
Briefcases, Cars, and Airplanes
Selim T. Erdoğan and Vladimir Lifschitz

Department of Computer Sciences
The University of Texas at Austin

1 University Station C0500
Austin, TX 78712-0233 USA
{selim,vl}@cs.utexas.edu

Abstract
Our goal is to develop a methodology for describ-
ing commonsense action domains on the basis of a
library of actions of a general nature, such as mov-
ing an object to a new place. The use of this li-
brary in descriptions of specific domains will be
similar to the use of libraries of standard subrou-
tines in programming languages. We show how
this idea can be applied to several domains familiar
from the literature on commonsense reasoning and
planning. These domains involve moving contain-
ers and vehicles—briefcases, cars and trucks, boats
and airplanes. The action descriptions are written
in (an extension of) the modular action descrip-
tion language MAD proposed by Lifschitz and Ren,
which is now implemented on top of the Causal
Calculator.

1 Introduction
This is the third in the series of preliminary reports on the
work motivated by the idea of interaction between two direc-
tions of research in knowledge representation: the design of
action description languages [Gelfond and Lifschitz, 1998]
and the development of libraries of reusable, general-purpose
knowledge components [Barker et al., 2001]. In the first of
these reports [Erdoğan and Lifschitz, 2006], we conjectured
that a library of standard descriptions for a number of “basic”
actions can facilitate writing, understanding and modifying
action descriptions, and illustrated this idea by showing how
the action PushBox in the Monkey and Bananas domain can
be described as a special case of the “library action” Move.

The second report in this series [Lifschitz and Ren, 2006]
defined a language called MAD (for Modular Action Descrip-
tions) that will be used in this project. MAD is an extension
of the language C+ proposed in [Giunchiglia et al., 2004].
Its main distinctive feature is the “import” construct, which
allows the user to refer to action descriptions introduced ear-
lier in the definition of a new domain.

In this paper, our approach is applied to several action do-
mains familiar from the literature on commonsense reasoning
and planning. Each of these domains has to do with contain-
ers that can change their locations along with their contents,
or vehicles that move around along with their passengers and

luggage. One of these examples is the briefcase that Ed Ped-
nault used twenty years ago to carry a book to his office [Ped-
nault, 1988]. Long before that, a boat was used by missionar-
ies and cannibals to cross the river [Amarel, 1968], and a car
driven by John McCarthy took him to the airport [McCarthy,
1959]. Years later, trucks and airplanes took packages to their
destinations in the logistics domain [Veloso, 1992]. Exam-
ples of this kind are formalized here in an extended version
of MAD in terms of general-purpose actions, such as Move,
Load and Unload. “Library descriptions” of these actions are
written in MAD also.

One advantage of this description style is that it is more
natural, in the sense that humans often describe actions to
each other in this way—by relating them to other actions.
As observed in [Erdoğan and Lifschitz, 2006], the dictionary
says that pushing is moving by steady pressure; this phrase
explains the meaning of the word push not by listing the ef-
fects of this action, but by presenting it as a special case of
another action, moving. In this paper we show also that this
approach makes many action descriptions more concise, and
that it makes it easier for us to recognize structural similarities
between action domains.

We implemented the MAD language on top of the Causal
Calculator (CCALC),1 so that reasoning and planning prob-
lems for action domains described in MAD can now be solved
automatically. All of the formalizations shown in this paper
were tested using this implementation.

A closely related paper by Michael Gelfond [2006], en-
titled Going places—notes on a modular development of
knowledge about travel, is directed towards “the develop-
ment and implementation of a library of knowledge mod-
ules needed for axiomatization of journey—a movement of a
group of objects from one place (the origin) to another (the
destination).” It emphasizes the possibility of unexpected
stops in the middle of a journey. Adding modular structure
to the logic programming language CR-Prolog [Balduccini,
2007] in that paper is similar to adding modular structure to
C+ in [Lifschitz and Ren, 2006].

The applicability of the object-oriented paradigm to mod-
eling dynamic domains is investigated by Joakim Gustafsson
and Jonas Kvarnström [2004]. Their system is based on Tem-
poral Action Logic [Doherty and Kvarnström, 2008].

