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ABSTRACT

We present a parallel algorithm based on open ear decomposition to con-
struct an embedding of a graph onto the plane or report that the graph is nonpla-
nar. Our parallel algorithm runs on a CRCW PRAM in logarithmic time with a
number of processors bounded by that needed for finding connected components
in a graph and for performing bucket sort.

1. Introduction

1.1. The Planarity Problem

Informally, a graph is planar if it can be embedded onto the plane so that the edges do not
cross (see section 2.1 for formal definition). Euler first defined this fundamental concept in 1736
and stated the Euler formula for planar embeddings.

Planar graphs appear naturally in many applications, -- for example, in the solution of 2
dimensional PDEs and in VLSI layout. Many NP-hard graph problems such as the clique problem
and the feedback arc set problem can be solved in polynomial time in the case of planar graphs
[GJ79].

The planarity problem is the following: given a graphtest if G has a planar embedding
and, if so, construct an embedding®fonto the plane. A planarity algorithm is one that solves
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the planarity problem. There has been a considerable amount of research on this problem, begin-
ning with the characterization theorems for planarity of Whitney [Wh30], Kuratowski [Ku30] and
Edmonds [Ed60] which led to exponential time planarity algorithms, followed by the first polyno-
mial time planarity algorithm of Tutte [Tu63] and culminating with the linear time sequential pla-
narity algorithm of Hopcroft & Tarjan [HT74], which used depth first search and built on tech-
niques developed in a triconnectivity algorithm [HT73]. Another planarity algorithm developed

by Lempel, Even & Cederbaum [LEC67] was made to run in linear time by results in Booth &
Lueker [BL76] for manipulating PQ trees and by the algorithm of Even & Tarjan [ET76] for com-
puting anst-numbering.

1.2. Previous Parallel Algorithms for Planarity

Considerable previous work has been devoted to developing parallel planarity algorithms
with respect to the Parallel Random Access Machine (PRAM). Ja'Ja’ & Simon [JS82] first
showed that testing planarity is in NC, where NC is the class of problems with parallel algorithms
that run in polylog time with a polynomial number of processors. Miller & Reif [MR85] later
gave a parallel planarity algorithm with similar resource bounds that also gave a planar embed-
ding of an arbitrary planar graph. Reif [Re84] gave a randomized logarithmic time NC algorithm
for graphs of valence 3. Klein & Reif [KR88] gave the best previously known polylog time pla-
narity algorithm in terms of processor efficiency, which required tiingogzn) using a linear
number of processors; this algorithm is a parallelization of the sequential algorithm in [LEC67].

1.3. Our Parallel Planarity Algorithm

Our parallel planarity algorithm is a deterministic algorithm that runs in logarithmic time on
a Concurrent Read Concurrent Write (CRCW) PRAM while performing almost linear work. (See
Karp & Ramachandran [KR90] for a discussion of parallel algorithms on various PRAM models.)
More precisely, leC(n,m) be the bound on the work done by a parallel algorithm that finds the
connected components of annode, m-edge graph in logarithmic time on a CRCW PRAM
when the graph is represented by adjacency lists; currently the best bound is
C(n,m) =0((n+m)-a(n,m)) [CV86], wherea is the inverse Ackermann’s function, which grows
very slowly withn andm. Let B(n) be the bound on the work to perform bucket sortnon
O(logn) bit numbers in logarithmic time on a CRCW PRAM,; currerlgn) = O (n-loglogn)
[Ha87]. Finally, letA(n,m) =max(C(n,m),B(n)). Our planarity algorithm runs in logarithmic
time on a CRCW PRAM while performing(n,n) work. We will refer to such a performance
bound as ‘logarithmic time with A-optimal performance.” This is the best bound known for test-
ing graph connectivity if the input is not specified by adjacency lists but by some other sparse rep-
resentation such as an unordered list of edges.

