
SplinterDB:
Closing the NVMe Bandwidth Gap

Alex Conway
Vijay Chidambaram
Martin Farach-Colton

Abihsihek Gupta
Richard Spillane

Amy Tai
Rob Johnson

ATC 2020

SplinterDB:  
A Key-Value Store for

the Hard Cases

2

Key-Value Stores

3

Our Approach

Use new data structures to lower IO amplification
and CPU overhead while enabling concurrencyFast Storage

What’s hard?

Key-Value Stores

4

Our Approach

Use new data structures to lower IO amplification
and CPU overhead while enabling concurrency

Keep key-value pairs sorted and packed into data
blocks, delay merging as much as possible

Fast Storage

Small Key-Value Pairs

What’s hard?

Key-Value Stores

5

Our Approach

Use new data structures to lower IO amplification
and CPU overhead while enabling concurrency

Make all data structures swappable in order
to gracefully degrade under cache pressure

Keep key-value pairs sorted and packed into data
blocks, delay merging as much as possible

Fast Storage

Small Key-Value Pairs

Small Cache

What’s hard?

In this talk

SplinterDB

Data Structures

Fast Storage
(NVMe)

Flush-then-Compact

Flush-then-Compact

In this talk

SplinterDB

Data Structures

Fast Storage
(NVMe)

Back in the day…

8

People used to use…

Back in the day…

9

People used to use…

Slide rules

Back in the day…

10

People used to use…

Slide rulesVHS tapes

Back in the day…

11

People used to use…

Slide rules
Fountain pens

VHS tapes

Back in the day…

12

People used to use…

Slide rules
Fountain pens

VHS tapes

Different
Performance

models

Back in the day…

13

People used to use…

Slide rules
Fountain pens

VHS tapes

Different
Performance

models
IOCPU

Back in the day…

14

People used to use…

Different
Performance

models
IOCPU

Look at e.g.
key-value stores

Back in the day…

15

People used to use…

Different
Performance

models
IOCPU

Look at e.g.
key-value stores

hash tables

BSTs

Back in the day…

16

People used to use…

Different
Performance

models
IOCPU

Look at e.g.
key-value stores

hash tables

BSTs

B-trees

LSMs

Bε-trees

Back in the day…

17

People used to use…

Different
Performance

models
IOCPU

Random
Sequential

HDD
200M

Cycles per 64b word
at bandwidth

Hard Drive

HDD
120

Back in the day…

18

People used to use…

Different
Performance

models
IOCPU

Random
Sequential

SSD

SSD
100K

SSD
30

Cycles per 64b word
at bandwidth

HDD
200M

HDD
120

Back in the day…

19

People used to use…

Different
Performance

models
IOCPU

Random
Sequential

NVMe

SSD
100K

SSD
30

NVMe
20K

NVMe
6

Cycles per 64b word
at bandwidth

HDD
200M

HDD
120

Back in the day…

20

People used to use…

Different
Performance

models
IOCPU

Random
Sequential

NVMe

SSD
100K

SSD
30

NVMe
20K

NVMe
6

Cycles per 64b word
at bandwidth

HDD
200M

HDD
120

For NVMe, need data
structures to optimize both

Back in the day…

21

People used to use…

Different
Performance

models
IOCPU

Random
Sequential

NVMe

SSD
100K

SSD
30

NVMe
20K

NVMe
6

Cycles per 64b word
at bandwidth

HDD
200M

HDD
120

For NVMe, need data
structures to optimize both

Write Amplification

Work Amplification

Flush-then-Compact

In this talk

SplinterDB

Data Structures

Fast Storage
(NVMe)

SplinterDB

23

SplinterDB is a key-value store
which handles these tough cases:

Fast Storage

Small Key-Value Pairs

Small Cache

SplinterDB

24

SplinterDB is a key-value store
which handles these tough cases:

Fast Storage

Small Key-Value Pairs

Small Cache

SplinterDB

25

SplinterDB is a key-value store
which handles these tough cases:

Fast Storage

Small Key-Value Pairs

Small Cache

SplinterDB

26

SplinterDB is a key-value store
which handles these tough cases:

Size-Tiered Bε-Tree

SplinterDB

27

SplinterDB is a key-value store
which handles these tough cases:

Reducing Work

Size-Tiered Bε-Tree

SplinterDB

28

SplinterDB is a key-value store
which handles these tough cases:

Reducing Work

ConcurrencySize-Tiered Bε-Tree

How Does
SplinterDB Perform?

29

RocksDB is a high performance embedded
database for key-value data. It is a fork

of LevelDB by Facebook optimized to exploit
many central processing unit (CPU) cores, and

make efficient use of fast storage,
such as solid-state drives (SSD),

for input/output (I/O) bound
workloads.

