
tion. Experimental results in two domains, a natural- Schwartz. 1996. A fully statistical approach to naturallan

language database interface and an interpreter for9u29¢ interfaces. IACL-96 pages 55-61, Santa Cruz, CA.
coaching instructions in robotic soccer, have demorscott Miller, Heidi Fox, Lance A. Ramshaw, and Ralph M.

_  Weischedel. 2000. A novel use of statistical parsing to ex-
strated that _SISSORgenerQIIy produces more aCCL_J tract information from text. IrProc. of NAACL-0Q pages
rate semantic representations than several previous;2e_233, seattle, Washington.

approaches. By augmenting a state-of-the-art statis-

. . . . . Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. 2003. To-
tical parsing model to include semantic information, wards a theory of natural language interfaces to databéses.

it is able to integrate syntactic and semantic clues Proc. of IUI-2003 pages 149—157, Miami, FL. ACM.

to produce a robust interpretation that supports th,Ena-Maria Popescu, Alex Armanasu, Oren Etzioni, David Ko,

generation of complete formal meaning representa- and Alexander Yates. 2004. Modern natural language in-
tions. terfaces to databases: Composing statistical parsingseith
mantic tractability. INCOLING-04 Geneva, Switzerland.
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