
CS 327E Class 7
March 26, 2021



Announcements

• Test 2 next class at 4pm CT
• Review session on Wed from 3pm - 4pm CT 

  Exam rules: 
• 60 minutes
• Open-note and open-book
• Piazza will be disabled during exam
• May not consult with any human in any form



Instapolls

• Check your Neo4j set up
• Check your GCP credits



Why Neo4j?

+ Labeled property graph data model
+ Flexible schema
+ Highly connected data
+ Declarative, SQL-inspired query language (Cypher)
+ Open-source, sponsored by Neo4j Inc.
+ Rich plugin and extension language (similar to Postgres)
+ ACID-compliant transactions
+ Distributed architecture for scaling reads
+ Visualization tools (Neo4j Browser, Bloom)
+ Optimized for graph traversals
- No sharding
- Doesn’t come as a managed service in the cloud



Neo4j’s Data Model



“Hello World” in Cypher

CREATE (); 
CREATE (:Person);
CREATE (:Place);
CREATE (:Person {name: "Brad"})-[:LIVES_IN]->(:Place {city: "Austin"});

MATCH(n) RETURN n;

MATCH ()-[r]->()
RETURN type(r), COUNT(r);

MATCH (p)-[r:LIVES_IN]->(c)
WHERE p.name = "Brad"
AND c.city = "Austin"
RETURN p, r, c;
 



Create the Nodes 

CREATE (:Person {name: "Ethan", email: "ethan@utexas.edu"});
CREATE (:Group {name: "Data Engineer", owner: "Alex"});
CREATE (:Role {name: "Project Owner", type: "GCP"});
CREATE (:Role {name: "DB Editor", type: "MySQL"});

CREATE (:Permission {name: "jobs.list"});
CREATE (:Permission {name: "jobs.get"});
CREATE (:Permission {name: "jobs.create"});

CREATE (:Permission {name: "storage.list"});
CREATE (:Permission {name: "storage.create"});
CREATE (:Permission {name: "storage.delete"});

MATCH (n) RETURN n;



Connecting the Nodes 
MATCH (p:Person {name: "Ethan"})
MATCH (r:Role {name: "Project Owner"})
CREATE (p)-[:HAS_ROLE]->(r);

MATCH (p:Person {name: "Ethan"})
MATCH (g:Group {name: "Data Engineer"})
CREATE (p)-[:IN_GROUP]->(g);

MATCH (g:Group {name: "Data Engineer"})
MATCH (r:Role {name: "DB Editor"})
CREATE (g)-[:HAS_ROLE]->(r);

MATCH (p)-[h]->(r) RETURN p, h, r;

MATCH (p:Person)-[h]->(r:Role) 
WHERE r.type = "MySQL"
RETURN p, h, r;



Connecting the Nodes

MATCH (r:Role {name: "Project Owner"})
MATCH (p:Permission {name: "storage.list"})
CREATE (r)-[:HAS_PERMISSION]->(p);

MATCH (r:Role {name: "Project Owner"})
MATCH (p:Permission {name: "storage.create"})
CREATE (r)-[:HAS_PERMISSION]->(p);

MATCH (r:Role {name: "Project Owner"})
MATCH (p:Permission {name: "storage.delete"})
CREATE (r)-[:HAS_PERMISSION]->(p);

MATCH (r:Role)-[h]->(p)
WHERE r.name = "Project Owner"
RETURN r, h, p;



Connecting the Nodes

MATCH (r:Role {name: "DB Editor"})
MATCH (p:Permission {name: "jobs.list"})
CREATE (r)-[:HAS_PERMISSION]->(p);

MATCH (r:Role {name: "DB Editor"})
MATCH (p:Permission {name: "jobs.get"})
CREATE (r)-[:HAS_PERMISSION]->(p);

MATCH (r:Role {name: "DB Editor"})
MATCH (p:Permission {name: "jobs.create"})
CREATE (r)-[:HAS_PERMISSION]->(p);

MATCH (r:Role)-[h]->(p)
WHERE r.name = "DB Editor"
RETURN r, h, p;



Visualizing the Graph



Querying the Graph
MATCH (n:Person)
RETURN count(n);

MATCH (n:Role)
RETURN count(n);

MATCH (n) 
RETURN distinct labels(n), count(n);

MATCH ()-[r:HAS_ROLE]->()
RETURN count(r);

MATCH ()-[r]->()
RETURN type(r), count(r);



Querying the Graph

MATCH (p:Person)-[r*]->(m:Permission)
WHERE p.name = "Ethan"
RETURN r, m.name
ORDER BY m;

If Ethan had many more permissions, we would add a LIMIT clause to the end of the query.
If Ethan had duplicate permissions, we would use DISTINCT m  in the RETURN clause.



Querying the Graph

MATCH (p:Person)-[r*1]->(m:Permission)
WHERE p.name = "Ethan"
RETURN r, m.name
ORDER BY m;

MATCH (p:Person)-[r*1..5]->(m:Permission)
WHERE p.name = "Ethan"
RETURN r, m.name
ORDER BY m;



Updating the Graph

MATCH (n:Role {name: "DB Editor"})
MATCH (p:Permission {name: "jobs.create"})
MERGE (n)-[r:HAS_PERMISSION]->(p)
ON MATCH SET r.start_date = "03-26-2021", r.duration = "1_DAY" 
RETURN n.name, type(r), r.start_date, r.duration;



Deleting Nodes and Relationships 
MATCH (p:Person)-[r]->()
DELETE r; 

MATCH (p:Person)
DELETE p;

MATCH (n) 
DETACH DELETE n;



Neo4j Lab

https://github.com/cs327e-spring2021/snippets/wiki/Neo4j-Setup-Guide

https://github.com/cs327e-spring2021/snippets/blob/main/neo4j.ipynb

 

https://github.com/cs327e-spring2021/snippets/wiki/Neo4j-Setup-Guide
https://github.com/cs327e-spring2021/snippets/blob/main/neo4j.ipynb


Practice Problem

Translate the following scenario into a Cypher query: 

Which persons directed a movie in which they also acted?

Return the person’s name, movie title, and role they played in their 
own movie. 

Order the results by person name. 

 



Project 6

http://www.cs.utexas.edu/~scohen/projects/Project6.pdf 

http://www.cs.utexas.edu/~scohen/projects/Project6.pdf