Our algorithm uses a variety of techniques found in previous parallel graph algorithms. We
search the graph using a parallel algorithm for open ear decomposition [MR86, MSV86, Ra93].
Open ear decomposition has proved to be a very useful technique in the efficient parallel solution
of several problems on undirected graphs (see, e.g., [FRT89, KR91, KR90, MSV86, Ra93]). To
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further order our parallel searches, we make use of the parallel algorithm of [MSV86] for
st-numbering. We use the local replacement graph computed in the parallel triconnectivity algo-
rithm of Fussell, Ramachandran & Thurimella [FRT89]; for this material we will follow the treat-
ment in [Ra93]. We extend the interlacing parity algorithm of Ramachandran & Vishkin [RV88]
in order to obtain the planar embedding of the input graph; again, for this material, we will follow
the treatment in [Ra93]. We also make use of the optimal logarithmic time algorithms for com-
puting tree functions [TV84, CV86, KD88] and for computing least common ancestors (Ica) of
pairs of vertices in a rooted tree [SV88].

Our algorithm differs from all previous planarity algorithms in its use of a general open ear
decomposition for graph searching. However, it is somewhat similar in spirit to the algorithm of
Hopcroft & Tarjan [HT74] in that it embeds paths rather than vertices; as in the case of the algo-
rithm in [HT74], our algorithm makes extensive use of techniques developed in a triconnectivity
algorithm, i.e., the parallel algorithm in Fussell, Ramachandran & Thurimella [FRT89] to find the
triconnected components of a graph. At the same time, since our algorithst-nsesbering to
direct the embedding, it has some similarity to the Lempel, Even & Cederbaum algorithm
[LEC67]. Our algorithm makes no use of parallel PQ tree techniques to represent planar embed-
dings, but instead makes a reduction to finding a 2 coloring of an undirected graph, a special case
of which is used in Ramachandran & Vishkin [RV88] to find a planar embedding for a graph with
a known Hamiltonian cycle. Similar, though less efficient, approaches have been used by Ja'Ja’
& Simon [JS82] who gave an NC reduction of planarity testing to 2-SAT (satisfiability with 2 lit-
erals per clause) and by Reif [Re84] who gave a randomized NC reduction of trivalent planarity
testing to 2-SAT with the two literals in exclusive-or form; this latter problem is equivalent to 2
coloring an associated undirected graph.

All of the steps in our algorithm can be performed in linear sequential time. Hence it gives
a linear time sequential algorithm for planarity. In fact, a stronger claim can be made on our algo-
rithm: for any running time at least logarithmic, if linear work parallel algorithms are available for
the problems of finding connected components in a graph and for performing bucket sort, then
our planarity algorithm will execute within that time bound while performing linear work.

1.4. Algorithmic Notation

The algorithmic notation in this paper is from [Ta83,Ra93]. We enclose comments between
a pair of double curly brackets (‘{{” and ‘}}"). We incorporate parallelism by use of the following
statement that augments fioe statement.

pfor iterator — statement listofp
The effect of this statement is to perform gifier loop in parallel for each value of the iterator.

Throughout this paper we will let denote the number of vertices in the input graph (and
we will assume that the number of edge® {®)). We will sometimes use to denote a nontree
edge in a graph with a spanning tree but that should cause no confusion since the use will be clear
from the context.



1.5. Organization of the Paper

The rest of the paper is organized as follows. Section 2 gives definitions and relevant earlier
results. Section 3 gives a high-level description of our algorithm. Section 4 describes bunches,
their hooks and the bunch graphs. Section 5 defines the constraint graph. Section 6 relates 2-col-
orings of the constraint graph to planar embeddings of the input graph, and gives a placement of
each bunch on one side of its fundamental cycle. Section 7 refines this placement to obtain a com-
binatorial embedding of the graph. Finally, Section 8 gives the full algorithm.

2. Preliminaries

In this section we provide major definitions and previous results from the literature that we
will need in later sections.

2.1. Planar Embeddings

2.1.1. Planar Topological Embeddings

We define here planar topological embeddingf an undirected grapB =(V ,E) (see, e.g.,
White [Wh73]). In such a topological embedding, each edge is associated with a simple curve on
the plane, where the endpoints of the edge are at the two distinct endpoints of the curve, and no
two edges intersect except at an endpoint in the case when they share a vertezeSdfehe
embedding are the maximum connected regions obtained by deleting the embedding of G from
the plane. Euler’s formula gives—-m+f =1+c, wherem,n,f andc are the numbers of edges,
vertices, faces, and connected components, respectively.

