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Our Approach

Use new data structures to lower IO amplification 
and CPU overhead while enabling concurrency

Make all data structures swappable in order 
to gracefully degrade under cache pressure

Keep key-value pairs sorted and packed into data 
blocks, delay merging as much as possible

Fast Storage

Small Key-Value Pairs

Small Cache

What’s hard?
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SplinterDB is a key-value store 
which handles these tough cases:

Reducing Work

ConcurrencySize-Tiered Bε-Tree
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RocksDB is a high performance embedded 
database for key-value data. It is a fork 

of LevelDB by Facebook optimized to exploit 
many central processing unit (CPU) cores, and 

make efficient use of fast storage, 
such as solid-state drives (SSD), 

for input/output (I/O) bound 
workloads.

State of the Art: RocksDB

30

RocksDB

• Released 2012, LevelDB traces back to 2004 

• Built and maintained by full-time engineering team 

• Continuous performance improvements
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B = 1 IO

Bε pivots the rest buffer
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Therefore, any messages already 
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And againIn the worst case, the average message 
is rewritten Bε/2 times in each node

Recall: Insertions in Bε-trees
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In the worst case, the average message 
is rewritten Bε/2 times in each node

Recall: Insertions in Bε-trees

1
ε

logB N

Bε-Tree Work Amplification = O (Bε × logBε N)
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into the trunk node…
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overlapping key ranges 



Size-Tiered Bε-Trees

99

A Size-Tiered Bε-tree is a 
Bε-tree where the buffer is 

stored discontiguously 

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

37 58 93

83584537 999352

43

11

79

1

42

5

41

2

85

2

91

9
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into the trunk node…

…it is added as a new 
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need to be rewritten
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The fullness threshold is: 
Fanout × Average Buffer Size

When new data is flushed 
into the trunk node…

…it is added as a new 
branch

The old branches do not 
need to be rewritten

Branches may have 
overlapping key ranges 
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When the node is full: 
1. Pick child receiving most messages 
2. Merge them into a new branch for the child

The fullness threshold is: 
Fanout × Average Buffer Size

When new data is flushed 
into the trunk node…

…it is added as a new 
branch

The old branches do not 
need to be rewritten

Branches may have 
overlapping key ranges 
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The fullness threshold is: 
Fanout × Average Buffer Size

When new data is flushed 
into the trunk node…

…it is added as a new 
branch

The old branches do not 
need to be rewritten

When the node is full: 
1. Pick child receiving most messages 
2. Merge them into a new branch for the child

Branches may have 
overlapping key ranges 
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The fullness threshold is: 
Fanout × Average Buffer Size

When new data is flushed 
into the trunk node…

…it is added as a new 
branch

The old branches do not 
need to be rewritten

When the node is full: 
1. Pick child receiving most messages 
2. Merge them into a new branch for the child
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The fullness threshold is: 
Fanout × Average Buffer Size

When new data is flushed 
into the trunk node…

…it is added as a new 
branch

The old branches do not 
need to be rewritten

Each key-value pair is read/
written once per trunk node

When the node is full: 
1. Pick child receiving most messages 
2. Merge them into a new branch for the child

Branches may have 
overlapping key ranges 
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A Size-Tiered Bε-tree is a 
Bε-tree where the buffer is 

stored discontiguously 

Each key-value pair is read/
written once per trunk node

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

1
ε

logB N

Bε-Tree: = O ( 1
B

Bε × logBε
N
M )

Size-Tiered Bε-Tree: = O ( 1
B

logBε
N
M )

Bε ×  less

😄
Bε-Tree: O (Bε × logBε N)
Size-Tiered Bε-Tree: O (logBε N)

Work Amplification

Insertion Cost
Bε ×  less

😄



Lookups in 
Size-Tiered Bε-Trees

111



Size-Tiered Bε-Trees

112

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Lookups in a STBε-tree are 
like lookups in a Bε-tree, 
except they must check 

each branch  

Query(71)



