CS 327E Class 7

March 26, 2021

Announcements

« Test 2 nextclass at4pm CT
* Review session on Wed from 3pm - 4pm CT

Exam rules:

60 minutes

Open-note and open-book

Piazza will be disabled during exam

May not consult with any human in any form

Instapolls

» Check your Neo4j set up
» Check your GCP credits

D+ + o+

Label
. RELATIONSHIP
W hy N e O4J ? Node key: value Node

key: value

Labeled property graph data model

Flexible schema

Highly connected data

Declarative, SQL-inspired query language (Cypher)
Open-source, sponsored by Neo4j Inc.

Rich plugin and extension language (similar to Postgres)
ACID-compliant transactions

Distributed architecture for scaling reads
Visualization tools (Neo4j Browser, Bloom)
Optimized for graph traversals

No sharding

Doesn’t come as a managed service in the cloud

e

key: value

Neo4j’s Data Model

name: DB Editor

name: Ethan

HAS_PERMISSION
HAS_ROLE IN_GROUP HAS_ROLE

y

name: jobs.list
name: Project Owner 7 name: jobs.get
name: jobs.create
name: Data Engineer

HAS_PERMISSION

name: storage.list "
name: storage.create
name: storage.delete

“Hello World” in Cypher

CREATE () ;

CREATE (:Person);

CREATE (:Place);

CREATE (:Person {name: "Brad"})-[:LIVES IN]->(:Place {city: "Austin"});

MATCH (n) RETURN n;

MATCH ()-[r]->()
RETURN type(r), COUNT (r);

MATCH (p)-[r:LIVES IN]->(c)
WHERE p.name = "Brad"

AND c.city = "Austin"
RETURN p, r, c;

Create the Nodes

CREATE (:Person {name: "Ethan", email: "ethan@utexas.edu"}):;
CREATE (:Group {name: "Data Engineer", owner: "Alex"});
CREATE (:Role {name: "Project Owner", type: "GCP"});

CREATE (:Role {name: "DB Editor", type: "MySQL"});

CREATE (:Permission {name: "jobs.list"});

CREATE (:Permission {name: "jobs.get"});

CREATE (:Permission {name: "jobs.create"});

CREATE (:Permission {name: "storage.list"});

CREATE (:Permission {name: "storage.create"});

CREATE (:Permission {name: "storage.delete"});

MATCH (n) RETURN n;

Connecting the Nodes

MATCH (p:Person {name: "Ethan"})
MATCH (r:Role {name: "Project Owner"})
CREATE (p)—[:HAS_ROLE]—>(r);

MATCH (p:Person {name: "Ethan"})
MATCH (g:Group {name: "Data Engineer"})
CREATE (p)-[:IN GROUP]->(qg);

MATCH (g:Group {name: "Data Engineer"})
MATCH (r:Role {name: "DB Editor"})
CREATE (g)-[:HAS ROLE]->(r);

MATCH (p)-[h]->(r) RETURN p, h, r;
MATCH (p:Person)-[h]->(r:Role)

WHERE r.type = "MySQL"
RETURN p, h, zr;

Connecting the Nodes

MATCH (r:Role {name: "Project Owner"})
MATCH (p:Permission {name: "storage.list"})
CREATE (r)-[:HAS PERMISSION]->(p);

MATCH (r:Role {name: "Project Owner"})
MATCH (p:Permission {name: "storage.create"})
CREATE (r)-[:HAS PERMISSION]->(p);

MATCH (r:Role {name: "Project Owner"})
MATCH (p:Permission {name: "storage.delete"})
CREATE (r)-[:HAS PERMISSION]->(p);

MATCH (r:Role)-[h]->(p)
WHERE r.name = "Project Owner"
RETURN r, h, p;

Connecting the Nodes

MATCH (r:Role {name: "DB Editor"})
MATCH (p:Permission {name: "Jjobs.list"})
CREATE (r)—[:HAS_PERMISSION]—>(p);

MATCH (r:Role {name: "DB Editor"})
MATCH (p:Permission {name: "jobs.get"})
CREATE (r)-[:HAS PERMISSION]->(p);

MATCH (r:Role {name: "DB Editor"})
MATCH (p:Permission {name: "Jjobs.create"})
CREATE (r)-[:HAS PERMISSION]->(p);

