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Abstract

We present a new class of statistical de-
anonymization attacks against high-dimensional
micro-data, such as individual preferences, recommen-
dations, transaction records and so on. Our techniques
are robust to perturbation in the data and tolerate some
mistakes in the adversary’s background knowledge.

We apply our de-anonymization methodology to the
Netflix Prize dataset, which contains anonymous movie
ratings of 500,000 subscribers of Netflix, the world’s
largest online movie rental service. We demonstrate
that an adversary who knows only a little bit about
an individual subscriber can easily identify this sub-
scriber’s record in the dataset. Using the Internet
Movie Database as the source of background knowl-
edge, we successfully identified the Netflix records of
known users, uncovering their apparent political pref-
erences and other potentially sensitive information.

1 Introduction

Datasets containing micro-data, that is, information
about specific individuals, are increasingly becoming
public in response to “open government” laws and to
support data mining research. Some datasets include
legally protected information such as health histories;
others contain individual preferences and transactions,
which many people may view as private or sensitive.

Privacy risks of publishing micro-data are well-
known. Even if identifiers such as names and Social
Security numbers have been removed, the adversary can
use background knowledge and cross-correlation with
other databases to re-identify individual data records.
Famous attacks include de-anonymization of a Mas-
sachusetts hospital discharge database by joining it with
a public voter database [25] and privacy breaches caused
by (ostensibly anonymized) AOL search data [16].

Micro-data are characterized by high dimensionality

and sparsity. Each record contains many attributes (i.e.,
columns in a database schema), which can be viewed as
dimensions. Sparsity means that for the average record,
there are no “similar” records in the multi-dimensional
space defined by the attributes. This sparsity is empir-
ically well-established [7, 4, 19] and related to the “fat
tail” phenomenon: individual transaction and preference
records tend to include statistically rare attributes.

Our contributions. Our first contribution is a formal
model for privacy breaches in anonymized micro-data
(section 3). We present two definitions, one based on the
probability of successful de-anonymization, the other on
the amount of information recovered about the target.
Unlike previous work [25], we do not assume a pri-
ori that the adversary’s knowledge is limited to a fixed
set of “quasi-identifier” attributes. Our model thus en-
compasses a much broader class of de-anonymization
attacks than simple cross-database correlation.

Our second contribution is a very general class of
de-anonymization algorithms, demonstrating the funda-
mental limits of privacy in public micro-data (section 4).
Under very mild assumptions about the distribution from
which the records are drawn, the adversary with a small
amount of background knowledge about an individual
can use it to identify, with high probability, this individ-
ual’s record in the anonymized dataset and to learn all
anonymously released information about him or her, in-
cluding sensitive attributes. For sparse datasets, such as
most real-world datasets of individual transactions, pref-
erences, and recommendations, very little background
knowledge is needed (as few as 5-10 attributes in our
case study). Our de-anonymization algorithm is robust
to the imprecision of the adversary’s background knowl-
edge and to perturbation that may have been applied to
the data prior to release. It works even if only a subset
of the original dataset has been published.

Our third contribution is a practical analysis of
the Netflix Prize dataset, containing anonymized
movie ratings of 500,000 Netflix subscribers (sec-
tion 5). Netflix—the world’s largest online DVD rental
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service—published this dataset to support the Netflix
Prize data mining contest. We demonstrate that an ad-
versary who knows a little bit about some subscriber can
easily identify her record if it is present in the dataset,
or, at the very least, identify a small set of records which
include the subscriber’s record. The adversary’s back-
ground knowledge need not be precise, e.g., the dates
may only be known to the adversary with a 14-day error,
the ratings may be known only approximately, and some
of the ratings and dates may even be completely wrong.
Because our algorithm is robust, if it uniquely identifies
a record in the published dataset, with high probability
this identification is not a false positive.

2 Related work

Unlike statistical databases [1, 3, 5], micro-
data include actual records of individuals even after
anonymization. A popular approach to micro-data pri-
vacy is k-anonymity [27, 9]. The data publisher de-
cides in advance which of the attributes may be available
to the adversary (these are called “quasi-identifiers”),
and which are the sensitive attributes to be protected.
k-anonymization ensures that each quasi-identifier tu-
ple occurs in at least k records in the anonymized
database. This does not guarantee any privacy, because
the values of sensitive attributes associated with a given
quasi-identifier may not be sufficiently diverse [20, 21]
or the adversary may know more than just the quasi-
identifiers [20]. Furthermore, k-anonymization com-
pletely fails on high-dimensional datasets [2], such as
the Netflix Prize dataset and most real-world datasets of
individual recommendations and purchases.

The de-anonymization algorithm presented in this pa-
per does not assume that the attributes are divided a pri-
ori into quasi-identifiers and sensitive attributes. Ex-
amples include anonymized transaction records (if the
adversary knows a few of the individual’s purchases,
can he learn all of her purchases?), recommendations
and ratings (if the adversary knows a few movies that
the individual watched, can he learn all movies she
watched?), Web browsing and search histories, and so
on. In such datasets, it is hard to tell in advance which
attributes might be available to the adversary; the adver-
sary’s background knowledge may even vary from indi-
vidual to individual. Unlike [25, 22, 14], our algorithm
is robust. It works even if the published records have
been perturbed, if only a subset of the original dataset
has been published, and if there are mistakes in the ad-
versary’s background knowledge.

Our definition of privacy breach is somewhat similar

to that of Chawla et al. [8]. We discuss the differences in
section 3. There is theoretical evidence that for any (san-
itized) database with meaningful utility, there is always
some auxiliary or background information that results
in a privacy breach [11]. In this paper, we aim to quan-
tify the amount of auxiliary information required and its
relationship to the percentage of records which would
experience a significant privacy loss.

We are aware of only one previous paper that consid-
ered privacy of movie ratings. In collaboration with the
MovieLens recommendation service, Frankowski et al.
correlated public mentions of movies in the MovieLens
discussion forum with the users’ movie rating histories
in the internal MovieLens dataset [14]. The algorithm
uses the entire public record as the background knowl-
edge (29 ratings per user, on average), and is not robust
if this knowledge is imprecise, e.g., if the user publicly
mentioned movies which he did not rate.