2.1.2. Planar Combinatorial Embeddings

The topological definition of planar embedding givemadypresents difficulties for com-
puter algorithms and their proofs. Given an undirected g&p{V ,E) with |V |=n, we will rep-
resent an embedding of gra@hby a combinatorial representation that is attributed to Edmonds
[Ed60] (see also White [Wh73]); this representation has Qige). Let D (G) be the directed
graph derived fronG by substituting in place of each undirected edgg ), a pair of directed
edges(,v) and {,u). A combinatorial graph embedding 1(®f the graphs is an assignment
of a cyclic ordering to the set of directed edges departing each veldGin The faces of this
combinatorial embedding are the orbits of a certain permutation of the directed edges; this permu-
tation orders\,v) before ¢,u) if and only if the combinatorial embedding ordersu() immedi-
ately before \(,w) in the clockwise cyclic order around vertexThe combinatorial embedding
is planar if it satisfies the Euler’'s formute-m+f =1+c, calculated from the numbers of (undi-
rected) edgem, verticesn, facesf , and connected componets Edmonds [Ed60] showed that
combinatorial embeddings onto the plane can be put in 1-1 correspondence to topological embed-
dings onto the plane. Hereafter, we will use the term planar embedding to denote a combinatorial
embedding onto the plane.
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Given a directed simple cycl@=<vo,vi, - - - Wk=vo> in D(G), and an edges(,x) wherevi
is in C butx is not, we will define\f,x) to be embeddeihside C (and otherwis@utside Q if
in the clockwise cyclic order defined byG) on directed edges departing vertexdirected edge
(vi ,x) appears after directed edge,i+1) and before directed edge {i-1).

We extend the alve definition to the embedding of an edge relative to a directed path.
Given a directed patR =<vo,v1, - - - ,wk> in G, and an edgevi(,x) wherex is not inP andvi is
an internal vertex o, we will define ¢i ,x) to be embeddedhside P (and otherwiseutside
P) if in the cyclic order defined by(G) on directed edges departing vertex directed edge
(vi ,x) appears after directed edge,i +1) and before directed edge {i-1) (see figure 1).

figure 1
lllustrating theinside andoutside of a directed path.

2.2. Bridges of a Subgraph

Let G=(V,E) be an undirected graph, and @@tbe a subgraph @&. We define thdoridges
of Q in G as follows ([Tu66]; see e.g., [Ra93, Ev79]): Mtbe the vertices i -Q, and con-
sider the partition o' into classes such that two vertices are in the same class if and only if
there is a path connecting them which does not use any ver@@xkdich such clags defines a
nontrivial bridge B=(Vs ,Es) of Q, whereB is the subgraph d& with Ve=K [] {vertices ofQ
that are connected by an edge to a vertd«}inand Es containing the edges @& incident on a
vertex inK. The vertices of) which are connected by an edge to a verteX iare called the
attachment®f B on Q; the connecting edges are called dtiachment edgesAn edge ¢,v) in
G-Q, with bothu andv in Q, is atrivial bridge of Q, with attachments andv. The nontrivial
and trivial bridges 0@ together form théridgesof Q.

Let G=(V,E) be a graph and let' [IV with the subgraph o induced onV' being con-
nected. The operation obllapsing the vertices in'\tonsists of replacing all verticesV by a
single new vertex, deleting all edges i6 whose two endpoints are Wi and replacing each
edge kx,y) with x in V' andy in V-V' by an edge\,y). In general the resulting graph is a
multigraph even if the original grapgh is not a multigraph.
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Let G=(V,E) be an undirected graph, and @tbe a subgraph d&. Thebridge graph of
Q, S=(Vs,Es) is obtained fromG by collapsing the nonattachment vertices in each nontrivial
bridge of Q and by replacing each trivial bridde=(u,v) of Q by the two edgesxg,u) and
(xb,v) wherexb is a new vertex introduced to represent the trivial briolgéNote that in general
the bridge graph is a multigraph.