1http://www.cs.utexas.edu/users/tag/ccalc/ .



2 The MAD language and the briefcase
domain

MAD is a member of the family of action languages [Gel-
fond and Lifschitz, 1998]—languages that serve to describe
the effects of actions on states of the world. The semantics of
action languages is defined in terms of “transition systems.”

2.1 The briefcase domain as a transition system
Consider two sets of symbols, called fluent constants and ac-
tion constants, along with a nonempty finite set of symbols
assigned to each fluent constant c, called the domain of c. In
this paper, a transition system is a directed graph whose ver-
tices, or states, are functions that map every fluent constant
to an element of its domain, and whose edges may be labeled
by action constants. Intuitively, an edge from a state s to a
state s′ labeled a indicates that executing action a in state s
can take the system to state s′; the absence of a label on an
edge indicates that the transition can happen without execut-
ing any action.2 In this framework, a planning problem can
be thought of as the problem of finding a path in a transition
system from a given initial state to a given goal state.

Action languages are formal languages for describing tran-
sition systems. We will illustrate the syntax of MAD using
the following example from [Pednault, 1988]:

Suppose that we have a world that consists of
three objects—a briefcase, a dictionary, and a
paycheck—each of which may be situated in one of
two locations: the home or the office. Actions are
available for putting objects in the briefcase, and
for taking objects out, as well as for carrying the
briefcase between the two locations. Initially, the
briefcase, the dictionary, and the paycheck are at
home; the paycheck is in the briefcase, but the dic-
tionary is not. The goal is to have the briefcase and
dictionary at the office and the paycheck at home.

We may represent this domain using five fluent constants.
Three of them describe the locations of the briefcase, the dic-
tionary, and the paycheck; the possible locations are the home
and the office. The other two indicate whether the dictionary
or the paycheck are in the briefcase. Out of the 32 combi-
nations of values of these fluents, only 18 represent possible
states of the world, because when the paycheck is in the brief-
case, both have to be at the same place, and similarly for the
dictionary.

Thus the transition system representing Pednault’s domain
has 18 states. Every edge of the system can be labeled by one
of six action constants:

PutIn(Paycheck), TakeOut(Paycheck),
PutIn(Dictionary), TakeOut(Dictionary),
MoveB(Home), MoveB(Office).

The transition system has 60 edges; out of these, 18 are trivial
(self-loops without a label), 9 are labeled by MoveB(Home)

2The MAD language, as defined in [Lifschitz and Ren, 2006],
allows an edge to be labeled by a set of actions that are concurrently
executed, possibly empty. In this paper, concurrent execution of
actions is not allowed.

sorts
Item;

inclusions
Item << Thing;

module BRIEFCASE;

objects
Paycheck, Dictionary : Item;
Briefcase : Carrier;
Home, Office : Place;

constants
PutIn(Item),
TakeOut(Item),
MoveB(Place) : action;

variables
i : Item;
p : Place;

import CARRIER;
Load(i,Briefcase) is PutIn(i);
Unload(i) is TakeOut(i);
Move(Briefcase,p) is MoveB(p);

Figure 1: Formalization of the briefcase domain

(carry the briefcase home, along with its contents), and 9 are
labeled by MoveB(Office) (carry the briefcase to the of-
fice). The remaining 24 edges are labeled by PutIn and
TakeOut actions.

2.2 The briefcase domain in MAD
A description of the briefcase domain in MAD is shown
in Figure 1. This description contains several references to
the library of basic action descriptions that we are building,
and these references are explained as we encounter them.
The full text of the current version of the library and its on-
tology are available at http://www.cs.utexas.edu/
users/tag/mad/library/ .

The description declares Item to be a sort, and it postu-
lates that Item is a subsort of the sort Thing. The latter is
“standard” in the sense that it is declared in the library on-
tology, along with its subsort Carrier and the sort Place
that are used in Figure 1 also.

The module BRIEFCASE consists of four parts. The first
three, beginning with the keywords objects, constants,
and variables, consist of declarations. The fourth part
imports the library module CARRIER; it is discussed in Sec-
tion 2.3 below.