State of the Art: RocksDB

30

RocksDB

• Released 2012, LevelDB traces back to 2004

• Built and maintained by full-time engineering team

• Continuous performance improvements

SplinterDB Performance

31

32 2Ghz cores

24B keys
100B values

4GiB RAM
80GiB dataset

Small KV-pairs

Small cache
(using cgroup)

Intel Optane 905P

Block-addressable
NVMe

SplinterDB Performance

32

Th
ro

ug
hp

ut
 in

 1
00

0s
 o

f O
pe

ra
tio

ns
 /

Se
co

nd
0

50
0

10
00

15
00

20
00

25
00

30
00

Insertions Lookups

614
348

861

2,352

SplinterDB RocksDB

24B keys
100B values

80GiB dataset

(YCSB Run C)

Basic Operation Throughput

40%

H
ig

he
r

is
 B

et
te

r

7x

YCSB Load - uniform

32 2Ghz cores

24B keys
100B values

4GiB RAM
80GiB dataset

Small KV-pairs

Small cache
(using cgroup)

Intel Optane 905P

Block-addressable
NVMe

SplinterDB Performance

33

Th
ro

ug
hp

ut
 in

 1
00

0s
 o

f O
pe

ra
tio

ns
 /

Se
co

nd
0

50
0

10
00

15
00

20
00

25
00

30
00

Insertions Lookups

614
348

861

2,352

SplinterDB RocksDB

7x

(YCSB Run C)

Basic Operation Throughput

40%

H
ig

he
r

is
 B

et
te

r

IO
 A

m
pl

ifi
ca

tio
n

0
5

10
15

20

IO Amplification

15.8

7.5 Lo
w

er
 is

 B
et

te
r

YCSB Load - uniform

32 2Ghz cores

24B keys
100B values

4GiB RAM
80GiB dataset

Small KV-pairs

Small cache
(using cgroup)

Intel Optane 905P

Block-addressable
NVMe

SplinterDB Performance

34

Th
ro

ug
hp

ut
 in

 1
00

0s
 o

f O
pe

ra
tio

ns
 /

Se
co

nd
0

50
0

10
00

15
00

20
00

25
00

30
00

Insertions Lookups

614
348

861

2,352

SplinterDB RocksDB

7x

(YCSB Run C)

Basic Operation Throughput

40%

H
ig

he
r

is
 B

et
te

r

IO
 A

m
pl

ifi
ca

tio
n

0
5

10
15

20

IO Amplification

15.8

7.5 Lo
w

er
 is

 B
et

te
r

95% of device
bandwidth

30% of device
bandwidth

YCSB Load - uniform

32 2Ghz cores

24B keys
100B values

4GiB RAM
80GiB dataset

Small KV-pairs

Small cache
(using cgroup)

Intel Optane 905P

Block-addressable
NVMe

SplinterDB Performance

35

Th
ro

ug
hp

ut
 in

 1
00

0s
 o

f O
pe

ra
tio

ns
 /

Se
co

nd
0

50
0

10
00

15
00

20
00

25
00

30
00

Insertions Lookups

614
348

861

2,352

SplinterDB RocksDB

YCSB Run C - Zipfian

Basic Operation Throughput

40%

H
ig

he
r

is
 B

et
te

r

7x

YCSB Load - uniform

32 2Ghz cores

24B keys
100B values

4GiB RAM
80GiB dataset

Small KV-pairs

Small cache
(using cgroup)

Intel Optane 905P

Block-addressable
NVMe

SplinterDB Performance

36

Th
ro

ug
hp

ut
 in

 1
00

0s
 o

f O
pe

ra
tio

ns
 /

Se
co

nd
0

25
0

50
0

75
0

10
00

12
50

A B C D E F

498

101

483

614

485460

1,032

85

758

861855

1,141
SplinterDB RocksDB

YCSB Application Benchmark

50% updates
50% lookups

5% updates
95% lookups 100% lookups

5% updates
95% lookups
"read latest”

5% updates
95% scans

50% RMW
50% lookups

H
ig

he
r

is
 B

et
te

r

32 2Ghz cores

24B keys
100B values

4GiB RAM
80GiB dataset

Small KV-pairs

Small cache
(using cgroup)

Intel Optane 905P

Block-addressable
NVMe

Flush-then-Compact

In this talk

SplinterDB

Data Structures

Fast Storage
(NVMe)

B-Trees

38

B-Trees

39

845848

37 8624 90

846861

O(logB N)

71

2

72

50

80

49

83

83

B-ary Search Tree

B-Trees

40

845848

37 8624 90

846861

O(logB N)

71

2

72

50

80

49

83

83

B-ary Search Tree

76

6
Insert

B-Trees

41

845848

37 8624 90

846861

O(logB N)

71

2

72

50

80

49

83

83

B-ary Search Tree
Insert76

6

B-Trees

42

845848

37 8624 90

846861

O(logB N)

71

2

72

50

80

49

83

83

B-ary Search Tree
Insert

76

6

B-Trees

43

845848

37 8624 90

846861

O(logB N)

71

2

72

50

80

49

83

83

B-ary Search Tree
Insert

76

6

B-Trees

44

845848

37 8624 90

846861

O(logB N)

71

2

72

50

80

49

83

83

B-ary Search Tree
Insert

76

6

B-Trees

45

845848

37 8624 90

846861

O(logB N)

71

2

72

50

80

49

83

83

B-ary Search Tree
Insert

76

6

B-Trees

46

845848

37 8624 90

846861

O(logB N)

71

2

72

50

80

49

83

83

B-ary Search Tree

76

6

Insert

Insertion Cost ≤ O (logB N)
Lookup Cost ≤ O (logB N)