2.3. Interlacing Bridges

Let P=<0,1,2,- - - k> be a simple path in a gragh. A pair of bridgesinterlace on P
([Tu66]; see, e.g., [Ev79, Ra93))if one of the following two holds:

1. There exist four distinct verticesb,c,d with a<b<c<d such thata andc are attachments
of one of the bridges dd andb andd are attachments of the other bridgeRgror

2. There are three distinct verticedothat are attachments of both bridges.

If bridgesS andT interlace onP, then they cannot be placed on the same side iof a
planar embedding. B andT do not interlace, then they can be placed in a planar embedding on
the same (opposite) side d? if and only if there exists no sequence of bridges
<S=S0,S1, * - - ,S =T >, with r odd (even) such th& interlaces withS+1, O<i<r -1. If there is
such a sequence witheven thenS and T haveeven interlacing parityand if there is such a
sequence witlh odd, thenS andT haveodd interlacing parity.If no such sequence exists for
either odd or even, theéhandT havenull interlacing parity:in this caseS andT can be placed
either in the same side or in opposite sideB @i a planar embedding (provid&lis planar). It
is possible foIS andT to have both odd and even parity, -- in this case, no planar embedding of
G is possible if every bridge is to be placed completely on one side of

2.4. The Star Graph and Its Interlacing Parity Graph

The following definitions are from [Ra93]. star is a connected graph in which at most
one vertex has degree greater than 1. R_ée a simple path in a gra@~(V ,E). If each bridge
of P in G is a star (i.e., contains exactly one vertex noP@nthen we callG thestar graph of P
and denote it bys (P). Each bridge ofs(P) is called astar of G(P). The unique vertex of a
star of G (P) that is not contained iR is called itscenter. If P=<0,1,- - - ,n> then given a stab
of G (P) with attachmentso<v i< - - - <vr on P, we will call vo andvr theend attachmentsf S
and the remaining attachments th&ernal attachmentsf S; the vertexvo is theleftmost attach-
mentof S, and the vertexr is itsrightmost attachment.

Note that, in a connected gra@h the bridge graph of any simple pathGnis a star graph.
We will sometimes refer to a star gra@liP) by G if the pathP is clear from the context.

We now define thinterlacing parity graph G of a star grapls (P). LetP=<0,1,---,n>.
We replace each st&on G (P) by a collection of edges as follows: Let the attachmen af
P beao,ai, - - - ,ak with ao<ai< - - - <ak. We replacesS by the edgesap,ai),i=1,- - - ,k and the
edges &i,ak),i=1, - - - k=1 (see figure 2a). We will refer to these edges ashbals of S.



figure 2
Constructing the interlacing parity graph of a star graph.

Let H(P) be the graph obtained fro@(P) by replacing each star i@ (P) by its chords.
We will say that chords andd in H (P) arerelatedif they are chords of the same sfin G (P)
and areunrelatedotherwise. We construé =(V' ,E'), theinterlacing parity graph of GP) as
follows:
V' =V1[] V2 where
Vi={ve|eis achordirH (P)} and
V2={vs | Sis a star inG(P)}; we will refer to a vertex i'V2 as astar vertex.

E' ={(vs,ve) | S is a star inG(P) and ve is a vertex inV1 representing a chord of S}
[]E1[]F,

whereE1 andF are defined as follows:

DEFINITION OFE1:

For each chora in H (P) we first define deft chord t and aright chord rc. The chorddc and
rc are not unique and may not exist for all chords. d=u,v), u<v and letc be a chord of star
SinG(P).

Left chord of c:Let u be the minimum numbered vertex 8nsuch thatc interlaces with an
unrelated chord incident onui. If ui<u then choose an unrelated choud)\j ) with maximum
v that interlaces witle to be the left chortt of c. If no suchul exists therc has no left chord.
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Right chord of c:Let v be the maximum numbered vertex Bnsuch thatc interlaces with an
unrelated chord incident om. If v >v then choose an unrelated chouwel,{r ) with minimumur
that interlaces witle to be the right chorde of c. If no suchwr exists therc has no right chord.

ThenE1={(vc,v) |c is a chord oH (P) andlc is its left chord (if it exists)f ] {(vc,vr)|C
is a chord oH (P) andrc is its right chord (if it exists)}. (See figure 2b)

DEFINITION OF F:
For each vertex onP let

Fi={(vs,vr) | S is a star inG (P) with an internal attachment anand T ranges over all other
stars inG (P) with an internal attachment o

ThenF =g=jFi.
Figure 2c gives the interlacing parity graphof the graphG (P) in figure 2a.