While our algorithm follows the same basic scoring
paradigm as [14], our scoring function is more complex
and our selection criterion is nontrivial and an impor-
tant innovation in its own right. Furthermore, our case
study is based solely on public data and does not involve
cross-correlating internal Netflix datasets (to which we
do not have access) with public forums. It requires much
less background knowledge (2-8 ratings per user), which
need not be precise. Furthermore, our analysis has pri-
vacy implications for 500,000 Netflix subscribers whose
records have been published; by contrast, the largest
public MovieLens datasets contains only 6,000 records.

3 Model

Database. Define database D to be an N ×M matrix
where each row is a record associated with some indi-
vidual, and the columns are attributes. We are interested
in databases containing individual preferences or trans-
actions. The number of columns thus reflects the total
number of items in the space we are considering, rang-
ing from a few thousand for movies to millions for (say)
the amazon.com catalog.

Each attribute (column) can be thought of as a dimen-
sion, and each individual record as a point in the multidi-
mensional attribute space. To keep our analysis general,
we will not fix the space X from which attributes are
drawn. They may be boolean (e.g., has this book been
rated?), integer (e.g., the book’s rating on a 1-10 scale),
date, or a tuple such as a (rating, date) pair.

A typical reason to publish anonymized micro-data is
“collaborative filtering,” i.e., predicting a consumer’s fu-
ture choices from his past behavior using the knowledge
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of what similar consumers did. Technically, the goal is
to predict the value of some attributes using a combina-
tion of other attributes. This is used in shopping recom-
mender systems, aggressive caching in Web browsers,
and other applications [28].

Sparsity and similarity. Preference databases with
thousands of attributes are necessarily sparse, i.e., each
individual record contains values only for a small frac-
tion of attributes. For example, the shopping history of
even the most profligate Amazon shopper contains only
a tiny fraction of all available items. We call these at-
tributes non-null; the set of non-null attributes is the sup-
port of a record (denoted supp(r)). Null attributes are
denoted ⊥. The support of a column is defined anal-
ogously. Even though points corresponding to database
records are very sparse in the attribute space, each record
may have dozens or hundreds of non-null attributes,
making the database truly high-dimensional.

The distribution of per-attribute support sizes is typi-
cally heavy- or long-tailed, roughly following the power
law [7, 4]. This means that although the supports of the
columns corresponding to “unpopular” items are small,
these items are so numerous that they make up the bulk
of the non-null entries in the database. Thus, any attempt
to approximate the database by projecting it down to the
most common columns is bound to failure.1

Unlike “quasi-identifiers” [27, 9], there are no at-
tributes that can be used directly for de-anonymization.
In a large database, for any except the rarest attributes,
there are hundreds of records with the same value of this
attribute. Therefore, it is not a quasi-identifier. At the
same time, knowledge that a particular individual has
a certain attribute value does reveal some information,
since attribute values and even the mere fact that a given
attribute is non-null vary from record to record.

The similarity measure Sim is a function that maps
a pair of attributes (or more generally, a pair of records)
to the interval [0, 1]. It captures the intuitive notion of
two values being “similar.” Typically, Sim on attributes
will behave like an indicator function. For example, in
our analysis of the Netflix Prize dataset, Sim outputs 1
on a pair of movies rated by different subscribers if and
only if both the ratings and the dates are within a certain
threshold of each other; it outputs 0 otherwise.

To define Sim over two records r1, r2, we “general-
ize” the cosine similarity measure:

Sim(r1, r2) =
∑

Sim(r1i, r2i)
|supp(r1) ∪ supp(r2)|

1The same effect causes k-anonymization to fail on high-
dimensional databases [2].

Figure 1. X-axis (x) is the similarity to
the “neighbor” with the highest similar-
ity score; Y-axis is the fraction of sub-
scribers whose nearest-neighbor similar-
ity is at least x.

Definition 1 (Sparsity) A database D is (ε, δ)-sparse
w.r.t. the similarity measure Sim if

Pr
r

[Sim(r, r′) > ε ∀r′ �= r] ≤ δ

As a real-world example, in fig. 1 we show that the
Netflix Prize dataset is overwhelmingly sparse. For the
vast majority of records, there isn’t a single record with
similarity score over 0.5 in the entire 500,000-record
dataset, even if we consider only the sets of movies rated
without taking into account numerical ratings or dates.

Sanitization and sampling. Database sanitization
methods include generalization and suppression [26, 9],
as well as perturbation. The data publisher may only re-
lease a (possibly non-uniform) sample of the database.
Our algorithm is designed to work against data that have
been both anonymized and sanitized.

If the database is published for collaborative filter-
ing or similar data mining purposes (as in the case of
the Netflix Prize dataset), the “error” introduced by san-
itization cannot be large, otherwise data utility will be
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lost. We make this precise in our analysis. Our defini-
tion of privacy breach allows the adversary to identify
not just his target record, but any record as long as it is
sufficiently similar (via Sim) to the target and can thus
be used to determine its attributes with high probability.

From the viewpoint of our de-anonymization algo-
rithm, there is no difference between the perturbation of
the published records and the imprecision of the adver-
sary’s knowledge about his target. In either case, there
is a small discrepancy between the attribute value(s) in
the anonymous record and the same value(s) as known
to the adversary. In the rest of the paper, we treat pertur-
bation simply as imprecision of the adversary’s knowl-
edge. The algorithm is designed to be robust to the latter.

Adversary model. We sample record r randomly from
database D and give auxiliary information or back-
ground knowledge related to r to the adversary. It is
restricted to a subset of (possibly imprecise, perturbed,
or simply incorrect) values of r’s attributes, modeled as
an arbitrary probabilistic function Aux : XM → XM .
The attributes given to the adversary may be chosen
uniformly from the support of r, or according to some
other rule.2 Given this auxiliary information and an
anonymized sample D̂ of D, the adversary’s goal is
to reconstruct attribute values of the entire record r.
Note that there is no artificial distinction between quasi-
identifiers and sensitive attributes.

If the published records are sanitized by adding ran-
dom noise ZS , and the noise used in generating Aux is
ZA, then the adversary’s task is equivalent to the sce-
nario where the data are not perturbed but noise ZS+ZA

is used in generating Aux. This makes perturbation
equivalent to imprecision of Aux.

Privacy breach: formal definitions. What does it mean
to de-anonymize a record r? The naive answer is to
find the “right” anonymized record in the public sample
D̂. This is hard to capture formally, however, because it
requires assumptions about the data publishing process
(e.g., what if D̂ contains two copies of every original
record?). Fundamentally, the adversary’s objective is is
to learn as much as he can about r’s attributes that he
doesn’t already know. We give two different (but re-
lated) formal definitions, because there are two distinct
scenarios for privacy breaches in large databases.