Bε-Trees

47

Bε-Trees

48

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

A Bε-tree is a search tree
(like a B-tree)

Each node has size
B = 1 IO

Bε pivots the rest buffer

Insertions in Bε-Trees

49

Bε-Trees

50

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in
the root buffer

Bε-Trees

51

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in
the root buffer

94

4

Bε-Trees

52

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in
the root buffer

94

4

Bε-Trees

53

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in
the root buffer

94

4

39

2

Bε-Trees

54

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in
the root buffer

94

4

39

2

Bε-Trees

55

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in
the root buffer

94

4

39

2

64

8

Bε-Trees

56

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in
the root buffer

94

4

39

2

64

8

Bε-Trees

57

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in
the root buffer

94

4

39

2

64

8

13

1

Bε-Trees

58

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in
the root buffer

94

4

39

2

64

8

13

1

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

59

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in
the root buffer

94

4

13

1

39

2

64

8

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

60

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in
the root buffer

94

4

13

1

39

2

64

8

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

61

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in
the root buffer

94

4

13

1

66

6

39

2

64

8

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

62

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in
the root buffer

94

4

39

2

64

8

13

1

66

6

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

63

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in
the root buffer

94

4

39

2

64

8

13

1

66

6

65

1
When a buffer is full:

1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

64

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in
the root buffer

94

4

39

2

64

8

13

1

66

6

65

1

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

65

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in
the root buffer

94

4

39

2

64

8

13

1

66

6

65

1

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

66

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in
the root buffer

94

4

39

2

64

8

13

1

66

6

65

1

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

67

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in
the root buffer

94

4

39

2

13

1

64

8

66

6

65

1

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Bε-Trees

68

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Inserts get put in
the root buffer

94

4

39

2

13

1

64

8

66

6

65

1

When a buffer is full:
1. Pick child receiving most messages
2. Move them to the child’s buffer

Lookups in Bε-Trees

69

Bε-Trees

70

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Lookups follow pivots, but
check buffers along the way

94

4

39

2

13

1

79

9

40

3

Query(71)

Bε-Trees

71

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Lookups follow pivots, but
check buffers along the way

94

4

39

2

13

1

40

3

Query(71)

79

9

Bε-Trees

72

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Lookups follow pivots, but
check buffers along the way

94

4

39

2

13

1

40

3

Query(71)

79

9

Bε-Trees

73

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Lookups follow pivots, but
check buffers along the way

94

4

39

2

13

1

40

3

Query(71)

79

9

Bε-Trees

74

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Lookups follow pivots, but
check buffers along the way

94

4

39

2

13

1

40

3

Query(71) 2→

71

2

79

9

Bε-Trees

75

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2
72

50

73

14

74

29

79

99

80

6

81

77

82

44

48

Lookups follow pivots, but
check buffers along the way

94

4

39

2

13

1

40

3

Query(71) 2→

79

9

Write Amplification
in Bε-Trees

76

Work

Work Amplification in Bε-Trees

77

8358 39

2

64

8

66

6

65

11

72

50

80

6
To add new data to a Bε-tree

node, the node must be rewritten

Recall: Insertions in Bε-trees

Work Amplification in Bε-Trees

78

8358 65

11

72

50

80

6

39

2

64

8

66

6

To add new data to a Bε-tree
node, the node must be rewritten

Recall: Insertions in Bε-trees

Work Amplification in Bε-Trees

79

8358 39

2

64

8

66

6

65

11

72

50

80

6

To add new data to a Bε-tree
node, the node must be rewritten

Therefore, any messages already
in the node get written out again

Recall: Insertions in Bε-trees

Work Amplification in Bε-Trees

80

8358 65

11

72

50

80

6

98

1

44

3

39

2

64

8

66

6

To add new data to a Bε-tree
node, the node must be rewritten

Therefore, any messages already
in the node get written out again

Recall: Insertions in Bε-trees

Work Amplification in Bε-Trees

81

8358 65

11

72

50

80

6

98

1

44

3

39

2

64

8

66

6

And again

To add new data to a Bε-tree
node, the node must be rewritten

Therefore, any messages already
in the node get written out again

Recall: Insertions in Bε-trees

Work Amplification in Bε-Trees

82

8358 65

11

72

50

80

6

98

1

44

3

39

2

64

8

66

6

And again

28

24

91

43
To add new data to a Bε-tree

node, the node must be rewritten

Therefore, any messages already
in the node get written out again

Recall: Insertions in Bε-trees

Work Amplification in Bε-Trees

83

8358 65

11

72

50

80

6

To add new data to a Bε-tree
node, the node must be rewritten

Therefore, any messages already
in the node get written out again

98

1

44

3

39

2

64

8

66

6

And again

28

24

91

43

And again

Recall: Insertions in Bε-trees

Work Amplification in Bε-Trees

84

8358 65

11

72

50

80

6

To add new data to a Bε-tree
node, the node must be rewritten

Therefore, any messages already
in the node get written out again

98

1

44

3

39

2

64

8

66

6

And again

28

24

91

43

And againIn the worst case, the average message
is rewritten Bε/2 times in each node