It is shown in [Ra93, RV88] that a two-coloring®f exists if and only if there exists a pla-
nar embedding o& (P) with each star irG (P) being embedded entirely on one sideRarur-
ther, a planar embedding & (P) can be obtained by embedding all stars corresponding to star
vertices of one color inside and all stars corresponding to star vertices of the other color outside
P.

2.5. Open Ear Decomposition and st-Numbering

An ear decomposition B[Po,P1, - - - ,Pr-1] of an undirected grap®=(V ,E) is a partition
of E into an ordered collection of edge disjoint simple p&#fs - - ,Pr-1 such thaPois an edge,
Po[ ]P1is a simple cycle, and each endpointPof for i>1, is contained in somj,j<i , and
none of the internal vertices Bf are contained in angj,j<i . The paths irD are calledears.
A trivial ear is an ear containing a single edge. An Riai>1, isopenif it is noncyclic and is
closedotherwise.D is anopen ear decompositiaghall of its ears are open.

Let D=[Po, - - - ,Pr-1] be an ear decomposition for a gra@h(V ,E). For a vertex in V,
we denote byar(v), the index of the lowest-numbered ear that contajrfer an edge2=(x,y)
in E, we denote byar(e) (or ear(x,y)), the index of the unique ear that contagnsA vertexv
will belong to Rar(v).

Let G be a biconnected graph with an open ear decompo§itigRo, - - - ,Pr-1]. Two ears
are parallel to each otheif they have the same endpoints; an Bais aparallel ear if there
exists another ed?j such thaPi andPj are parallel to each other.

An open ear decomposition can be obtained in logarithmic time with C-optimal perfor-
mance if the graph is specified by adjacency lists, and with A-optimal performance for other
sparse representations [MR86, MSV86, Ra93, Sc87]. The parallel open ear decomposition algo-
rithm constructs a collection of auxiliary graphs in order to ensure that all ears are open. A con-
struction similar to this is used several times in our planarity algorithm. Given a Grapth a
rooted spanning trek, the construction creates a graghfor each non-leaf vertexin T. There
is a vertex irHv for each edge ifi connectingv to a child, as well as for each nontree edg8 in
connectingv to a descendant ofin T. An edge joins two vertices iHv if and only if the edges
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represented by the two vertices lie in a common fundamental cycle with I@de present the
construction below ifiunction auxgraphslt will be used in sections 4 and 7. This construction
is illustrated in figure 3.

The construction given below (as well as several other algorithms in this paper) uses the fol-
lowing definition: LetG=(V ,E) be an undirected graph, and Tet(V,F ,r) be a spanning tree of
G rooted at a vertek. Letn=(x,y) be a nontree edge ih and letlca(e)=v. The fundamental
cycle ofn with respect tdI' consists of the path fromto x, followed by edge, followed by the
path fromy tov. Let (v,a) be the first edge on the path franto x and {,b) be the first edge
on the path fronv toy (it is possible for one of these edges to be missing). Then ddggsarnid
(I,b) are thebase edge(s) of the fundamental cycle ¢ivhen they exist) and the verticasand
b are thebase vertice(s) of the fundamental cycle dfumen they exist). For instance, in figure
3, e is the only base edge of the fundamental cycle of nontreecedgedb andc are the two
base edges of the fundamental cycle of the only un-labeled nontree edge.

figure 3
lllustrating the construction of the auxiliary graph for vertex

set functionauxgraphs(graph G=(V ,E), rooted spanning treeT=(V,D ,r)) of graphs;

vertexv,y,z,Z,Z';edgee, €,€’, f;

pfor each vertex that is not a leaf if -

{{Construct a graptHv}}
createa vertex for each tree edge that conngdis a child ofv;
create a vertex for each nontree edge that connedtsa descendant ofin T;
pfor each fundamental cycfeé of T with v as the Ica of the nontree edgeCGin-

if C has two base edges, €' - createan edge4 ,z') in Hv wherez andz’
are the vertices created to repregerand€e’ respectively
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{{Recall that the ternbase edgewas defined earlier in this section.}}

| C has only one base edge- createan edge irHv betweerny andz, where
y andz are the vertices created to represent edgasdf respectivelyf being
the nontree edge

fi
rofp
rofp;
return {Hv |v [V}
{{ Hv is theauxiliary graphfor vertexv.}}

end;

Let the vertices irG be numbered in preorder with respect to a depth-first search of the
rooted spanning trek. Letlow (v) be the preorder number of the minimum-numbered vertex that
lies in a fundamental cycle containiag The following result is well-known and is used in paral-
lel algorithms for testing biconnectivity and for finding an open ear decomposition.