From the declarations we learn that Paycheck,
Dictionary, Briefcase, Home, and Office are
objects, and what their sorts are. Any of the words PutIn
and TakeOut, followed by an object of sort Item in paren-
theses, is an action, as well as the word MoveB followed by
an object of sort Place. Finally, i is a variable for objects



of sort Item, and p is a variable for objects of sort Place.

2.3 Importing the module CARRIER
The importing facility of MAD allows us to make use of ex-
isting action description modules when creating new action
descriptions. In this way it is similar to the use of libraries of
standard subroutines in programming languages.

The use of concepts of abstract algebra in the definition
of a specific number system may be a better analogy. When
we describe the set R of real numbers as a group relative to
addition, with the neutral element 0, we say essentially that
the axioms for groups

∀x, y, z ∈ G x ? (y ? z) = (x ? y) ? z,
∀x ∈ G x ? e = x,
∀x ∈ G∃y ∈ G x ? y = e

hold if
G is R,
? is +,
e is 0.

Similarly, the import statement from Figure 1
import CARRIER;

Load(i,Briefcase) is PutIn(i);
Unload(i) is TakeOut(i);
Move(Briefcase,p) is MoveB(p);

tells us that the action PutIn(i) has all properties that are
postulated for the action Load(x,c) in the library module
CARRIER when the thing x is an item and the carrier c is
Briefcase, and similarly for the actions TakeOut(i)
and MoveB(p). For example, with this import the axiom

Move(x,p) causes Location(x)=p;

from module CARRIER3 (where x is a variable for things)
has the same effect as if we had written the axiom

MoveB(p) causes Location(Briefcase)=p;

in module BRIEFCASE.
The constant Location, used above, is declared in the

library module CARRIER as follows:
Location(Thing): fluent(Place);

That is to say, the Location of a Thing is a (simple4) flu-
ent, and its domain is the set of objects of sort Place. By
importing CARRIER we get access to this fluent and to the
other constants declared in that module.

One other assumption about the fluent Location in the
module CARRIER is that it satisfies the commonsense law
of inertia—the location of a thing is presumed to remain un-
changed in the absence of information to the contrary. Fur-
thermore, it is impossible to move a thing to its current lo-
cation. These assumptions, just as the assumption about the
effect of Move(x,p) on Location(x), are “inherited” by
BRIEFCASE from CARRIER. In the absence of a library of
standard action descriptions, many such axioms would have
to be explicitly included in module BRIEFCASE.

3To be precise, this axiom is found in the library module MOVE,
which is imported by CARRIER.

4See [Giunchiglia et al., 2004, Sections 4.2, 4.4] on the differ-
ence between simple fluents and statically determined fluents.

The fact that a carrier c is holding a thing x is described in
module CARRIER by the truth-valued fluent Holds(c,x).5
Executing action Load(x,c) makes this fluent true, and ex-
ecuting Unload(x) makes it false.

According to the axioms of CARRIER, the action
Load(x,c) is nonexecutable if Location(x) is differ-
ent from Location(c). For instance, the action of putting
the dictionary in the briefcase cannot be executed when the
dictionary is at home and the briefcase is at the office.

The effect of Move(x,p) on Location(x) in the ax-
iom above is a direct effect of this action. Moving, loading
and unloading can also have indirect effects. For instance,
axioms of the module CARRIER show that moving a carrier
affects the location of the objects that are held by it.

The precise semantics of import statements in MAD is
defined in [Lifschitz and Ren, 2006].

2.4 Implementation and testing
We have an implementation of MAD that allows us to per-
form various kinds of reasoning (such as planning, prediction,
postdiction) about action descriptions written in MAD. The
implementation makes use of the Causal Calculator (CCALC)
which is a system that can reason with the “definite” fragment
of language C+.