Recall: Insertions in Bε-trees

Work Amplification in Bε-Trees

85

8358 65

11

72

50

80

6

98

1

44

3

39

2

64

8

66

6

28

24

91

43

In the worst case, the average message
is rewritten Bε/2 times in each node

Recall: Insertions in Bε-trees

1
ε

logB N

Bε-Tree Work Amplification = O (Bε × logBε N)

Size-Tiered Bε-Trees
(SplinterDB)

86

Size-Tiered Bε-Trees

87

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

Bε pivots the rest buffer

Recall:
a Bε-tree node has
pivots and a buffer

37 58 93

Size-Tiered Bε-Trees

88

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

Bε pivots the rest buffer

Recall:
a Bε-tree node has
pivots and a buffer

37 58 93

In an STBε-tree, the
buffer is stored

separately

Size-Tiered Bε-Trees

89

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

Bε pivots the rest buffer

Recall:
a Bε-tree node has
pivots and a buffer

37 58 93

In an STBε-tree, the
buffer is stored

separately

and in several
discontiguous pieces

Size-Tiered Bε-Trees

90

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

Bε pivots the rest buffer

Recall:
a Bε-tree node has
pivots and a buffer

37 58 93

In an STBε-tree, the
buffer is stored

separately

and in several
discontiguous pieces

trunk [node]

Size-Tiered Bε-Trees

91

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

Bε pivots the rest buffer

Recall:
a Bε-tree node has
pivots and a buffer

37 58 93

In an STBε-tree, the
buffer is stored

separately

and in several
discontiguous pieces

trunk [node]

branches

Insertions in
Size-Tiered Bε-Trees

92

Size-Tiered Bε-Trees

93

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

37 58 93

64

8

94

4

39

2

38

1

When new data is flushed
into the trunk node…

Size-Tiered Bε-Trees

94

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

37 58 93

64

8

94

4

39

2

38

1

When new data is flushed
into the trunk node…

…it is added as a new
branch

Size-Tiered Bε-Trees

95

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

When new data is flushed
into the trunk node…

…it is added as a new
branch

Size-Tiered Bε-Trees

96

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

When new data is flushed
into the trunk node…

…it is added as a new
branch

The old branches do not
need to be rewritten

Size-Tiered Bε-Trees

97

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

37 58 93

83584537 999352

Branches may have
overlapping key ranges

When new data is flushed
into the trunk node…

…it is added as a new
branch

The old branches do not
need to be rewritten

Size-Tiered Bε-Trees

98

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

37 58 93

83584537 999352

When new data is flushed
into the trunk node…

…it is added as a new
branch

The old branches do not
need to be rewritten

Branches may have
overlapping key ranges

Size-Tiered Bε-Trees

99

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

37 58 93

83584537 999352

43

11

79

1

42

5

41

2

85

2

91

9

When new data is flushed
into the trunk node…

…it is added as a new
branch

The old branches do not
need to be rewritten

Branches may have
overlapping key ranges

Size-Tiered Bε-Trees

100

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

37 58 93

83584537 999352

43

11

79

1

42

5

41

2

85

2

91

9

When new data is flushed
into the trunk node…

…it is added as a new
branch

The old branches do not
need to be rewritten

Branches may have
overlapping key ranges

Size-Tiered Bε-Trees

101

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

37 58 93

83584537 999352

43

11

79

1

42

5

41

2

85

2

91

9

The fullness threshold is:
Fanout × Average Buffer Size

When new data is flushed
into the trunk node…

…it is added as a new
branch

The old branches do not
need to be rewritten

Branches may have
overlapping key ranges

Size-Tiered Bε-Trees

102

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

37 58 93

83584537 999352

43

11

79

1

42

5

41

2

85

2

91

9

When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child

The fullness threshold is:
Fanout × Average Buffer Size

When new data is flushed
into the trunk node…

…it is added as a new
branch

The old branches do not
need to be rewritten

Branches may have
overlapping key ranges

Size-Tiered Bε-Trees

103

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

94

4

39

2

38

1

45

42

37 58 93

83584537 52

43

11

42

5

41

2

9993

79

1

85

2

91

9

58

5

75

7

76

1

64

8

The fullness threshold is:
Fanout × Average Buffer Size

When new data is flushed
into the trunk node…

…it is added as a new
branch

The old branches do not
need to be rewritten

When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child

Branches may have
overlapping key ranges

Size-Tiered Bε-Trees

104

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

94

4

39

2

38

1

45

42

37 58 93

83584537 999352

43

11

42

5

41

2

58

5

64

8

75

7

76

1

79

1

85

2

91

9

The fullness threshold is:
Fanout × Average Buffer Size

When new data is flushed
into the trunk node…

…it is added as a new
branch

The old branches do not
need to be rewritten

When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child

Branches may have
overlapping key ranges

Size-Tiered Bε-Trees

105

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

94

4

39

2

38

1

45

42

37 58 93

83584537 999352

43

11

42

5

41

2

58

5

64

8

75

7

76

1

79

1

85

2

91

9

The fullness threshold is:
Fanout × Average Buffer Size

When new data is flushed
into the trunk node…

…it is added as a new
branch

The old branches do not
need to be rewritten

Each key-value pair is read/
written once per trunk node

When the node is full:
1. Pick child receiving most messages
2. Merge them into a new branch for the child