Observation 2.1Let C be a connected componenthty whose vertices correspond to edges
(v,xi),i=1,--- k. If low(xi)=preorder(v) for all i, 1<i <k, thenv is a cutpoint inG, and the
removal ofv from G separates all vertices in the subtrees rooted at fihem the rest ofs.

An st-numberingof a graphG is a numbering of the vertices ofG from s=1 tot=n,
such that every vertex other thans andt has adjacent verticasw with u<v<w. Given an
open ear decompositiah = [Po, - - - ,Pr-1] for a biconnected grapB=(V ,E) with Po=(st), it is
possible to direct each earhfrom one endpoint to the other in such a way that the eqdgeg
directed froms to t, the resulting directed graph is acyclic, and every vertex lies on a patls from
tot [MSV86]. LetGst be this graph, which we will call tret -graph of(G;D). If the open ear
decompositiorD is clear from the context then we will c@lét as simply thest-graph ofG. The
graphTst, the st-tree of G js the directed spanning tree obtained fr@sn by deleting the last
edge in each ear excepb. We can similarly construdsts and its directed spanning trée by
consideringPo to be directed from to s. We will refer toGts as thereverse directed graph of
Gst and vice versa. These graphs can be obtained in logarithmic time with C-optimal perfor-
mance using the algorithm in [MSV86].

The following two facts are well-known [Wh30, Ev79]:
1. A graph has an open ear decomposition if and only if it is biconnected.

2. A graph has ast-numbering if and only if it is biconnected.
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2.6. The Local Replacement Graph

We describe a transformation of a biconnected gaplith an open ear decomposition
D =[Po, - - - ,Pr-1] into a new graplti, called thdocal replacement grapbf (G;D) [FRT89]. In
the graphGi, each eaPi in D is converted into a patRi with Pi beingP'i with its end edges
deleted. This construction and its properties are crucial to our planarity algorithm, and the reader
is referred to [Ra93] or [FRT89] for details. The treatment here is from [Ra93].

Consider any vertex in G. Let the degree of bed (d=2). Of thed edges incident on,
two belong toPear(v). Each of the remaining—2 edges incident on is an end edge of some ear
Pj, with j>ear (v). In the local replacement gragh we will replacev by a rooted tree witd -1
vertices, with one vertex for each ear containing he root of this tree will be the copy wffor
the ear containing. The actual form of the tree is computed fréisnandTts as in the algorithm
below. The tree representing verteill be called thdocal tree of vand will be denoted byv.
Figure 4 illustrates some of the construction in Algorithm 2.1.

Algorithm 2.1: Constructing the Local Replacement Graph

Input:

A biconnected grap®=(V ,E);

an open ear decompositi@r=[Po, - - - ,Pr-1] for G, with Po=(s,t);

the st-graphGst with its spanning tre@st and thets-graphGts with its spanning tre@ts.
Output: The local replacement grag of (G;D).

integeri,j; {{These integers range in value from Ortel.}}
vertexa, dq, u,Vv,w;{{q,u, v andw may be subscripted by an integer.}}

edgea, e, f, n; {{ e andf will be subscripted by an integer.}}

rename each vertaxin G by vj, whereear(v)=j;
{{We will refer to the vertexvear(v) interchangeably as eitheror vear(v).}}
1. pfor each outgoing ed? at each vertex in Gst with i >ear (v) -
let the edge i incident onv bee and let the nontree edgefn befi;
detach edge fromv and label the detached endpointigs
leta be a base edge of the fundamental cycle creatéd ibyTst with ear(a)#i;
{{Recall that the ternmbase edgés) was defined in Section 2.5.}}
if ear(a)<ear(v) — parent(vi) := Vear(v)
| ear(a) > ear(v) - parent(vi) := Vear(a) fi;

direct this edge fromarent(vi) to vi
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rofp;

let the undirected version of the graph obtained in step@ibthe directed version Bst
and its associated spanning treeTaeand the reverse directed graph@e and its associ-
ated spanning tree Oe;

repeat step 1 usings and Tie and let the resulting undirected graph®eg the resulting
directed graph b&te and its associated spanning treeTtzeand the reverse directed graph
be G« and its associated spanning treelae

