» Dual Decomposed Learning with Factorwise Oracle for Structural SVMs with Large Output Domain .
I. En-Hsu Yen, X. Huang, K. Zhong, R. Zhang, P. Ravikumar, I. Dhillon.
In Advances in Neural Information Processing Systems (NIPS) 29, 2016.
» Square Root Graphical Models: Multivariate Generalizations of Univariate Exponential Families that Permit Positive Dependencies [Appendix] .
D. Inouye, P. Ravikumar, I. Dhillon.
In International Conference on Machine Learning (ICML) 33, 2016.
» Optimal Classification with Multivariate Losses [Appendix] .
N. Natarajan, O. Koyejo, P. Ravikumar, I. Dhillon.
In International Conference on Machine Learning (ICML) 33, 2016.
» A Convex Atomic-Norm Approach to Multiple Sequence Alignment and Motif Discovery [Appendix] .
I. En-Hsu Yen, X. Lin, J. Zhang, P. Ravikumar, I. Dhillon.
In International Conference on Machine Learning (ICML) 33, 2016.
» PD-Sparse : A Primal and Dual Sparse Approach to Extreme Multiclass and Multilabel Classification [Appendix] .
I. En-Hsu Yen, X. Huang, P. Ravikumar, K. Zhong, I. Dhillon.
In International Conference on Machine Learning (ICML) 33, 2016.
» Closed-form Estimators for High-dimensional Generalized Linear Models [Appendix]
E. Yang, A. Lozano, P. Ravikumar.
In Advances in Neural Information Processing Systems (NIPS) 28, 2015.
» Fast Classification Rates for High-dimensional Gaussian Generative Models.
T. Li, A. Prasad, P. Ravikumar.
In Advances in Neural Information Processing Systems (NIPS) 28, 2015.
» Consistent Multilabel Classification
[Appendix].
S. Koyejo, N. Natarajan, P. Ravikumar, I. Dhillon.
In Advances in Neural Information Processing Systems (NIPS) 28, 2015.
» Fixed-Length Poisson MRF: Adding Dependencies to the Multinomial
[Appendix].
D. Inouye, P. Ravikumar, I. Dhillon.
In Advances in Neural Information Processing Systems (NIPS) 28, 2015.
» Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent
[Appendix].
I. En-Hsu Yen, K. Zhong, C.-J. Hsieh, P. Ravikumar, I. Dhillon.
In Advances in Neural Information Processing Systems (NIPS) 28, 2015.
» Beyond Sub-Gaussian Measurements: High-Dimensional Structured Estimation with Sub-Exponential Designs.
V. Sivakumar, A. Banerjee, P. Ravikumar.
In Advances in Neural Information Processing Systems (NIPS) 28, 2015.
» Collaborative Filtering with Graph Information: Consistency and Scalable Methods [Appendix].
N. Rao, H.-F. Yu, I. Dhillon, P. Ravikumar.
In Advances in Neural Information Processing Systems (NIPS) 28, 2015.
» Graphical Models via Univariate Exponential Family Distributions.
E. Yang, P. Ravikumar, G. Allen, Z. Liu.
Journal of Machine Learning Research (JMLR), Vol. 16, pages 3813-3847, 2015.
» Learning-based Analytical Cross-Platform Performance Prediction.
X. Zheng, P. Ravikumar, L. K. John, A. Gerstlauer.
In International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, 2015.
[Stamatis Vassiliadis Best Paper Award].
» Tracking with Ranked Signals [Appendix].
T. Li, H. Pareek, P. Ravikumar, D. Balwada, K. Speer.
In Uncertainty in Artificial Intelligence (UAI) 31, 2015.
» Distributional Rank Aggregration, and an Axiomatic Analysis [Appendix].
A. Prasad, H. Pareek, P. Ravikumar.
In International Conference on Machine Learning (ICML) 32, 2015.
» Vector-Space Markov Random Fields via Exponential Families [Appendix].
W. Tansey, O. Padilla, A. Suggala, P. Ravikumar.
In International Conference on Machine Learning (ICML) 32, 2015.
» A Convex Exemplar-based Approach to MAD-Bayes Dirichlet Process Mixture Models [Appendix] .
I. En-Hsu Yen, X. Lin, K. Zhong, P. Ravikumar, I. Dhillon.
In International Conference on Machine Learning (ICML) 32, 2015.
» Sparsistency of l1-Regularized M-Estimators [Appendix].
Y.-H. Li, J. Scarlett, P. Ravikumar, V. Cevher.
In International Conference on Artificial Intelligence and Statistics (AISTATS) 18, 2015 (Oral).
» Predicting growth conditions from internal metabolic fluxes in an in-silico model of E. coli.