Branches may have
overlapping key ranges

Size-Tiered Bε-Trees

106

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

Each key-value pair is read/
written once per trunk node

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

1
ε

logB N

Size-Tiered Bε-Trees

107

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

Each key-value pair is read/
written once per trunk node

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

1
ε

logB N
Bε-Tree: O (Bε × logBε N)
Size-Tiered Bε-Tree: O (logBε N)

Work Amplification

Size-Tiered Bε-Trees

108

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

Each key-value pair is read/
written once per trunk node

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

1
ε

logB N

Bε × lessBε-Tree: O (Bε × logBε N)
Size-Tiered Bε-Tree: O (logBε N)

Work Amplification

Size-Tiered Bε-Trees

109

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

Each key-value pair is read/
written once per trunk node

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

1
ε

logB N

Bε × less

😄
Bε-Tree: O (Bε × logBε N)
Size-Tiered Bε-Tree: O (logBε N)

Work Amplification

Size-Tiered Bε-Trees

110

A Size-Tiered Bε-tree is a
Bε-tree where the buffer is

stored discontiguously

Each key-value pair is read/
written once per trunk node

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

1
ε

logB N

Bε-Tree: = O (1
B

Bε × logBε
N
M)

Size-Tiered Bε-Tree: = O (1
B

logBε
N
M)

Bε × less

😄
Bε-Tree: O (Bε × logBε N)
Size-Tiered Bε-Tree: O (logBε N)

Work Amplification

Insertion Cost
Bε × less

😄

Lookups in
Size-Tiered Bε-Trees

111

Size-Tiered Bε-Trees

112

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Lookups in a STBε-tree are
like lookups in a Bε-tree,
except they must check

each branch

Query(71)

Size-Tiered Bε-Trees

113

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)Lookups in a STBε-tree are
like lookups in a Bε-tree,
except they must check

each branch

Size-Tiered Bε-Trees

114

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)Lookups in a STBε-tree are
like lookups in a Bε-tree,
except they must check

each branch

Size-Tiered Bε-Trees

115

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

94

4

13

1

27

3

34

22

Query(71)Lookups in a STBε-tree are
like lookups in a Bε-tree,
except they must check

each branch

Size-Tiered Bε-Trees

116

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)Lookups in a STBε-tree are
like lookups in a Bε-tree,
except they must check

each branch

Size-Tiered Bε-Trees

117

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)Lookups in a STBε-tree are
like lookups in a Bε-tree,
except they must check

each branch

Size-Tiered Bε-Trees

118

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)Lookups in a STBε-tree are
like lookups in a Bε-tree,
except they must check

each branch

Size-Tiered Bε-Trees

119

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)Lookups in a STBε-tree are
like lookups in a Bε-tree,
except they must check

each branch

Size-Tiered Bε-Trees

120

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)Lookups in a STBε-tree are
like lookups in a Bε-tree,
except they must check

each branch

Size-Tiered Bε-Trees

121

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)Lookups in a STBε-tree are
like lookups in a Bε-tree,
except they must check

each branch

Size-Tiered Bε-Trees

122

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)Lookups in a STBε-tree are
like lookups in a Bε-tree,
except they must check

each branch

Size-Tiered Bε-Trees

123

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 8569

9

71

2

72

50

73

14

74

29

Query(71)Lookups in a STBε-tree are
like lookups in a Bε-tree,
except they must check

each branch

Size-Tiered Bε-Trees

124

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71) 2→

69

9

71

2
72

50

73

14

74

29

Lookups in a STBε-tree are
like lookups in a Bε-tree,
except they must check

each branch

Size-Tiered Bε-Trees

125

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

Bε-Tree Lookup Cost = O (logBε
N
M)

Size-Tiered Bε-Tree Lookup Cost = O (Bε logBε
N
M)

Lookups in a STBε-tree are
like lookups in a Bε-tree,
except they must check

each branch

Size-Tiered Bε-Trees

126

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

Bε × more
Bε-Tree Lookup Cost = O (logBε

N
M)

Size-Tiered Bε-Tree Lookup Cost = O (Bε logBε
N
M)

Lookups in a STBε-tree are
like lookups in a Bε-tree,
except they must check

each branch

Size-Tiered Bε-Trees

127

1 37 86

1 12 24 37 58 83 86 90 92

37 41 48 58 67 75 83 84 85

Query(71)

Bε × more

🤭
Bε-Tree Lookup Cost = O (logBε

N
M)

Size-Tiered Bε-Tree Lookup Cost = O (Bε logBε
N
M)

Lookups in a STBε-tree are
like lookups in a Bε-tree,
except they must check

each branch

Fixing Lookups in
Size-Tiered Bε-Trees

128

Fixing Lookups in Size-Tiered Bε-Trees

129

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

37 58 93

The problem is that each
node has multiple branches

Fixing Lookups in Size-Tiered Bε-Trees

130

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Idea: use filters to avoid
searching them

A filter is a probabilistic data
structure with answers membership

with no false negatives

Examples: Bloom, cuckoo, quotient

The problem is that each
node has multiple branches

Fixing Lookups in Size-Tiered Bε-Trees

131

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

The problem is that each
node has multiple branches

Now a lookup will only
search those branches
which contain the key

(plus rare false positives)