MATCH (r:Role)-[h]->(p)
WHERE r.name = "DB Editor"
RETURN r, h, p;

Q W @Incognito

Visualizing the Graph

C @ @ localhost

Database Information

Use database
neodj - default)))
MATCH (n) RETURN n LIMIT 25
Node Labels ® Group(1) Permission(6)
Graph
jobs.list
A e5°
I\ oo
we o storage....
DB Editor
m 1sSION 1A, GRO"P
> pps PERM S-Roug > =
c / Data S storage....
jobs.cre... F2 Engineer £ g
g i 5
< k) g o
g O
& F N
P &
S &
Project
AS pERMISSION Qaos
Jos gt storage.l...

Property Keys

Connected as
Displaying 10 nodes, 9 relationships

neodj

Querying the Graph

MATCH (n:Person) MATCH ()—[r:HAS_ROLE]—>()

RETURN count (n) ; RETURN count (r) ;

MATCH (n:Role) MATCH ()-[xr]->()

RETURN count (n) ; RETURN type(r), count(r);
e e e e +

MATCH (n) | type(r) | count(r) |

RETURN distinct labels(n), count(n); R —— +
| "IN _GROUP" | 1 |

;ST + | "HAS_ROLE" | 2 |

| labels(n) | count(n) | | "HAS PERMISSION" | 6 |

Fm e —————————————— + o e e i e +

| ["Person"] | 1 |

| ["Group"] | 1 |

| ["Role"] | 2 |

| ["Permission"] | 6 |

Querying the Graph

MATCH (p:Person)-[r*]->(m:Permission)
WHERE p.name = "Ethan"

RETURN r, m.name

ORDER BY m;

| [[:IN _GROUP], [:HAS ROLE], [:HAS PERMISSION]] jobs.list"

| [[:IN_GROUP], [:HAS ROLE], [:HAS PERMISSION]] jobs.get"

| [[:IN_GROUP], [:HAS ROLE], [:HAS PERMISSION]] jobs.create"
I

|

|

[| |
[| |
[I |
[[:HAS ROLE], [:HAS PERMISSION]] | "storage.list" |
[| |
[| |

[[:HAS_ROLE],
[[:HAS ROLE],

:HAS PERMISSION]] "storage.create"
:HAS PERMISSION]] "storage.delete"

If Ethan had many more permissions, we would add a LIMIT clause to the end of the query.
If Ethan had duplicate permissions, we would use DISTINCT m in the RETURN clause.

Querying the Graph

MATCH (p:Person)-[r*1]->(m:Permission)
WHERE p.name = "Ethan"

RETURN r, m.name

ORDER BY m;

S — +

| r | m.name |

A S S R +

o +

MATCH (p:Person)-[r*1..5]->(m:Permission)
WHERE p.name = "Ethan"

RETURN r, m.name
ORDER BY m;

Updating the Graph

MATCH (n:Role {name: "DB Editor"})

MATCH (p:Permission {name: "Jjobs.create"})

MERGE (n)-[r:HAS PERMISSION]->(p)

ON MATCH SET r.start date = "03-26-2021", r.duration = "1 DAY"
RETURN n.name, type(r), r.start date, r.duration;

Deleting Nodes and Relationships

MATCH (p:Person)-[r]->()
DELETE r;

MATCH (p:Person)
DELETE p;

MATCH (n)
DETACH DELETE n;

neo4j@neo4j> MATCH (n)
DETACH DELETE n;
0 rows available after 7 ms, consumed after another 0 ms
Deleted 10 nodes, Deleted 9 relationships
neo4j@neo4j>

Neo4j Lab

https://sithub.com/cs327e-spring2021/snippets/wiki/Neodj-Setup-Guide

https://sithub.com/cs327e-spring2021/snippets/blob/main/neo4j.ipynb

https://github.com/cs327e-spring2021/snippets/wiki/Neo4j-Setup-Guide
https://github.com/cs327e-spring2021/snippets/blob/main/neo4j.ipynb

Practice Problem

Translate the following scenario into a Cypher query:

Which persons directed a movie in which they also acted?

Return the person’s name, movie title, and role they played in their
own movie.

Order the results by person name.

Project 6

http://www.cs.utexas.edu/~scohen/projects/Project6.pdf

http://www.cs.utexas.edu/~scohen/projects/Project6.pdf