V. Sridhara, A. G. Meyer, P. Rai, J. E. Barrick, P. Ravikumar, D. Segre, C. O. Wilke.
PLoS ONE 9(12): e114608, December 2014.
» A Representation Theory for Ranking Functions [Appendix].
H. Pareek, P. Ravikumar.
In Advances in Neural Information Processing Systems (NIPS) 27, 2014.
» Elementary Estimators for Graphical Models [Appendix].
E. Yang, A. Lozano, P. Ravikumar.
In Advances in Neural Information Processing Systems (NIPS) 27, 2014.
» On the Information Theoretic Limits of Learning Ising Models [Appendix].
R. Tandon, K. Shanmugam, P. Ravikumar, A. Dimakis.
In Advances in Neural Information Processing Systems (NIPS) 27, 2014.
» Constant Nullspace Strong Convexity and Fast Convergence of Proximal Methods under High-Dimensional Settings [Appendix].
I. En-Hsu Yen, C.-J. Hsieh, P. Ravikumar, I. Dhillon.
In Advances in Neural Information Processing Systems (NIPS) 27, 2014.
» Sparse Random Feature Algorithms as Coordinate Descent in Hilbert Space [Appendix].
I. En-Hsu Yen, T.-W. Lin, S.-D. Lin, P. Ravikumar, I. Dhillon.
In Advances in Neural Information Processing Systems (NIPS) 27, 2014.
» Consistent Binary Classification with Generalized Performance Metrics [Appendix].
N. Nagarajan, S. Koyejo, P. Ravikumar, I. Dhillon.
In Advances in Neural Information Processing Systems (NIPS) 27, 2014.
» Capturing Semantically Meaningful Word Dependencies with an Admixture of Poisson MRFs [Appendix].
D. Inouye, P. Ravikumar, I. Dhillon.
In Advances in Neural Information Processing Systems (NIPS) 27, 2014.
» QUIC & DIRTY: A Quadratic Approximation Approach for Dirty Statistical Models [Appendix].
C.-J. Hsieh, I. Dhillon, P. Ravikumar, S. Becker, P. Olsen .
In Advances in Neural Information Processing Systems (NIPS) 27, 2014.
» Proximal Quasi-Newton for Computationally Intensive l1-regularized M-estimators [Appendix].
K. Zhong, I. En-Hsu Yen, I. Dhillon, P. Ravikumar.
In Advances in Neural Information Processing Systems (NIPS) 27, 2014.
» QUIC: Quadratic Approximation for Sparse Inverse Covariance Estimation.
C.-J. Hsieh, M. Sustik, I. Dhillon, P. Ravikumar.
Journal of Machine Learning Research (JMLR), Vol. 15, Pages 2911-2947, 2014.
» Elementary Estimators for High-Dimensional Linear Regression.
E. Yang, A. Lozano, P. Ravikumar.
In International Conference on Machine Learning (ICML) 31, 2014.
» Elementary Estimators for Sparse Covariance Matrices and other Structured Moments.
E. Yang, A. Lozano, P. Ravikumar.
In International Conference on Machine Learning (ICML) 31, 2014.
» Exponential Family Matrix Completion under Structural Constraints [Appendix].
S. Gunasekar, P. Ravikumar, J. Ghosh.
In International Conference on Machine Learning (ICML) 31, 2014.
» Admixtures of Poisson MRFs: A Topic Model with Word Dependencies [Appendix].
D. Inouye, P. Ravikumar, I. Dhillon.
In International Conference on Machine Learning (ICML) 31, 2014.
» Learning Graphs with a Few Hubs [Appendix].
R. Tandon, P. Ravikumar.
In International Conference on Machine Learning (ICML) 31, 2014.
» Mixed Graphical Models via Exponential Families [Appendix].
E. Yang, Y. Baker, P. Ravikumar, G. Allen, Z. Liu.
In International Conference on Artificial Intelligence and Statistics (AISTATS) 17, 2014 (Oral).
» BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables.
C.-J. Hsieh, M. Sustik, I. Dhillon, P. Ravikumar, R. Poldrack.
In Advances in Neural Information Processing Systems (NIPS) 26, 2013 (Oral).
» Dirty Statistical Models.
E. Yang, P. Ravikumar.
In Advances in Neural Information Processing Systems (NIPS) 26, 2013.
» On Poisson Graphical Models.
E. Yang, P. Ravikumar, G. Allen, Z. Liu.
In Advances in Neural Information Processing Systems (NIPS) 26, 2013.
» Conditional Random Fields via Univariate Exponential Families.
E. Yang, P. Ravikumar, G. Allen, Z. Liu.
In Advances in Neural Information Processing Systems (NIPS) 26, 2013.
» Learning with Noisy Labels.
N. Natarajan, I. Dhillon, P. Ravikumar, A. Tewari.
In Advances in Neural Information Processing Systems (NIPS) 26, 2013.