A filter is a probabilistic data
structure with answers membership

with no false negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid
searching them

Fixing Lookups in Size-Tiered Bε-Trees

132

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data
structure with answers membership

with no false negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid
searching them

The problem is that each
node has multiple branches

Now a lookup will only
search those branches
which contain the key

(plus rare false positives)

Fixing Lookups in Size-Tiered Bε-Trees

133

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data
structure with answers membership

with no false negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid
searching them

The problem is that each
node has multiple branches

Now a lookup will only
search those branches
which contain the key

(plus rare false positives)

Fixing Lookups in Size-Tiered Bε-Trees

134

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data
structure with answers membership

with no false negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid
searching them

The problem is that each
node has multiple branches

Now a lookup will only
search those branches
which contain the key

(plus rare false positives)

Fixing Lookups in Size-Tiered Bε-Trees

135

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data
structure with answers membership

with no false negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid
searching them

The problem is that each
node has multiple branches

Now a lookup will only
search those branches
which contain the key

(plus rare false positives)

Fixing Lookups in Size-Tiered Bε-Trees

136

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data
structure with answers membership

with no false negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid
searching them

The problem is that each
node has multiple branches

Now a lookup will only
search those branches
which contain the key

(plus rare false positives)

Fixing Lookups in Size-Tiered Bε-Trees

137

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data
structure with answers membership

with no false negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid
searching them

The problem is that each
node has multiple branches

Now a lookup will only
search those branches
which contain the key

(plus rare false positives)

Fixing Lookups in Size-Tiered Bε-Trees

138

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data
structure with answers membership

with no false negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid
searching them

The problem is that each
node has multiple branches

Now a lookup will only
search those branches
which contain the key

(plus rare false positives)

Fixing Lookups in Size-Tiered Bε-Trees

139

37 58 93

64

8

94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64)

A filter is a probabilistic data
structure with answers membership

with no false negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid
searching them

The problem is that each
node has multiple branches

Now a lookup will only
search those branches
which contain the key

(plus rare false positives)

Fixing Lookups in Size-Tiered Bε-Trees

140

37 58 93

64

8
94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64) 8→

A filter is a probabilistic data
structure with answers membership

with no false negatives

Examples: Bloom, cuckoo, quotient

Idea: use filters to avoid
searching them

The problem is that each
node has multiple branches

Now a lookup will only
search those branches
which contain the key

(plus rare false positives)

Fixing Lookups in Size-Tiered Bε-Trees

141

37 58 93

64

8
94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

False Positive Rate ≤ O (ε
Bε logB N)

Query(64) 8→

Idea: use filters to avoid
searching them

The problem is that each
node has multiple branches

Now a lookup will only
search those branches
which contain the key

(plus rare false positives)

Fixing Lookups in Size-Tiered Bε-Trees

142

37 58 93

64

8
94

4

39

2

38

1

75

7

76

1

58

5

45

42

43

11

79

1

42

5

41

2

85

2

91

9

Query(64) 8→

False Positive Rate ≤ O (ε
Bε logB N) Lookups in O(1) IOs⇒

Idea: use filters to avoid
searching them

The problem is that each
node has multiple branches

Now a lookup will only
search those branches
which contain the key

(plus rare false positives)

Size-Tiered Bε-Tree

143

Less compaction

Less IO Less CPU

Low lookup cost Scans

Short — more expensive

Long — disk bandwidth

Se
e t

he
 te

xt!

Flush-then-Compact

In this talk

SplinterDB

Data Structures

Fast Storage
(NVMe)

Flush-Then-Compact

145

Sequential Insertions
into a B-tree

845848

37 8624 90

846861 83

83

71

2

Flush-Then-Compact

146

Sequential Insertions
into a B-tree

845848

37 8624 90

846861 83

83

71

2

Flush-Then-Compact

147

Sequential Insertions
into a B-tree

845848

37 8624 90

846861 83

83

71

2

Flush-Then-Compact

148

Sequential Insertions
into a B-tree

845848

37 8624 90

846861 83

83

71

2

Flush-Then-Compact

149

Sequential Insertions
into a B-tree

845848

37 8624 90

846861 83

83

71

2

Flush-Then-Compact

150

Sequential Insertions
into a B-tree

845848

37 8624 90

846861 83

83

71

2

After inserting the first
message, the root-to-
leaf path is in cache

Flush-Then-Compact

151

Sequential Insertions
into a B-tree

845848

37 8624 90

846861 83

83

71

2

72

50

Subsequent insertions are cheaper.
(only incur IO at node boundaries)