The system takes as input the library of basic action de-
scriptions along with a domain-specific action description. It
first turns this set of modules into an equivalent single-module
description by eliminating import statements and incorporat-
ing their contents, with appropriate modifications, into the
importing module, according to the semantics given in [Lif-
schitz and Ren, 2006]. A module without import sections
is essentially a C+ description. However, this description
generally contains “nondefinite” axioms that CCALC cannot
handle. Therefore we need to apply a further transforma-
tion, based on the methods outlined in [Erdoğan and Lifs-
chitz, 2006], which turns the description into an equivalent
definite description. The final output is an action description
which can be fed into CCALC.

We asked CCALC to solve the briefcase planning problem,
with the initial conditions
Location(Briefcase)=Home,
Holds(Briefcase,Paycheck),
Location(Dictionary)=Home,
-Holds(Briefcase,Dictionary)

and the goal
Location(Briefcase)=Office,
Location(Dictionary)=Office,
Location(Paycheck)=Home.

It determined that the shortest plan consists of 3 actions:
TakeOut(Paycheck); PutIn(Dictionary);
MoveB(Office).

In a different test, we instructed CCALC to display the list
of all states and all transitions of the transition system repre-
sented by Figure 1, and it found 18 states and 60 transitions,
as we had expected.

5Not to be confused with the use of the relation Holds in the
situation calculus.



module MISSIONARIES;

objects
M1, M2, M3 : Person;
Boat : Vehicle;
Bank1, Bank2 : Place;

constants
Board(Person),
Disembark(Person),
CrossTo(Place) : action;

variables
m : Person;
p : Place;

import CARRIER;
Load(m,Boat) is Board(m);
Unload(m) is Disembark(m);
Move(Boat,p) is CrossTo(p);

axioms
% The boat can carry at most two
% (i.e. not all three)
constraint -forall m Holds(Boat,m);

Figure 2: Formalization of the missionaries domain

All of the examples shown in this paper have been tested
successfully using our system. Such tests serve to in-
crease our confidence both in the adequacy of the formaliza-
tions and in the soundness of the implementation of MAD.
We don’t show any of these tests due to space constraints,
though the system itself, the library modules, and all of
the examples (with sample queries) are available online at
http://www.cs.utexas.edu/users/tag/mad/ .

3 The dictionary and paycheck disguised as
humans

In this section we formalize two commonsense domains hav-
ing to do with humans and vehicles, which are structurally
very similar to the briefcase domain discussed above. One
is a simplified version of the familiar missionaries and canni-
bals puzzle [Amarel, 1968], in which there are no cannibals—
just three persons who want to cross the river, and a boat that
holds two. The second, inspired by [Gelfond, 2006], involves
travel by air.

In the modules MISSIONARIES (Figure 2) and
AIRTRAVEL (Figure 3), sort Person is used in place
of sort Item from Figure 1. There is no need for sort
declarations here, because Person is described as a subsort
of Carrier, and consequently a subsort of Thing, in
the library ontology. (A person is a carrier because he can
carry things in his hands or pockets. This fact will become
essential in the next section.)

According to the same ontology, sort Vehicle is a sub-
sort of Carrier. One distinctive feature of vehicles, in com-
parison with other carriers, is that, by default, a vehicle cannot

module AIRTRAVEL;

objects
George, Laura : Person;
AirForce1 : Vehicle;
Austin, Lubbock : Place;

constants
Board(Person),
Disembark(Person),
Fly(Place) : action;

variables
m : Person;
p : Place;

import CARRIER;
Load(m,AirForce1) is Board(m);
Unload(m) is Disembark(m);
Move(AirForce1,p) is Fly(p);

axioms
% the pilot is disregarded
% in this formalization
-DriverRequired(AirForce1);

Figure 3: Formalization of the air travel domain

move unless there is at least one person (driver) inside. Sec-
ond, vehicles are too big to be held by people. For instance, a
missionary cannot hold the boat on his back.

Unlike BRIEFCASE, each of the modules
MISSIONARIES and AIRTRAVEL includes an axiom
section. Axioms in a MAD description of a domain describe
the domain-specific assumptions that are not covered by
the axioms in the imported modules. In MISSIONARIES,
the only domain-specific assumption is that the boat holds
two. In AIRTRAVEL, we postulate that AirForce1 is
an exception to the above-mentioned default about vehicles
(not because it is fully automatic, of course, but because
our simplified formalization disregards the presence of
a pilot). In the library module CARRIER, the symbol
DriverRequired serves as the flag that can be used to
disable the default about the need for a driver.