{{In the following we process parallel ears by constructing a new dgriph
pfor each parallel ed?i - createa vertexqi rofp;
pfor each nontree edgein T2 -

if the base edges of the fundamental cycle bélong to ear®i andPj, wherePi and
Pj are parallel to each other createan edge between andq; fi

rofp;
call the resulting grapH ;

find a spanning tree in each connected componettarid root it at the vertex correspond-
ing to the minimum numbered ear in the connected component;

pfor each vertexj in H that is not a root of a spanning tree
let Pi be directed from endpoint to endpointw in Gst; let gj be the parent ofj in
the spanning tree i ;
replace the parent of in T« by uj and the parent ofi in Ttg by wj

rofp;

denote the undirected version of the graph formed in stepG8,lilie directed graph from
tot by G'st and its associated spanning treeThy and the reverse directed graph ®ys
and its associated spanning tre€lhy; call Gi thelocal replacement grapbf G;

call the underlying undirected tree constructed in steps 1, 2 and 3 from eachvviertéx
the local tree T; call vear(v) the root of Tv, and consideflv to be an out-tree rooted at
vear(v). Call the part offTv constructed by assigning parentsTiathe o-tree OT of Tv and
the part ofTv constructed by assigning parentdiathei-tree I1Tv of Tv;

{{in G, OTv is an out-tree rooted &ktar(v) andITv is an in-tree rooted atar(v) and vice-
versa inGta.}}

denote byP'i the earPi, together with the edge connecting each endpoiRt ¢b its parent
in its local tree irnGi ;

{{Note that the pattP'i excluding its two end edgesks.}}

denote the first vertex dPii when directed as i@'st by L (P'i), the left endpoint of P, and
the last vertex oR'i when directed as i6&'st by R(P'i), the right endpoint of P.
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end.

Figure 4 gives an example of the construction of the local replacement graph. For the rest
of the paper we assume that the verticeGIinG'st andT'st are humbered with thest-number-
ing.

We will need the following lemma about the patis that are constructed in the local
replacement grap@i. The proof of this lemma is immediateGf contains no parallel ears. The
proof for the case whe@i contains parallel ears is not difficult and is left as an exercise.

Lemma 2.1 There exists a permutatiomr of the indices 0 throughr-1 such that
[P 0), - - - ,P' nr-1)] is an open ear decomposition 1Gr.

figure 4
Constructing the local replacement graph [Ra93]
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2.7. Triconnected Components

In this section we give some definitions on ttieonnected componentd§ a biconnected
graph (see, e.g., [Tu66, HT73, FRT89, Ra93]).

A pair of verticesa,b in a multigraphG=(V ,E) is a separating pair if and only if there are
two nontrivial bridges, or at least three bridges, one of which is nontriviag ,bf{n G. If G
has no separating pairs thénis triconnected. The pa#m,b is anontrivial separating pair if
there are two nontrivial bridges afb in G.

Let {a,b} be a separating pair for a biconnected multigr&#(V ,E). For any bridgeX of
{a,b}, let X be the induced subgraph @fon (V-V(X))[] {a,b}. Let B be a bridge oG such
that [E(B)|=2, |E(B)|=2 and eitheB or B is biconnected. We can applyTatte split ga,b,i)
to G by formingG1 andGz2 from G, whereG1is B[ ]{(a,b,i)} and G2is B[ ]{(a,b,i)}. The
graphsG1 and Gz are calledsplit graphs of G with respect tola. The Tutte componentsf G
are obtained by successively applying a Tutte split to split graphs until no Tutte split is possible.
Every Tutte component is one of three types: i) a triconnected simple graph; ii) a simple cycle (a
polygon);or iii) a pair of vertices with at least three edges between théon@); the Tutte com-
ponents of a biconnected multigra@hare the uniquéiconnected components G.

If a pair of vertices of5 appear in a triconnected componentGothen by Menger's theo-
rem there must be 3 vertex-disjoint path&irbetweerx andy. Conversely if there are 3 vertex-
disjoint paths betweex andy then there must be a triconnected componef dfat contains a
copy of bothx andy.

