Basic theorems about equiv-contextsp, generated by std::deflist.
Theorem:
(defthm equiv-contextsp-of-cons (equal (equiv-contextsp (cons a x)) (and (pseudo-fnsym-p a) (equiv-contextsp x))) :rule-classes ((:rewrite)))
Theorem:
(defthm equiv-contextsp-of-cdr-when-equiv-contextsp (implies (equiv-contextsp (double-rewrite x)) (equiv-contextsp (cdr x))) :rule-classes ((:rewrite)))
Theorem:
(defthm equiv-contextsp-when-not-consp (implies (not (consp x)) (equal (equiv-contextsp x) (not x))) :rule-classes ((:rewrite)))
Theorem:
(defthm pseudo-fnsym-p-of-car-when-equiv-contextsp (implies (equiv-contextsp x) (iff (pseudo-fnsym-p (car x)) (or (consp x) (pseudo-fnsym-p nil)))) :rule-classes ((:rewrite)))
Theorem:
(defthm true-listp-when-equiv-contextsp-compound-recognizer (implies (equiv-contextsp x) (true-listp x)) :rule-classes :compound-recognizer)
Theorem:
(defthm equiv-contextsp-of-list-fix (implies (equiv-contextsp x) (equiv-contextsp (list-fix x))) :rule-classes ((:rewrite)))
Theorem:
(defthm equiv-contextsp-of-append (equal (equiv-contextsp (append a b)) (and (equiv-contextsp (list-fix a)) (equiv-contextsp b))) :rule-classes ((:rewrite)))
Theorem:
(defthm equiv-contextsp-of-take (implies (equiv-contextsp (double-rewrite x)) (iff (equiv-contextsp (take n x)) (or (pseudo-fnsym-p nil) (<= (nfix n) (len x))))) :rule-classes ((:rewrite)))
Theorem:
(defthm equiv-contextsp-of-nthcdr (implies (equiv-contextsp (double-rewrite x)) (equiv-contextsp (nthcdr n x))) :rule-classes ((:rewrite)))