4 Takeoff and landing
Module AIRTRAVEL AIR (Figure 4) is an enhancement of
the air travel example that takes into account the need to take
off before flying anywhere and to land after that. It imports
module AIRTRAVEL and declares two additional actions,
TakeOff and Land.

The effects of these actions are described here using
the fluent Support(x), declared in the library module
MOUNT. Executing action TakeOff changes the value of
Support(AirForce1) to Air; after executing action
Land, its value becomes Ground. Both Ground and Air
are objects of sort Supporter, which, according to the
library ontology, is a supersort of sort Thing. Ground



module AIRTRAVEL_AIR;

import AIRTRAVEL;

objects
Air : Supporter;

constants
TakeOff, Land : action;

variables
x : Thing;
m : Person;
p : Place;

import MOUNT;
Mount(AirForce1, Air) is TakeOff;

import MOUNT;
Mount(AirForce1, Ground) is Land;

axioms
% Must take off before flying
nonexecutable Fly(p)

if Support(AirForce1)=Ground;
% Must land before getting in or out
nonexecutable

(Board(m) | Disembark(m))
if Support(AirForce1)!=Ground;

% Only the plane can be freely flying
constraint

Support(x)=Air -> x=AirForce1;

Figure 4: Takeoff and landing

is declared in the library; Air is specific for the module
AIRTRAVEL AIR.

In the library module MOUNT, the action Mount(x,s),
where s is a Supporter, is postulated to change the value
of Support(x) to s.

5 Pednault’s briefcase revisited
The enhacement of Pednault’s example shown in Figure 5
takes into account the fact that the briefcase doesn’t move to
the office by itself; the owner carries it with him. We assume
here that he walks to the office.

Module CARRIER is imported here twice: first, as in
BRIEFCASE, to describe putting an item in the briefcase,
and then to describe the new actions of picking up a thing and
putting it down. (The action of taking an item out of the brief-
case is no longer necessary in the presence of the new action
PickUp.) The action MoveB from the simpler formaliza-
tion is not available anymore. Instead, Walk is declared to
be an action that changes Ed’s location, and consequently the
locations of all things that Ed carries.

Importing the same module twice in different ways is sim-
ilar to invoking the same subroutine twice with different pa-
rameters, or to referring to a set of axioms from abstract alge-

sorts
Item;

inclusions
Item << Thing;

module BRIEFCASE_WALK;

objects
Ed : Person;
Paycheck, Dictionary : Item;
Briefcase : Carrier;
Home, Office : Place;

constants
PutIn(Item),
PickUp(Thing),
PutDown(Thing),
Walk(Place) : action;

variables
i : Item;
x : Thing;
p : Place;

import CARRIER;
Load(i,Briefcase) is PutIn(i);
Unload(x) is false;
Move(Ed,p) is Walk(p);

import CARRIER;
Load(x,Ed) is PickUp(x);
Unload(x) is PutDown(x);
Move(Ed,p) is Walk(p);

axioms
Smaller(Briefcase,Ed);
nonexecutable PutDown(x)

if -Holds(Ed,x);

Figure 5: Formalization of the briefcase domain with walking

bra to describe first properties of addition, and then properties
of multiplication in a number system.

The enhanced formalization of the briefcase domain has
two axioms. The first of them uses the relation Smaller be-
tween two things, which is introduced in module CARRIER
for the purpose of specifying when a carrier is “too small” to
hold a thing. This relation is postulated to be false by default,
and we have already seen one exception to this default: hu-
mans are too small to hold vehicles. Now we postulate also
that Ed Pednault’s briefcase is too small to enclose its owner.

The second axiom says that Ed can put down a thing only
if he is holding it.

In this formalization, Pednault’s planning problem (Sec-
tion 2.1) can be solved in 4 steps. He has two alternatives:
after picking up the briefcase and putting the paycheck down,
and before walking to the office, he can either put the dictio-



nary in the briefcase, or simply pick it up and carry it in the
other hand.