The first scenario is automated large-scale de-
anonymization. For every record r about which he has
some information, the adversary must produce a single

2For example, in the Netflix Prize case study we also pick uni-
formly from among the attributes whose supports are below a certain
threshold, e.g., movies that are outside the most popular 100 or 500
movies.

“prediction” for all attributes of r. An example is the
attack that inspired k-anonymity [25]: taking the demo-
graphic data from a voter database as auxiliary informa-
tion, the adversary joins it with the anonymized hospital
discharge database and uses the resulting combination to
determine the values of medical attributes for each per-
son who appears in both databases.

Definition 2 A database D can be (θ, ω)-deanonymized
w.r.t. auxiliary information Aux if there exists an algo-
rithm A which, on inputs D and Aux(r) where r ← D
outputs r′ such that

Pr[Sim(r, r′) ≥ θ] ≥ ω

Definition 2 can be interpreted as an amplification of
background knowledge: the adversary starts with aux =
Aux(r) which is close to r on a small subset of attributes,
and uses this to compute r′ which is close to r on the
entire set of attributes. This captures the adversary’s
ability to gain information about his target record.
As long he finds some record which is guaranteed to be
very similar to the target record, i.e., contains the same
or similar attribute values, privacy breach has occurred.

If operating on a sample D̂, the de-anonymization al-
gorithm must also detect whether the target record is part
of the sample, or has not been released at all. In the fol-
lowing, the probability is taken over the randomness of
the sampling of r from D̂, Aux and A itself.

Definition 3 (De-anonymization) An arbitrary subset
D̂ of a database D can be (θ, ω)-deanonymized w.r.t.
auxiliary information Aux if there exists an algorithm A
which, on inputs D̂ and Aux(r) where r ← D

• If r ∈ D̂, outputs r′ s.t. Pr[Sim(r, r′) ≥ θ] ≥ ω

• if r /∈ D̂, outputs ⊥ with probability at least ω

The same error threshold (1 − ω) is used for both
false positives and false negatives because the parame-
ters of the algorithm can be adjusted so that both rates
are equal; this is the “equal error rate.”

In the second privacy breach scenario, the adversary
produces a set or “lineup” of candidate records that in-
clude his target record r, either because there is not
enough auxiliary information to identify r in the lineup
or because he expects to perform additional analysis to
complete de-anonymization. This is similar to commu-
nication anonymity in mix networks [24].

The number of candidate records is not a good met-
ric, because some of the records may be much likelier
candidates than others. Instead, we consider the prob-
ability distribution over the candidate records, and use
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as the metric the conditional entropy of r given aux. In
the absence of an “oracle” to identify the target record
r in the lineup, the entropy of the distribution itself can
be used as a metric [24, 10]. If the adversary has such
an “oracle” (this is a technical device used to measure
the adversary’s success; in the real world, the adver-
sary may not have an oracle telling him whether de-
anonymization succeeded), then privacy breach can be
quantified as follows: how many bits of additional in-
formation does the adversary need in order to output a
record which is similar to his target record?

Thus, suppose that after executing the de-
anonymization algorithm, the adversary outputs
records r′1, . . . r

′
k and the corresponding probabilities

p1, . . . pk. The latter can be viewed as an entropy
encoding of the candidate records. According to Shan-
non’s source coding theorem, the optimal code length
for record r′i is (− log pi). We denote by HS(Π, x)
this Shannon entropy of a record x w.r.t. a probability
distribution Π. In the following, the expectation is taken
over the coin tosses of A, the sampling of r and Aux.

Definition 4 (Entropic de-anonymization) A
database D can be (θ, H)-deanonymized w.r.t.
auxiliary information Aux if there exists an algorithm A
which, on inputs D and Aux(r) where r ← D outputs a
set of candidate records D′ and probability distribution
Π such that

E[minr′∈D′,Sim(r,r′)≥θHS(Π, r′)] ≤ H

This definition measures the minimum Shannon en-
tropy of the candidate set of records which are similar to
the target record. As we will show, in sparse databases
this set is likely to contain a single record, thus taking
the minimum is but a syntactic requirement.

When the minimum is taken over an empty set, we
define it to be H0 = log2 N , the a priori entropy of
the target record. This models outputting a random
record from the entire database when the adversary can-
not compute a lineup of plausible candidates. Formally,
the adversary’s algorithm A can be converted into an al-
gorithm A′, which outputs the mean of two distributions:
one is the output of A, the other is the uniform distribu-
tion over D. Observe that for A′, the minimum is always
taken over a non-empty set, and the expectation for A′

differs from that for A by at most 1 bit.
Chawla et al. [8] give a definition of privacy breach

via isolation which is similar to ours, but requires a met-
ric on attributes, whereas our general similarity measure
does not naturally lead to a metric (there is no feasible
way to derive a distance function from it that satisfies

the triangle inequality). This appears to be essential for
achieving robustness to completely erroneous attributes
in the adversary’s auxiliary information.

4 De-anonymization algorithm

We start by describing an algorithm template or meta-
algorithm. The inputs are a sample D̂ of database D
and auxiliary information aux = Aux(r), r ← D. The
output is either a record r′ ∈ D̂, or a set of candidate
records and a probability distribution over those records
(following Definitions 3 and 4, respectively).

The three main components of the algorithm are the
scoring function, matching criterion, and record selec-
tion. The scoring function Score assigns a numerical
score to each record in D̂ based on how well it matches
the adversary’s auxiliary information Aux. The match-
ing criterion is the algorithm applied by the adversary
to the set of scores to determine if there is a match. Fi-
nally, record selection selects one “best-guess” record
or a probability distribution, if needed.

1. Compute Score(aux, r′) for each r′ ∈ D̂.

2. Apply the matching criterion to the resulting set of
scores and compute the matching set; if the match-
ing set is empty, output⊥ and exit.

3. If a “best guess” is required (de-anonymization ac-
cording to Defs. 2 and 3), output r′ ∈ D̂ with the
highest score. If a probability distribution over can-
didate records is required (de-anonymization ac-
cording to Def. 4), compute and output some non-
decreasing distribution based on the scores.