After inserting the first
message, the root-to-
leaf path is in cache

Flush-Then-Compact

152

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

79

99

80

6

81

77

82

44

48

Sequential Insertions
into a Bε-tree

69

9

71

2

72

50

73

14

Flush-Then-Compact

153

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

79

99

80

6

81

77

82

44

48

Sequential Insertions
into a Bε-tree

B insertions trigger a flush to
the leaf bringing the root-to-

leaf path into cache

69

9

71

2

72

50

73

14

Flush-Then-Compact

154

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

79

99

80

6

81

77

82

44

48

Sequential Insertions
into a Bε-tree

69

9

71

2

72

50

73

14

B insertions trigger a flush to
the leaf bringing the root-to-

leaf path into cache

Flush-Then-Compact

155

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

79

99

80

6

81

77

82

44

48

Sequential Insertions
into a Bε-tree

69

9

71

2

72

50

73

14

B insertions trigger a flush to
the leaf bringing the root-to-

leaf path into cache

Flush-Then-Compact

156

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

79

99

80

6

81

77

82

44

48

Sequential Insertions
into a Bε-tree

69

9

71

2

72

50

73

14

B insertions trigger a flush to
the leaf bringing the root-to-

leaf path into cache

Flush-Then-Compact

157

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

79

99

80

6

81

77

82

44

48

Sequential Insertions
into a Bε-tree

69

9

71

2

72

50

73

14

B insertions trigger a flush to
the leaf bringing the root-to-

leaf path into cache

Flush-Then-Compact

158

37

12

8475

9290835824

856741

86

59

5

60

40

61

29

65

11

69

9

71

2

72

50

73

14

79

99

80

6

81

77

82

44

48

Sequential Insertions
into a Bε-tree

Subsequent insertions are cheaper.
(only incur IO at node boundaries)

74

1

75

2

76

3

77

4

B insertions trigger a flush to
the leaf bringing the root-to-

leaf path into cache

Flush-Then-Compact

159

37 58 93

83584537 999352

7858

60

8

61

4

59

2

58

1

64

7

65

1

63

5

62

42

68

11

69

1

67

5

66

2Want:
Sequential insertions with
lower work amplification

After merging and flushing
another flush will be triggered

Flush-Then-Compact

160

37 58 93

83584537 999352

7858

60

8

61

4

59

2

58

1

64

7

65

1

63

5

62

42

68

11

69

1

67

5

66

2

Want:
Sequential insertions with
lower work amplification

After merging and flushing
another flush will be triggered

Flush-Then-Compact

161

37 58 93

83584537 999352

7858

60

8

61

4

59

2

58

1

64

7

65

1

63

5

62

42

68

11

69

1

67

5

66

2

After merging and flushing
another flush will be triggered

Want:
Sequential insertions with
lower work amplification

Flush-Then-Compact

162

37 58 93

83584537 999352

7858

60

8

61

4

59

2

58

1

64

7

65

1

63

5

62

42

68

11

69

1

67

5

66

2

After merging and flushing
another flush will be triggered

Want:
Sequential insertions with
lower work amplification

74

8

75

4

73

2

72

1

Any data already present
will get merged again

Flush-Then-Compact

163

37 58 93

83584537 999352

7858

60

8

61

4

59

2

58

1

64

7

65

1

63

5

62

42

68

11

69

1

67

5

66

2

After merging and flushing
another flush will be triggered

Want:
Sequential insertions with
lower work amplification

74

8

75

4

73

2

72

1

Any data already present
will get merged again

Can still end up
merging on each level

Flush-Then-Compact

164

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5Want:
Sequential insertions with
lower work amplification

7858

Idea: Flush-then-compact

41

2

94

4

Flush-Then-Compact

165

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5Want:
Sequential insertions with
lower work amplification

7858

41

2

94

4

Idea: Flush-then-compact

Flush-Then-Compact

166

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5Want:
Sequential insertions with
lower work amplification

7858

First flush references to the
branches, but do not compact

41

2

94

4

Idea: Flush-then-compact

Flush-Then-Compact

167

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5Want:
Sequential insertions with
lower work amplification

7858 Use metadata to mask out data

41

2

94

4

Idea: Flush-then-compact

First flush references to the
branches, but do not compact

Flush-Then-Compact

168

37 58 93

83584537 999352

Want:
Sequential insertions with
lower work amplification

7858 Use metadata to mask out data

41

2

94

4

The parent only sees the
unflushed data

60

8

59

2

58

1

64

7

65

1

63

5

62

42

68

11

69

1

67

5

Idea: Flush-then-compact

First flush references to the
branches, but do not compact

Flush-Then-Compact

169

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5Want:
Sequential insertions with
lower work amplification

7858 Use metadata to mask out data

41

2

94

4

The child only sees
the flushed data

Idea: Flush-then-compact

First flush references to the
branches, but do not compact

Flush-Then-Compact

170

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5Want:
Sequential insertions with
lower work amplification

7858 Use metadata to mask out data

41

2

94

4

Then can flush again

Idea: Flush-then-compact

First flush references to the
branches, but do not compact

Flush-Then-Compact

171

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5Want:
Sequential insertions with
lower work amplification

7858 Use metadata to mask out data

41

2

94

4

Then can flush again

Idea: Flush-then-compact

First flush references to the
branches, but do not compact

Flush-Then-Compact

172

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5Want:
Sequential insertions with
lower work amplification

7858 Use metadata to mask out data

41

2

94

4

Then can flush again

Idea: Flush-then-compact

First flush references to the
branches, but do not compact

Flush-Then-Compact

173

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5Want:
Sequential insertions with
lower work amplification