6 Moving within a limited range
John McCarthy [1959] explained the fact that he needed a car
to get to the airport by noting that his home and the airport do
not belong to a sufficiently small, “walkable”, region. They
are in the same county, and counties are “drivable”—small
enough to drive across. He could get to the airport by first
walking to the car, which is at his home also (this is possible
because his home is walkable) and then driving his car to the
airport.

In the library module MOVE IN REGION this idea is gen-
eralized by introducing the concept of a “movable” region
and postulating that the action Move(x,p) is nonexecutable
unless place p lies within a movable region that contains
Location(x). Region is a supersort of Place, and the
inclusion relation between regions is denoted by At. By de-
fault, this relation is assumed to be false, that is to say, regions
are presumed to be pairwise disjoint.

In Figure 6, MOVE IN REGION is used, along with
CARRIER, to formalize McCarthy’s example.

The logistics domain, introduced in [Veloso, 1992], is de-
scribed as follows6:

There are several cities, each containing several lo-
cations, some of which are airports. There are also
trucks, which can drive within a single city, and air-
planes, which can fly between airports. The goal is
to get some packages from various locations to var-
ious new locations.

A MAD formalization of this domain is shown in Figure 7.
The condition that trucks can only drive within a single city
is similar to the limitations on walking and driving in Mc-
Carthy’s example, and it is expressed here by importing mod-
ule MOVE IN REGION.

This representation of logistics is abstract, in the sense that
it does not declare objects corresponding to specific vehicles,
places and packages. A module describing a concrete logis-
tics domain would import module LOGISTICS, declare its
objects, and provide axioms describing the At relation be-
tween places and cities.

7 Conclusion
We showed how to use the MAD language to formalize many
action domains from the literature on commonsense reason-
ing, employing a common “standard library” of general-
purpose basic actions. In particular, we showed how the li-
brary module CARRIER contains knowledge that provided
the basis for representing objects as diverse as briefcases,
cars, trucks, boats, airplanes, and even humans.

Using such a library allows us to abstract out the common
aspects of different domains, not only making the formaliza-
tions simpler, but also helping us recognize structural similar-
ities in domains that may seem very different at first glance.

6Taken from the webpage of the first International Planning
Competition, ftp://ftp.cs.yale.edu/pub/mcdermott/
aipscomp-results.html

module AIRPORT;

objects
John : Person;
Car : Vehicle;
Desk, Garage, Airport : Place;
Home, County : Region;

constants
Walkable(Region),
Drivable(Region) : Boolean;
Walk(Place),
Drive(Place),
Board,
Disembark : action;

variables
p : Place;
r : Region;

import CARRIER;
Load(John,Car) is Board;
Unload(John) is Disembark;
Move(Car,p) is Drive(p);

import MOVE_IN_REGION;
Move(Car,p) is Drive(p);
Movable(r) is Drivable(r);

import MOVE_IN_REGION;
Move(John,p) is Walk(p);
Movable(r) is Walkable(r);

axioms
constraint Location(Car)!=Desk;
At(Desk, Home);
At(Garage, Home);
At(Home, County);
At(Airport, County);
Walkable(Home);
Drivable(County);

Figure 6: Going to the airport

We saw that three domains, briefcase (Section 2.2), mission-
aries, and air travel (Section 3), had almost identical structure.

The implementation of the MAD language that we created
allowed us to test our representations by calculating the sets
of states of the transition systems and by making sure that the
responses to reasoning queries were in accordance with our
expectations.