Algorithm Scoreboard. The following simple instan-
tiation of the above template is sufficiently tractable to
be formally analyzed in the rest of this section.

• Score(aux, r′) = mini∈supp(aux)Sim(auxi, r
′
i),

i.e., the score of a candidate record is determined
by the least similar attribute between it and the ad-
versary’s auxiliary information.

• The matching set D′ = {r′ ∈ D̂ :
Score(aux, r′) > α} for some fixed constant α.
The matching criterion is that D′ be nonempty.

• Probability distribution is uniform on D′.

Algorithm Scoreboard-RH. Algorithm Scoreboard
is not sufficiently robust for some applications; in par-
ticular, it fails if any of the attributes in the adversary’s
auxiliary information are completely incorrect.
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The following algorithm incorporates several heuris-
tics which have proved useful in practical analysis (see
section 5). First, the scoring function gives higher
weight to statistically rare attributes. Intuitively, if the
auxiliary information tells the adversary that his target
has a certain rare attribute, this helps de-anonymization
much more than the knowledge of a common attribute
(e.g., it is more useful to know that the target has pur-
chased “The Dedalus Book of French Horror” than the
fact that she purchased a Harry Potter book).

Second, to improve robustness, the matching crite-
rion requires that the top score be significantly above the
second-best score. This measures how much the identi-
fied record “stands out” from other candidate records.

• Score(aux, r′)=
∑

i∈supp(aux) wt(i)Sim(auxi, r
′
i)

where wt(i) = 1
log |supp(i)| .

3

• If a “best guess” is required, compute max =
max(S), max2 = max2(S) and σ = σ(S) where
S = {Score(aux, r′) : r′ ∈ D̂}, i.e., the highest
and second-highest scores and the standard devia-
tion of the scores. If max−max2

σ < φ, where φ is a
fixed parameter called the eccentricity, then there
is no match; otherwise, the matching set consists of
the record with the highest score.4

• If entropic de-anonymization is required, output

distribution Π(r′) = c · e Score(aux,r′)
σ for each r′,

where c is a constant that makes the distribution
sum up to 1. This weighs each matching record in
inverse proportion to the likelihood that the match
in question is a statistical fluke.

Note that there are two ways in which this algorithm
can fail to find the correct record. First, an incorrect
record may be assigned the highest score. Second, the
correct record may not have a score which is signifi-
cantly higher than the second-highest score.

4.1 Analysis: general case

We now quantify the amount of auxiliary informa-
tion needed to de-anonymize an arbitrary dataset using
Algorithm Scoreboard. The smaller the required in-
formation (i.e., the fewer attribute values the adversary
needs to know about his target), the easier the attack.

We start with the worst-case analysis and calculate
how much auxiliary information is needed without any

3Without loss of generality, we assume ∀i |supp(i)| > 0.
4Increasing φ increases the false negative rate, i.e., the chance of

erroneously dismissing a correct match, and decreases the false posi-
tive rate; φ may be chosen so that the two rates are equal.

assumptions about the distribution from which the data
are drawn. In section 4.2, we will show that much less
auxiliary information is needed to de-anonymize records
drawn from sparse distributions (real-world transaction
and recommendation datasets are all sparse).

Let aux be the auxiliary information about some
record r; aux consists of m (non-null) attribute values,
which are close to the corresponding values of attributes
in r, that is, |aux| = m and Sim(auxi, ri) ≥ 1− ε ∀i ∈
supp(aux), where auxi (respectively, ri) is the ith at-
tribute of aux (respectively, r).

Theorem 1 Let 0 < ε, δ < 1 and let D be the
database. Let Aux be such that aux = Aux(r) con-
sists of at least m ≥ log N−log ε

− log(1−δ) randomly selected
attribute values of the target record r, where ∀i ∈
supp(aux), Sim(auxi, ri) ≥ 1− ε. Then D can be
(1− ε− δ, 1− ε)-deanonymized w.r.t. Aux.

Proof. Use Algorithm Scoreboard with α = 1 − ε
to compute the set of all records in D̂ that match aux,
then output a record r′ at random from the matching set.
It is sufficient to prove that this randomly chosen r′ must
be very similar to the target record r. (This satisfies our
definition of a privacy breach because it gives the adver-
sary almost everything he may want to learn about r.)

Record r′ is a false match if Sim(r, r′) ≤ 1−ε−δ (i.e.,
the likelihood that r′ is similar to the target r is below
the threshold). We first show that, with high probability,
there are no false matches in the matching set.

Lemma 1 If r′ is a false match, then
Pri∈supp(r)[Sim(ri, r

′
i) ≥ 1− ε] < 1− δ

Lemma 1 holds, because the contrary implies
Sim(r, r′) ≥ (1 − ε)(1 − δ) ≥ (1 − ε − δ), contra-
dicting the assumption that r′ is a false match. There-
fore, the probability that the false match r′ belongs to
the matching set is at most (1− δ)m. By a union bound,
the probability that the matching set contains even a sin-

gle false match is at most N(1 − δ)m. If m = log N
ε

log 1
1−δ

,

then the probability that the matching set contains any
false matches is no more than ε.

Therefore, with probability 1 − ε, there are no false
matches. Thus for every record r′ in the matching set,
Sim(r, r′) ≥ 1− ε− δ, i.e., any r′ must be similar to the
true record r. To complete the proof, observe that the
matching set contains at least one record, r itself.

When δ is small, m = log N−log ε
δ . This depends log-

arithmically on ε and linearly on δ: the chance that the
algorithm fails completely is very small even if attribute-
wise accuracy is not very high. Also note that the match-
ing set need not be small. Even if the algorithm returns
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many records, with high probability they are all similar
to the target record r, and thus any one of them can be
used to learn the unknown attributes of r.

4.2 Analysis: sparse datasets

Most real-world datasets containing individual trans-
actions, preferences, and so on are sparse. Sparsity in-
creases the probability that de-anonymization succeeds,
decreases the amount of auxiliary information needed,
and improves robustness to both perturbation in the data
and mistakes in the auxiliary information.

Our assumptions about data sparsity are very mild.
We only assume (1− ε− δ, . . .) sparsity, i.e., we assume
that the average record does not have extremely similar
peers in the dataset (real-world records tend not to have
even approximately similar peers—see fig. 1).