7858 Use metadata to mask out data

41

2

94

4

Then can flush again

Finally, asynchronously
compact the flushed buffers

in each node

Idea: Flush-then-compact

First flush references to the
branches, but do not compact

Flush-Then-Compact

174

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5

7858 Use metadata to mask out data

41

2

94

4

No work on immediately
flushed data

First flush references to the
branches, but do not compact

Use metadata to mask out data

Flush-Then-Compact

175

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5

7858

41

2

94

4

No work on immediately
flushed data

Sequential insertions
have work amp ~1

First flush references to the
branches, but do not compact

Use metadata to mask out data

Flush-Then-Compact

176

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5

7858

41

2

94

4

No work on immediately
flushed data

Sequential insertions
have work amp ~1

First flush references to the
branches, but do not compact

Break a serial chain of
compactions into parallel

Use metadata to mask out data

Flush-Then-Compact

177

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5

7858

41

2

94

4

No work on immediately
flushed data

Sequential insertions
have work amp ~1

First flush references to the
branches, but do not compact

Break a serial chain of
compactions into parallel

Concurrent compactions
in trunk nodes

First flush references to the
branches, but do not compact

Use metadata to mask out data

Flush-Then-Compact

178

60

8

59

2

58

1

64

7

65

1

63

5

62

42

37 58 93

83584537 999352

68

11

69

1

67

5

7858

41

2

94

4

No work on immediately
flushed data

Concurrent compactions
in trunk nodes

Break a serial chain of
compactions into parallel

Sequential insertions
have work amp ~1

Improve insertion
concurrency

Flush-Then-Compact

179

Run a single-threaded workload
with a percentage sequential

insertions and the rest random

Th
ro

ug
hp

ut
 (I

ns
er

tio
ns

/S
ec

on
d)

0

250

500

750

1000

Percentage Sequential
0 50 90 99 100

193185171152144

866
799

676

521
430

SplinterDB
RocksDB

H
ig

he
r

is
 B

et
te

r

X-axis not to scale

Flush-Then-Compact

180

Because of flush-then-compact,
SplinterDB smoothly increases

throughput as the workload gets
more sequential

Run a single-threaded workload
with a percentage sequential

insertions and the rest random

Th
ro

ug
hp

ut
 (I

ns
er

tio
ns

/S
ec

on
d)

0

250

500

750

1000

Percentage Sequential
0 50 90 99 100

193185171152144

866
799

676

521
430

SplinterDB
RocksDB

H
ig

he
r

is
 B

et
te

r

X-axis not to scale

Flush-Then-Compact

181

Because of flush-then-compact,
SplinterDB smoothly increases

throughput as the workload gets
more sequential

Run a single-threaded workload
with a percentage sequential

insertions and the rest random

RocksDB improves, but
at a much lower rate

Th
ro

ug
hp

ut
 (I

ns
er

tio
ns

/S
ec

on
d)

0

250

500

750

1000

Percentage Sequential
0 50 90 99 100

193185171152144

866
799

676

521
430

SplinterDB
RocksDB

H
ig

he
r

is
 B

et
te

r

X-axis not to scale

Flush-then-Compact

182

Insertions in SplinterDB scale well

Th
ro

ug
hp

ut
 (I

ns
er

tio
ns

/S
ec

on
d)

0

750

1500

2250

3000

Number of Threads
2 4 6 8 10 12 14 16 18 20

338346359380352345317279228153

235923622345
22322141

1958

1664

1348

981

529

SplinterDB RocksDB

H
ig

he
r

is
 B

et
te

r

Flush-then-Compact

183

Insertions in SplinterDB scale well

Th
ro

ug
hp

ut
 (I

ns
er

tio
ns

/S
ec

on
d)

0

750

1500

2250

3000

Number of Threads
2 4 6 8 10 12 14 16 18 20

338346359380352345317279228153

235923622345
22322141

1958

1664

1348

981

529

SplinterDB RocksDB

At 12 threads, SplinterDB has 7x
the throughput of 1 thread

H
ig

he
r

is
 B

et
te

r

Flush-then-Compact

184

Insertions in SplinterDB scale well

Th
ro

ug
hp

ut
 (I

ns
er

tio
ns

/S
ec

on
d)

0

750

1500

2250

3000

Number of Threads
2 4 6 8 10 12 14 16 18 20

338346359380352345317279228153

235923622345
22322141

1958

1664

1348

981

529

SplinterDB RocksDB

At 12 threads, SplinterDB has 7x
the throughput of 1 thread

At 12+ threads, SplinterDB uses
85%+ of the device bandwidth

H
ig

he
r

is
 B

et
te

r

Conclusion

185

Conclusion

186

SplinterDB is a key-value store
which handles these tough cases:

Fast Storage

Small Key-Value Pairs

Small Cache

Conclusion

187

SplinterDB is a key-value store
which handles these tough cases:

Fast Storage

Small Key-Value Pairs

Small Cache

Size-Tiered Bε-Tree

Conclusion

188

SplinterDB is a key-value store
which handles these tough cases:

Fast Storage

Small Key-Value Pairs

Small Cache

Size-Tiered Bε-Tree

Flush-then-Compact

Thank you!!!

189

Alex Conway

ajhconway.com

aconway@vmware.com

http://ajhconway.com