In the future we plan to enhance the MAD language by
adding the capability to reason with numbers. This will
help us to extend the range of domains we can nicely rep-
resent. For example, in the Missionaries and Cannibals do-
main, it is preferable to reason about the number of mission-
aries and cannibals on each bank, rather than about individu-
als [Amarel, 1968].



sorts
City; Airport;
Truck; Airplane;
Package;

inclusions
City << Region;
Airport << Place;
Truck << Vehicle;
Airplane << Vehicle;
Package << Thing;

module LOGISTICS;

constants
Drivable(City) : Boolean;
Go(Vehicle, Place) : action;

variables
p : Place;
c : City;
v : Vehicle;
t : Truck;
a : Airplane;

import CARRIER;
Move(v,p) is Go(v,p);

import MOVE_IN_REGION;
Move(t,p) is Go(t,p);
Movable(c) is Drivable(c);

axioms
-DriverRequired(v);
constraint

Location(a)=p -> Airport(p);
Drivable(c);

Figure 7: Formalization of the logistics domain

There are three parts to our project of developing a library
of general-purpose action descriptions: designing the MAD
language, using the language to formalize new library mod-
ules along with example domains, and developing the imple-
mentation. These parts all need to be done in parallel. As we
attempt to formalize more domains in simpler, better ways,
we see the need for new language features and new library
modules. And of course, the simultaneous development of the
implementation is necessary to test the soundness and useful-
ness of the new language design and formalizations.

Acknowledgements

We are grateful to Michael Gelfond, Yuliya Lierler, Wanwan
Ren and Yana Todorova for useful discussions related to the
topic of this paper. This research was partially supported by
the National Science Foundation under Grant IIS-0712113.

References
[Amarel, 1968] Saul Amarel. On representations of prob-

lems of reasoning about actions. In D. Michie, editor, Ma-
chine Intelligence, volume 3, pages 131–171. Edinburgh
University Press, Edinburgh, 1968.

[Balduccini, 2007] Marcello Balduccini. CR-MODELS: An
inference engine for CR-prolog. In Procedings of Interna-
tional Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR), pages 18–30, 2007.

[Barker et al., 2001] Ken Barker, Bruce Porter, and Peter
Clark. A library of generic concepts for composing knowl-
edge bases. In Proceedings of First International Confer-
ence on Knowledge Capture, pages 14–21, 2001.

[Doherty and Kvarnström, 2008] Patrick Doherty and Jonas
Kvarnström. Temporal action logics. In Frank van Harme-
len, Vladimir Lifschitz, and Bruce Porter, editors, Hand-
book of Knowledge Representation. Elsevier, 2008.

[Erdoğan and Lifschitz, 2006] Selim T. Erdoğan and
Vladimir Lifschitz. Actions as special cases. In Pro-
ceedings of International Conference on Principles of
Knowledge Representation and Reasoning (KR), pages
377–387, 2006.

[Gelfond and Lifschitz, 1998] Michael Gelfond and
Vladimir Lifschitz. Action languages. Electronic
Transactions on Artificial Intelligence, 3:195–210, 1998.

[Gelfond, 2006] Michael Gelfond. Going places — notes
on a modular development of knowledge about travel. In
Working Notes of the AAAI Spring Symposium on Formal-
izing and Compiling Background Knowledge and Its Ap-
plications to Knowledge Representation and Question An-
swering, 2006.

[Giunchiglia et al., 2004] Enrico Giunchiglia, Joohyung
Lee, Vladimir Lifschitz, Norman McCain, and Hud-
son Turner. Nonmonotonic causal theories. Artificial
Intelligence, 153(1–2):49–104, 2004.

[Gustafsson and Kvarnström, 2004] Joakim Gustafsson and
Jonas Kvarnström. Elaboration tolerance through object-
orientation. Artificial Intelligence, 153(1–2):239–285,
2004.

[Lifschitz and Ren, 2006] Vladimir Lifschitz and Wanwan
Ren. A modular action description language. In Pro-
ceedings of National Conference on Artificial Intelligence
(AAAI), pages 853–859, 2006.

[McCarthy, 1959] John McCarthy. Programs with common
sense. In Proceedings of the Teddington Conference on the
Mechanization of Thought Processes, pages 75–91, Lon-
don, 1959.

[Pednault, 1988] Edwin Pednault. Synthesizing plans that
contain actions with context-dependent effects. Compu-
tational Intelligence, 4(4):356–372, 1988.

[Veloso, 1992] Manuela Veloso. Learning by Analogical
Reasoning in General Problem Solving. PhD thesis,
Carnegie Mellon University, 1992. PhD thesis.