Theorem 2 Let ε, δ, and aux be as in Theorem 1. If
the database D is (1 − ε − δ, ε)-sparse, then D can be
(1, 1− ε)-deanonymized. �

The proof is essentially the same as for Theorem 1,
but in this case any r′ �= r from the matching set must
be a false match. Because with probability 1−ε, Score-
board outputs no false matches, the matching set con-
sists of exactly one record: the true target record r.

De-anonymization in the sense of Definition 4 re-
quires even less auxiliary information. Recall that in
this kind of privacy breach, the adversary outputs a
“lineup” of k suspect records, one of which is the true
record. This k-deanonymization is equivalent to (1, 1

k )-
deanonymization in our framework.

Theorem 3 Let D be (1 − ε − δ, ε)-sparse and aux be

as in Theorem 1 with m =
log N

k−1

log 1
1−δ

. Then

• D can be (1, 1
k )-deanonymized.

• D can be (1, log k)-deanonymized (entropically).

By the same argument as in the proof of Theorem 1,

if the adversary knows m =
log N

k−1

log 1
1−δ

attributes, then the

expected number of false matches in the matching set is
at most k−1. Let X be the random variable representing
this number. A random record from the matching set is
a false match with probability of at least 1

X . Since 1
x is a

convex function, apply Jensen’s inequality [18] to obtain
E[ 1

X ] ≥ 1
E(X) ≥ 1

k .
Similarly, if the adversary outputs the uniform dis-

tribution over the matching set, its entropy is log X .
Since log x is a concave function, by Jensen’s inequality
E[log X ] ≤ log E(X) ≤ log k.

Neither claim follows directly from the other. �

4.3 De-anonymization from a sample

We now consider the scenario in which the released
database D̂ � D is a sample of the original database
D, i.e., only some of the anonymized records are avail-
able to the adversary. This is the case, for example, for
the Netflix Prize dataset (the subject of our case study
in section 5), where the publicly available anonymized
sample contains less than 1

10 of the original data.
In this scenario, even though the original database D

contains the adversary’s target record r, this record may
not appear in D̂ even in anonymized form. The adver-
sary can still apply Scoreboard, but the matching set
may be empty, in which case the adversary outputs ⊥
(indicating that de-anonymization fails). If the matching
set is not empty, he proceeds as before: picks a random
record r′ and learn the attributes of r on the basis of
r′. We now demonstrate the equivalent of Theorem 1:
de-anonymization succeeds as long as r is in the public
sample; otherwise, the adversary can detect, with high
probability, that r is not in the public sample.

Theorem 4 Let ε, δ, D, and aux be as in Theorem 1,
and D̂ ⊂ D. Then D̂ can be (1 − ε − δ, 1 − ε)-
deanonymized w.r.t. aux. �

The bound on the probability of a false match given in
the proof of Theorem 1 still holds, and the adversary is
guaranteed at least one match as long as his target record
r is in D̂. Therefore, if r /∈ D̂, the adversary outputs ⊥
with probability at least 1 − ε. If r ∈ D̂, then again the
adversary succeeds with probability at least 1− ε.

Theorems 2 and 3 do not translate directly. For each
record in the public sample D̂, there could be any num-
ber of similar records in D \ D̂, the part of the database
that is not available to the adversary.

Fortunately, if D is sparse, then theorems 2 and 3
still hold, and de-anonymization succeeds with a very
small amount of auxiliary information. We now show
that if the random sample D̂ is sparse, then the entire
database D must also be sparse. Therefore, the adver-
sary can simply apply the de-anonymization algorithm
to the sample. If he finds the target record r, then with
high probability this is not a false positive.

Theorem 5 If database D is not (ε, δ)-sparse, then a
random 1

λ -subset D̂ is not (ε, δγ
λ )-sparse with probabil-

ity at least 1− γ. �

For each r ∈ D̂, the “nearest neighbor” r′ of r in
D has a probability 1

λ of being included in D̂. There-
fore, the expected probability that the similarity with the
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nearest neighbor is at least 1 − ε is at least δ
λ . (Here the

expectation is over the set of all possible samples and the
probability is over the choice of the record in D̂.) Ap-
plying Markov’s inequality, the probability, taken over
the choice D̂, that D̂ is sparse, i.e., that the similarity
with the nearest neighbor is δγ

λ , is no more than γ. �
The above bound is quite pessimistic. Intuitively, for

any “reasonable” dataset, the sparsity of a random sam-
ple will be about the same as that of the original dataset.

Theorem 5 can be interpreted as follows. Consider
the adversary who has access to a sparse sample D̂, but
not the entire database D. Theorem 5 says that either
a very-low-probability event has occurred, or D itself is
sparse. Note that it is meaningless to try to bound the
probability that D is sparse because we do not have a
probability distribution on how D itself is created.

Intuitively, this says that unless the sample is spe-
cially tailored, sparsity of the sample implies sparsity of
the entire database. The alternative is that the similarity
between a random record in the sample and its nearest
neighbor is very different from the corresponding distri-
bution in the full database. In practice, most, if not all
anonymized datasets are published to support research
on data mining and collaborative filtering. Tailoring the
published sample in such a way that its nearest-neighbor
similarity is radically different from that of the origi-
nal data would completely destroy utility of the sam-
ple for learning new collaborative filters, which are often
based on the set of nearest neighbors. Therefore, in real-
world anonymous data publishing scenarios—including,
for example, the Netflix Prize dataset—sparsity of the
sample should imply sparsity of the original dataset.

5 Case study: Netflix Prize dataset

On October 2, 2006, Netflix, the world’s largest on-
line DVD rental service, announced the $1-million Net-
flix Prize for improving their movie recommendation
service [15]. To aid contestants, Netflix publicly re-
leased a dataset containing 100, 480, 507 movie ratings,
created by 480, 189 Netflix subscribers between Decem-
ber 1999 and December 2005.

Among the Frequently Asked Questions about the
Netflix Prize [23], there is the following question: “Is
there any customer information in the dataset that should
be kept private?” The answer is as follows:

“No, all customer identifying information has
been removed; all that remains are ratings and
dates. This follows our privacy policy [. . . ]
Even if, for example, you knew all your own

ratings and their dates you probably couldn’t
identify them reliably in the data because only
a small sample was included (less than one-
tenth of our complete dataset) and that data
was subject to perturbation. Of course, since
you know all your own ratings that really isn’t
a privacy problem is it?”