Size-Tiered Bε-Trees

113

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)Lookups in a STBε-tree are 
like lookups in a Bε-tree, 
except they must check 

each branch  



Size-Tiered Bε-Trees

114

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)Lookups in a STBε-tree are 
like lookups in a Bε-tree, 
except they must check 

each branch  



Size-Tiered Bε-Trees

115

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

94

4

13

1

27

3

34

22

Query(71)Lookups in a STBε-tree are 
like lookups in a Bε-tree, 
except they must check 

each branch  



Size-Tiered Bε-Trees

116

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)Lookups in a STBε-tree are 
like lookups in a Bε-tree, 
except they must check 

each branch  



Size-Tiered Bε-Trees

117

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)Lookups in a STBε-tree are 
like lookups in a Bε-tree, 
except they must check 

each branch  



Size-Tiered Bε-Trees

118

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)Lookups in a STBε-tree are 
like lookups in a Bε-tree, 
except they must check 

each branch  



Size-Tiered Bε-Trees

119

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)Lookups in a STBε-tree are 
like lookups in a Bε-tree, 
except they must check 

each branch  



Size-Tiered Bε-Trees

120

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)Lookups in a STBε-tree are 
like lookups in a Bε-tree, 
except they must check 

each branch  



Size-Tiered Bε-Trees

121

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)Lookups in a STBε-tree are 
like lookups in a Bε-tree, 
except they must check 

each branch  



Size-Tiered Bε-Trees

122

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)Lookups in a STBε-tree are 
like lookups in a Bε-tree, 
except they must check 

each branch  



Size-Tiered Bε-Trees

123

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 8569

9

71

2

72

50

73

14

74

29
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Lookups in a STBε-tree are 
like lookups in a Bε-tree, 
except they must check 

each branch  
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N
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Bε ×  more

🤭
Bε-Tree Lookup Cost = O (logBε

N
M )

Size-Tiered Bε-Tree Lookup Cost = O (Bε logBε
N
M )

Lookups in a STBε-tree are 
like lookups in a Bε-tree, 
except they must check 

each branch  



Fixing Lookups in 
Size-Tiered Bε-Trees

128



Fixing Lookups in Size-Tiered Bε-Trees

129

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

37 58 93

The problem is that each 
node has multiple branches
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Idea: use filters to avoid 
searching them

A filter is a probabilistic data 
structure with answers membership 

with no false negatives

Examples: Bloom, cuckoo, quotient

The problem is that each 
node has multiple branches
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The problem is that each 
node has multiple branches

Now a lookup will only 
search those branches 
which contain the key 

(plus rare false positives)

A filter is a probabilistic data 
structure with answers membership 

with no false negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid 
searching them
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Query(64)

A filter is a probabilistic data 
structure with answers membership 

with no false negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid 
searching them

The problem is that each 
node has multiple branches

Now a lookup will only 
search those branches 
which contain the key 

(plus rare false positives)
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Query(64)

A filter is a probabilistic data 
structure with answers membership 

with no false negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid 
searching them

The problem is that each 
node has multiple branches

Now a lookup will only 
search those branches 
which contain the key 

(plus rare false positives)
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Query(64)

A filter is a probabilistic data 
structure with answers membership 

with no false negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid 
searching them

The problem is that each 
node has multiple branches

Now a lookup will only 
search those branches 
which contain the key 

(plus rare false positives)
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Query(64)

A filter is a probabilistic data 
structure with answers membership 

with no false negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid 
searching them

The problem is that each 
node has multiple branches

Now a lookup will only 
search those branches 
which contain the key 

(plus rare false positives)
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Query(64)

A filter is a probabilistic data 
structure with answers membership 

with no false negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid 
searching them

The problem is that each 
node has multiple branches

Now a lookup will only 
search those branches 
which contain the key 

(plus rare false positives)
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A filter is a probabilistic data 
structure with answers membership 

with no false negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid 
searching them

The problem is that each 
node has multiple branches

Now a lookup will only 
search those branches 
which contain the key 

(plus rare false positives)
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Query(64)  8→

A filter is a probabilistic data 
structure with answers membership 

with no false negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid 
searching them

The problem is that each 
node has multiple branches

Now a lookup will only 
search those branches 
which contain the key 

(plus rare false positives)
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False Positive Rate ≤ O ( ε
Bε logB N )

Query(64)  8→

Idea: use filters to avoid 
searching them

The problem is that each 
node has multiple branches

Now a lookup will only 
search those branches 
which contain the key 

(plus rare false positives)
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Query(64)  8→

False Positive Rate ≤ O ( ε
Bε logB N ) Lookups in O(1) IOs⇒

Idea: use filters to avoid 
searching them

The problem is that each 
node has multiple branches

Now a lookup will only 
search those branches 
which contain the key 

(plus rare false positives)
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Low lookup cost Scans

Short — more expensive

Long — disk bandwidth
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Flush-then-Compact

In this talk

SplinterDB

Data Structures

Fast Storage 
(NVMe)
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(only incur IO at node boundaries)
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Finally, asynchronously 
compact the flushed buffers 

in each node

Idea: Flush-then-compact
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branches, but do not compact
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Because of flush-then-compact, 
SplinterDB smoothly increases 
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