
CS 327E Class 5
March 5, 2021

Instapolls

• Collect feedback from Test 1
• Verify Firestore set up

Why NoSQL systems?

• Need for greater scalability
• Throughput
• Response time

• More expressive data models
and schema flexibility

• Object-relational mismatch

• Preference for open-source software

Source: Martin Kleppmann, Designing Data-Intensive Applications, O’Reilly 2017.

The CAP Theorem:
Consistency versus Availability

Why Firestore?
+ Distributed database system
+ Fully "serverless"
+ Simple APIs for reading and writing
+ Supports ACID transactions (uses Spanner behind the scenes)
+ Designed for mobile, web and IoT apps
+ Implements document model
+ Change data capture for documents
+ Massive scale (10+M requests/sec, PBs of storage)
+ Cost efficient
- Only available on Google Cloud
- Write throughput limits in native mode (10K writes/sec)

Firestore’s Document Model

• Firestore document == collection of typed key, value pairs
• Primitive types: String, Int, Float, Bool, Datetime
• Complex types: Array, Map, Geo points

• Documents are grouped into collections
• Documents of the same type can have different schemas
• Documents have unique identifiers (id)
• Documents can store hierarchical data with subcollections

Writing to Firestore
● Every document has unique identifier
● Set method converts Python dictionary into Firestore document
● A write must also update indexes on the collection

Writing to Firestore
● Subcollections are nested under documents
● Subcollections can be nested under other subcollections (max depth = 100)

Reading from Firestore

● Get(id) method fetches single document
● Stream method fetches all documents in collection
● Stream + where methods filter documents in collection
● Order by and limit methods available
● All reads require indexes!

Reading from Firestore

Design Guidelines for Document Databases

• Analyze your access patterns.
• Group entities into top-level and low-level types based on your access

patterns.
• Convert each top-level entity into a collection of documents.
• Convert each low-level entity into a subcollection of documents

(Firestore) / array of subdocuments (Mongo) nested in its parent
collection.

• Create a single unique identifier per document. Concatenate
composite primary key fields into single identifier if needed.

Schema Conversion Example

Normalized college schema for relational systems.

 Access patterns:
● Get classes by cname
● Get students and their classes by sid
● Get instructor and their classes by tid

Schema Conversion Example

 Access patterns:
● Get classes by cname
● Get students and their classes by sid
● Get instructor and their classes by tid

Converted college schema for Firestore based on access patterns.

Practice Problem 1

Convert Shopify schema to Firestore.

 Access patterns:
● Get apps by category (Category.title)
● Get apps with highest review_count
● Get pricing plan details by app (Apps.id)
● Get key benefits by app (Apps.id)

Firestore Lab

https://github.com/cs327e-spring2021/snippets/wiki/Firestore-Setup-Guide

https://github.com/cs327e-spring2021/snippets/blob/master/firestore.ipynb

https://github.com/cs327e-spring2021/snippets/wiki/Firestore-Setup-Guide
https://github.com/cs327e-spring2021/snippets/blob/master/firestore.ipynb

Practice Problem 2

Find all classes taught by Prof. Cannata. Return the cno of those classes.

Project 4

http://www.cs.utexas.edu/~scohen/projects/Project4.pdf

http://www.cs.utexas.edu/~scohen/projects/Project4.pdf