Removing identifying information is not sufficient
for anonymity. An adversary may have auxiliary infor-
mation about a subscriber’s movie preferences: the ti-
tles of a few of the movies that this subscriber watched,
whether she liked them or not, maybe even approximate
dates when she watched them. We emphasize that even
if it is hard to collect such information for a large num-
ber of subscribers, targeted de-anonymization—for ex-
ample, a boss using the Netflix Prize dataset to find an
employee’s entire movie viewing history after a casual
conversation—still presents a serious threat to privacy.

We investigate the following question: How much
does the adversary need to know about a Netflix sub-
scriber in order to identify her record if it is present in
the dataset, and thus learn her complete movie viewing
history? Formally, we study the relationship between
the size of aux and (1, ω)- and (1, H)-deanonymization.

Does privacy of Netflix ratings matter? The issue is
not “Does the average Netflix subscriber care about the
privacy of his movie viewing history?,” but “Are there
any Netflix subscribers whose privacy can be compro-
mised by analyzing the Netflix Prize dataset?” As shown
by our experiments below, it is possible to learn sensi-
tive non-public information about a person from his or
her movie viewing history. We assert that even if the
vast majority of Netflix subscribers did not care about
the privacy of their movie ratings (which is not obvious
by any means), our analysis would still indicate serious
privacy issues with the Netflix Prize dataset.

Moreover, the linkage between an individual and her
movie viewing history has implications for her future
privacy. In network security, “forward secrecy” is im-
portant: even if the attacker manages to compromise a
session key, this should not help him much in compro-
mising the keys of future sessions. Similarly, one may
state the “forward privacy” property: if someone’s pri-
vacy is breached (e.g., her anonymous online records
have been linked to her real identity), future privacy
breaches should not become easier. Consider a Net-
flix subscriber Alice whose entire movie viewing his-
tory has been revealed. Even if in the future Alice cre-
ates a brand-new virtual identity (call her Ecila), Ecila
will never be able to disclose any non-trivial informa-
tion about the movies that she had rated within Netflix
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because any such information can be traced back to her
real identity via the Netflix Prize dataset. In general,
once any piece of data has been linked to a person’s real
identity, any association between this data and a virtual
identity breaks anonymity of the latter.

Finally, the Video Privacy Protection Act of
1988 [13] lays down strong provisions against disclo-
sure of personally identifiable rental records of “prere-
corded video cassette tapes or similar audio visual ma-
terial.” While the Netflix Prize dataset does not explic-
itly include personally identifiable information, the issue
of whether the implicit disclosure demonstrated by our
analysis runs afoul of the law or not is a legal question
to be considered.

How did Netflix release and sanitize the data? Figs. 2
and 3 plot the number of ratings X against the num-
ber of subscribers in the released dataset who have at
least X ratings. The tail is surprisingly thick: thousands
of subscribers have rated more than a thousand movies.
Netflix claims that the subscribers in the released dataset
have been “randomly chosen.” Whatever the selection
algorithm was, it was not uniformly random. Common
sense suggests that with uniform subscriber selection,
the curve would be monotonically decreasing (as most
people rate very few movies or none at all), and that
there would be no sharp discontinuities.

We conjecture that some fraction of subscribers with
more than 20 ratings were sampled, and the points on
the graph to the left of X = 20 are the result of some
movies being deleted after sampling.

We requested the rating history as presented on the
Netflix website from some of our acquaintances, and
based on this data (which is effectively drawn from Net-
flix’s original, non-anonymous dataset, since we know
the names associated with these records), located two of
them in the Netflix Prize dataset. Netflix’s claim that
the data were perturbed does not appear to be borne out.
One of the subscribers had 1 of 306 ratings altered, and
the other had 5 of 229 altered. (These are upper bounds,
because the subscribers may have changed their ratings
after Netflix took the 2005 snapshot that was released.)
In any case, the level of noise is far too small to affect
our de-anonymization algorithm, which has been specif-
ically designed to withstand this kind of imprecision.
We have no way of determining how many dates were
altered and how many ratings were deleted, but we con-
jecture that very little perturbation has been applied.

It is important that the Netflix Prize dataset has been
released to support development of better recommenda-
tion algorithms. A significant perturbation of individ-
ual attributes would have affected cross-attribute corre-

lations and significantly decreased the dataset’s utility
for creating new recommendation algorithms, defeating
the entire purpose of the Netflix Prize competition.

Note that the Netflix Prize dataset clearly has not
been k-anonymized for any value of k > 1.

Figure 2. For each X ≤ 100, the number of
subscribers with X ratings in the released
dataset.

De-anonymizing the Netflix Prize dataset. We apply
Algorithm Scoreboard-RH from section 4. The simi-
larity measure Sim on attributes is a threshold function:
Sim returns 1 if and only if the two attribute values are
within a certain threshold of each other. For movie rat-
ings, which in the case of Netflix are on the 1-5 scale,
we consider the thresholds of 0 (corresponding to exact
match) and 1, and for the rating dates, 3 days, 14 days,
or∞. The latter means that the adversary has no infor-
mation about the date when the movie was rated.

Some of the attribute values known to the attacker
may be completely wrong. We say that aux of a record

Figure 3. For each X ≤ 1000, the number of
subscribers with X ratings in the released
dataset.
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Figure 4. Adversary knows exact ratings
and approximate dates.

r consists of m movies out of m′ if |aux| = m′, ri

is non-null for each auxi, and
∑

i Sim(auxi, ri) ≥ m.
We instantiate the scoring function as follows:

Score(aux, r′) =
∑

i∈supp(aux)

wt(i)(e
ρi−ρ′

i
ρ0 + e

di−d′
i

d0 )

where wt(i) = 1
log |supp(i)| (|supp(i)| is the number of

subscribers who have rated movie i), ρi and di are the
rating and date, respectively, of movie i in the auxil-
iary information, and ρ′i and d′i are the rating and date
in the candidate record r′.5 As explained in section 4,
this scoring function was chosen to favor statistically un-
likely matches and thus minimize accidental false posi-
tives. The parameters ρ0 and d0 are 1.5 and 30 days, re-
spectively. These were chosen heuristically, as they gave
the best results in our experiments,6 and used through-
out, regardless of the amount of noise in Aux. The ec-
centricity parameter was set to φ = 1.5, i.e., the algo-
rithm declares there is no match if and only if the differ-
ence between the highest and the second highest scores
is no more than 1.5 times the standard deviation. (A con-
stant value of φ does not always give the equal error rate,
but it is a close enough approximation.)