» Large Scale Distributed Sparse Precision Estimation.
H. Wang, A. Banerjee, C.-J. Hsieh, P. Ravikumar, I. Dhillon.
In Advances in Neural Information Processing Systems (NIPS) 26, 2013.
» On the Difficulty of Learning Power Law Graphical Models.
R. Tandon, P. Ravikumar.
In IEEE International Symposium on Information Theory (ISIT), 2013.
» On Robust Estimation of High Dimensional Generalized Linear Models.
E. Yang, A. Tewari, P. Ravikumar.
In International Joint Conference on Artificial Intelligence (IJCAI) 13, 2013.
» A Dirty Model for Multiple Sparse Regression.
A. Jalali, P. Ravikumar, S. Sanghavi.
IEEE Transactions on Information Theory, Vol. 59, No. 12, pages 7947-7968, 2013.
» Human Boosting.
H. Pareek, P. Ravikumar.
In International Conference on Machine Learning (ICML) 30, 2013.
» Graphical Models via Generalized Linear Models.
E. Yang, P. Ravikumar, G. Allen, Z. Liu.
In Advances in Neural Information Processing Systems (NIPS) 25, 2012 (Oral).
» A Divide-and-Conquer Method for Sparse Inverse Covariance Estimation.
C.-J. Hsieh, I. Dhillon, P. Ravikumar, A. Banerjee.
In Advances in Neural Information Processing Systems (NIPS) 25, 2012.
» Perturbation based Large Margin Approach for Ranking.
E. Yang, A. Tewari, P. Ravikumar.
In International Conference on Artificial Intelligence and Statistics (AISTATS) 15, 2012.
» High-dimensional Sparse Inverse Covariance Estimation using Greedy Methods.
A. Jalali, C. Johnson, P. Ravikumar.
In International Conference on Artificial Intelligence and Statistics (AISTATS) 15, 2012.
» A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers.
S. Negahban, P. Ravikumar, M. J. Wainwright and B. Yu.
Statistical Science, Vol. 27, No. 4, pages 538-557, 2012.
» Information-theoretic lower bounds on the oracle complexity of convex optimization.
A. Agarwal, P. Bartlett, P. Ravikumar, M. Wainwright.
IEEE Transactions on Information Theory, Vol. 58, No. 5, pages 3235-3249, 2012.
» On Learning Discrete Graphical Models using Greedy Methods.
A. Jalali, C. Johnson, P. Ravikumar.
In Advances in Neural Information Processing Systems (NIPS) 24, 2011.
» Greedy Algorithms for Structurally Constrained High Dimensional Problems.
A. Tewari, P. Ravikumar, I. Dhillon.
In Advances in Neural Information Processing Systems (NIPS) 24, 2011.
» Nearest Neighbor based Greedy Coordinate Descent.
I. Dhillon, P. Ravikumar, A. Tewari.
In Advances in Neural Information Processing Systems (NIPS) 24, 2011.
» Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation.
C.-J. Hsieh, M. Sustik, I. Dhillon, P. Ravikumar.
In Advances in Neural Information Processing Systems (NIPS) 24, 2011.
» High-dimensional covariance estimation by minimizing l1-penalized log-determinant divergence.
P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu.
Electronic Journal of Statistics, Vol. 5, Pages 935-980, 2011.
» On the Use of Variational Inference for Learning Discrete Graphical Models.
E. Yang and P. Ravikumar.
In International Conference on Machine learning (ICML) 28, 2011.
» Encoding and Decoding V1 fMRI Responses to Natural Images with Sparse Nonparametric Models .
V. Vu, P. Ravikumar, T. Naselaris, K. Kay, J. Gallant and B. Yu.
Annals of Applied Statistics, Vol. 5, No. 2B, pages 1159-1182, 2011.
» On NDCG Consistency of Listwise Ranking Methods.
P. Ravikumar, A. Tewari, E. Yang.
In International Conference on Artificial Intelligence and Statistics (AISTATS) 14, 2011.
» On Learning Discrete Graphical Models using Group-Sparse Regularization.
A. Jalali, P. Ravikumar, V. Vasuki, S. Sanghavi.
In International Conference on Artificial Intelligence and Statistics (AISTATS) 14, 2011.
» A Dirty Model for Multi-task Learning[Appendix].
A. Jalali, P. Ravikumar, S. Sanghavi, C. Ruan.
In Advances in Neural Information Processing Systems (NIPS) 23, 2010 (Oral).
» Information-theoretic lower bounds on the oracle complexity of sparse convex optimization.
A. Agarwal, P. Bartlett, P. Ravikumar, M. Wainwright.
In International Workshop on Optimization for Machine Learning (OPT) 3, 2010.