5wt(i) is undefined when |supp(i)| = 0, but this is not a concern
since every movie is rated by at least 4 subscribers.

6It may seem that tuning the parameters to the specific dataset may
have unfairly improved our results, but an actual adversary would have
performed the same tuning. We do not claim that these numerical
parameters should be used for other instances of our algorithm; they
must be derived by trial and error for each target dataset.

Figure 5. Same parameters as Fig. 4, but
the adversary must also detect when the
target record is not in the sample.

Didn’t Netflix publish only a sample of the data? Be-
cause Netflix published less than 1

10 of its 2005 database,
we need to be concerned about the possibility that when
our algorithm finds a record matching aux in the pub-
lished sample, this may be a false match and the real
record has not been released at all.

Algorithm Scoreboard-RH is specifically designed
to detect when the record corresponding to aux is not
in the sample. We ran the following experiment. First,
we gave aux from a random record to the algorithm and
ran it on the dataset. Then we removed this record from
the dataset and re-ran the algorithm. In the former case,
the algorithm should find the record; in the latter, de-
clare that it is not in the dataset. As shown in Fig. 5, the
algorithm succeeds with high probability in both cases.

It is possible, although extremely unlikely, that the
original Netflix dataset is not as sparse as the published
sample, i.e., it contains clusters of records which are
close to each other, but only one representative of each
cluster has been released in the Prize dataset. A dataset
with such a structure would be exceptionally unusual
and theoretically problematic (see Theorem 4).

If the adversary has less auxiliary information than
shown in Fig. 5, false positives cannot be ruled out a pri-
ori, but there is a lot of extra information in the dataset
that can be used to eliminate them. For example, if the
start date and total number of movies in a record are part
of the auxiliary information (e.g., the adversary knows
approximately when his target first joined Netflix), they

10



Figure 6. Entropic de-anonymization:
same parameters as in Fig. 4.

can be used to eliminate candidate records.

Results of de-anonymization. We carried out the ex-
periments summarized in the following table:

Fig Ratings Dates Type Aux selection
4 Exact ±3/ ±14 Best-guess Uniform
5 Exact ±3/ ±14 Best-guess Uniform
6 Exact ±3/ ±14 Entropic Uniform
8 Exact No info. Best-guess Not 100/500
9 ±1 ±14 Best-guess Uniform

10 ±1 ±14 Best-guess Uniform
11 Exact No info. Entropic Not 100/500
12 ±1 ±14 Best-guess Uniform

Our conclusion is that very little auxiliary informa-
tion is needed for de-anonymize an average subscriber
record from the Netflix Prize dataset. With 8 movie rat-
ings (of which 2 may be completely wrong) and dates
that may have a 14-day error, 99% of records can be
uniquely identified in the dataset. For 68%, two ratings
and dates (with a 3-day error) are sufficient (Fig. 4).
Even for the other 32%, the number of possible can-
didates is brought down dramatically. In terms of en-
tropy, the additional information required for complete
de-anonymization is around 3 bits in the latter case (with
no auxiliary information, this number is 19 bits). When
the adversary knows 6 movies correctly and 2 incor-
rectly, the extra information he needs for complete de-
anonymization is a fraction of a bit (Fig. 6).

Even without any dates, a substantial privacy breach
occurs, especially when the auxiliary information con-
sists of movies that are not blockbusters. In Fig. 7, we
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Figure 7. Entropy of movie by rank

demonstrate how much information the adversary gains
about his target just from the knowledge that the tar-
get watched a particular movie as a function of the rank
of the movie.7 Because there are correlations between
the lists of subscribers who watched various movies, we
cannot simply multiply the information gain per movie
by the number of movies. Therefore, Fig. 7 cannot be
used to infer how many movies the adversary needs to
know for successful de-anonymization.

As shown in Fig. 8, two movies are no longer suf-
ficient for de-anonymization, but 84% of subscribers
present in the dataset can be uniquely identified if the
adversary knows 6 out of 8 moves outside the top 500.
To show that this is not a significant limitation, consider
that most subscribers rate fairly rare movies:

Not in X most rated % of subscribers who rated . . .
≥ 1 movie ≥ 5 ≥ 10

X = 100 100% 97% 93%
X = 500 99% 90% 80%

X = 1000 97% 83% 70%

Fig. 9 shows that the effect of relative popularity of
movies known to the adversary is not dramatic.

In Fig. 10, we add even more noise to the auxiliary

7We measure the rank of a movie by the number of subscribers who
have rated it.
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Figure 8. Adversary knows exact ratings
but does not know dates at all.

information, allowing mistakes about which movies the
target watched, and not just their ratings and dates.

Fig. 11 shows that even when the adversary’s proba-
bility to correctly learn the attributes of the target record
is low, he gains a lot of information about the target
record. Even in the worst scenario, the additional in-
formation needed to to complete the de-anonymization
has been reduced to less than half of its original value.

Fig. 12 shows why even partial de-anonymization can
be very dangerous. There are many things the adver-
sary might know about his target that are not captured
by our formal model, such as the approximate number of
movies rated, the date when they joined Netflix and so
on. Once a candidate set of records is available, further
automated analysis or human inspection might be suffi-
cient to complete the de-anonymization. Fig. 12 shows
that in some cases, knowing the number of movies the
target has rated (even with a 50% error!) can more than
double the probability of complete de-anonymization.

Obtaining the auxiliary information. Given how lit-
tle auxiliary information is needed to de-anonymize the
average subscriber record from the Netflix Prize dataset,
a determined adversary who targets a specific individual
may not find it difficult to obtain such information, es-
pecially since it need not be precise. We emphasize that
massive collection of data on thousands of subscribers
is not the only or even the most important threat. A
water-cooler conversation with an office colleague about
her cinematographic likes and dislikes may yield enough
information, especially if at least a few of the movies

Figure 9. Effect of knowing less popular
movies rated by victim. Adversary knows
approximate ratings (±1) and dates (14-
day error).

mentioned are outside the top 100 most rated Netflix
movies. This information can also be gleaned from per-
sonal blogs, Google searches, and so on.

One possible source of a large number of per-
sonal movie ratings is the Internet Movie Database
(IMDb) [17]. We expect that for Netflix subscribers who
use IMDb, there is a strong correlation between their pri-
vate Netflix ratings and their public IMDb ratings.8 Our
attack does not require that all movies rated by the sub-
scriber in the Netflix system be also rated in IMDb, or
vice versa. In many cases, even a handful of movies
that are rated by a subscriber in both services would
be sufficient to identify his or her record in the Net-
flix Prize dataset (if present among the released records)
with enough statistical confidence to rule out the possi-
bility of a false match except for a negligible probability.

Due to the restrictions on crawling IMDb imposed by
IMDb’s terms of service (of course, a real adversary may
not comply with these restrictions), we worked with a
very small sample of around 50 IMDb users. Our results
should thus be viewed as a proof of concept. They do
not imply anything about the percentage of IMDb users
who can be identified in the Netflix Prize dataset.

The auxiliary information obtained from IMDb is
quite noisy. First, a significant fraction of the movies
rated on IMDb are not in Netflix, and vice versa, e.g.,

8We are not claiming that a large fraction of Netflix subscribers use
IMDb, or that many IMDb users use Netflix.
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Figure 10. Effect of increasing error in
Aux.

movies that have not been released in the US. Second,
some of the ratings on IMDb are missing (i.e., the user
entered only a comment, not a numerical rating). Such
data are still useful for de-anonymization because an av-
erage user has rated only a tiny fraction of all movies, so
the mere fact that a person has watched a given movie
tremendously reduces the number of anonymous Netflix
records that could possibly belong to that user. Finally,
IMDb users among Netflix subscribers fall into a con-
tinuum of categories with respect to rating dates, sepa-
rated by two extremes: some meticulously rate movies
on both IMDb and Netflix at the same time, and others
rate them whenever they have free time (which means
the dates may not be correlated at all). Somewhat off-
setting these disadvantages is the fact that we can use all
of the user’s ratings publicly available on IMDb.

Because we have no “oracle” to tell us whether the
record our algorithm has found in the Netflix Prize
dataset based on the ratings of some IMDb user indeed
belongs to that user, we need to guarantee a very low
false positive rate. Given our small sample of IMDb
users, our algorithm identified the records of two users
in the Netflix Prize dataset with eccentricities of around
28 and 15, respectively. These are exceptionally strong
matches, which are highly unlikely to be false posi-
tives: the records in questions are 28 standard devia-
tions (respectively, 15 standard deviations) away from
the second-best candidate. Interestingly, the first user
was de-anonymized mainly from the ratings and the sec-
ond mainly from the dates. For nearly all the other IMDb

Figure 11. Entropic de-anonymization:
same parameters as in Fig. 6.

users we tested, the eccentricity was no more than 2.
Let us summarize what our algorithm achieves.

Given a user’s public IMDb ratings, which the user
posted voluntarily to reveal some of his (or her; but we’ll
use the male pronoun without loss of generality) movie
likes and dislikes, we discover all ratings that he entered
privately into the Netflix system. Why would someone
who rates movies on IMDb—often under his or her real
name—care about privacy of his Netflix ratings? Con-
sider the information that we have been able to deduce
by locating one of these users’ entire movie viewing his-
tory in the Netflix Prize dataset and that cannot be de-
duced from his public IMDb ratings.

First, his political orientation may be revealed by his
strong opinions about “Power and Terror: Noam Chom-
sky in Our Times” and “Fahrenheit 9/11,” and his reli-
gious views by his ratings on “Jesus of Nazareth” and
“The Gospel of John.” Even though one should not
make inferences solely from someone’s movie prefer-
ences, in many workplaces and social settings opinions
about movies with predominantly gay themes such as
“Bent” and “Queer as folk” (both present and rated in
this person’s Netflix record) would be considered sensi-
tive. In any case, it should be for the individual and not
for Netflix to decide whether to reveal them publicly.

6 Conclusions

We have presented a de-anonymization methodol-
ogy for sparse micro-data, and demonstrated its prac-
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Figure 12. Effect of knowing approxi-
mate number of movies rated by victim
(±50%). Adversary knows approximate
ratings (±1) and dates (14-day error).

tical applicability by showing how to de-anonymize
movie viewing records released in the Netflix Prize
dataset. Our de-anonymization algorithm Scoreboard-
RH works under very general assumptions about the
distribution from which the data are drawn, and is ro-
bust to data perturbation and mistakes in the adversary’s
knowledge. Therefore, we expect that it can be success-
fully used against any dataset containing anonymous
multi-dimensional records such as individual transac-
tions, preferences, and so on.

We conjecture that the amount of perturbation that
must be applied to the data to defeat our algorithm will
completely destroy their utility for collaborative filter-
ing. Sanitization techniques from the k-anonymity liter-
ature such as generalization and suppression [27, 9, 20]
do not provide meaningful privacy guarantees, and in
any case fail on high-dimensional data. Furthermore, for
most records simply knowing which columns are non-
null reveals as much information as knowing the specific
values of these columns. Therefore, any technique such
as generalization and suppression which leaves sensitive
attributes untouched does not help.

Other possible countermeasures include interactive
mechanisms for privacy-protecting data mining such
as [5, 12], as well as more recent non-interactive tech-
niques [6]. Both support only limited classes of com-
putations such as statistical queries and learning halfs-
paces. By contrast, in scenarios such as the Netflix Prize,

the purpose of the data release is precisely to foster com-
putations on the data that have not even been foreseen at
the time of release 9, and are vastly more sophisticated
than the computations that we know how to perform in
a privacy-preserving manner.

An intriguing possibility was suggested by Matthew
Wright via personal communication: to release the
records without the column identifiers (i.e., movie
names in the case of the Netflix Prize dataset). It is
not clear how much worse the current data mining al-
gorithms would perform under this restriction. Further-
more, this does not appear to make de-anonymization
impossible, but merely harder. Nevertheless, it is an in-
teresting countermeasure to investigate.
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A Glossary of terms

Symbol Meaning
D Database
D̂ Released sample
N Number of rows
M Number of columns
m Size of aux
X Domain of attributes
⊥ Null attribute
supp(.) Set of non-null attributes in a row/column
Sim Similarity measure
Aux Auxiliary information sampler
aux Auxiliary information
Score Scoring function
ε Sparsity threshold
δ Sparsity probability
θ Closeness of de-anonymized record
ω Probability that de-anonymization succeeds
r, r′ Record
Π P.d.f over records
HS Shannon entropy
H De-anonymization entropy
φ Eccentricity
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