Let G=(V,E) be a biconnected graph with an open ear decompos$itig®o, - - - ,Pr-1]. A
separating paia,b in G is apair separating P if a andb are contained i and the vertices
betweena andb on Pi are separated from the vertices on ears numbered lower.thacandi-
date listfor Pi is a sequence of vertices Bnin increasing order of their distance from one end-
point of P'i such that each pair of vertices on the list is either adjacelft ona pair separating
Pi. Itis known that every separating pair in a gr&lhvith an open ear decompositibnis con-
tained in a candidate list for some eabifMR92, Ra93].

Let a,b be a pair separatingi. Let B1, - - - ,Bk be the bridges dPi with no attachments
outside the intervald],b] on Pi, and letTi (a,b)=({xiBj)[ ]Pi (a,b), wherePi (a,b) is the portion
of Pi between and including verticesandb. Then theear split ga,b,i ) consists of forming the
upper split graph G=Ti(a,b)[]{(a,b,i)} and thelower split graph G=Ti(a,b)[]{(a,b,i)}.

An ear splite(a,b i) is a Tutte split if eitheGG1—-{(a,b,i )} or G2—{(a,b,i)} is biconnected.

Let S be a nontrivial candidate list for eBr. Two verticesu,v in S are anadjacent sepa-
rating pair for R if u andv are not adjacent to each othernandS contains no vertex in the
interval (u,v) onPi. Two verticesa,b in S are anextremal separating pair foriHf | S|=3 and
S contains no vertex in the interval outsigelf]. An ear split on an adjacent or extremal sepa-
rating pair is a Tutte split, and the Tutte components afe obtained by performing an ear split
on each adjacent and extremal separating pair [MR92, Ra93].
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With each ear spli¢(a,b,i) corresponding to an adjacent or extremal pair separatinge
can associate a unique Tutte componert &fs follows [FRT89, Ra93]. Let(a,b,i) be such a
split. Then by definitioi (a,b)[ ]{(a,b,i)} is the upper split graph associated with the ear split
e(a,b,i). The triconnected component of the ear splifad,i), denoted byTC(a,b,i), is
Ti(a,b)[J{(a,b,i)} with the following modifications: Call a pat,d separating an ed?j in
Ti (a,b) amaximal pair for T(a,b) if there is nce,f in Ti(a,b) such thae,f separates some ear
Pk in Ti(a,b) andc andd are inTk(e,f ). InTi(a,b)[]{(a,b,i)} replaceT;(c,d) together with
all two-attachment bridges with attachmentx atndd by the edged.d,j), for each maximal
pairc,d of Ti(a,b), to obtainTC(a,b,i). We denote byC(0,0,0), the unique triconnected com-
ponent that contains ed@e.

3. Overview of the Planarity Algorithm

Let T be a spanning tree of a biconnected gr@pihich is being tested for planarity. Our
parallel algorithm uses the following strategy. For each fundamental cycle, we verify, in parallel,
if each of its bridges can be placed either inside or outside the cycle in such a way that no two
bridges on the same side interlace. If this property does not hold for some fundamental cycle,
thenG is clearly nonplanar. If this property does hold for every fundamental cycle, then we can
try to combine these individual embeddings into a global embedding for report thatG is
not planar.

The almveapproach is highly inefficient since an edge may appear in bridges for several dif-
ferent fundamental cycles, and hence, the size of the total computation could be very large. The
approach in this paper is to work with the ears in an open ear decomposition in the local replace-
ment graphGi of the input graph. Each ear is part of a fundamental cycle of the spanning tree
T'st, and contains the unique nontree edge in that cycle. For each bridge of a fundamental cycle
C, we compute only the attachments of the bridge that lie on the vertices of the ear that contains
the nontree edge i@.

We now give an overview of our algorithm. Our planarity algorithm finds an open ear
decompositiorD =[Po, - - - ,Pr-1] in the input graptG and derives from it the local replacement
graphGi together with its associated paffis, i =0, - - - ,r =1 and itsst-numbering directed graph
G'st and spanning tre&'st. For each patl¥'i, let C'i be the fundamental cycle formed with
respect tol'st by the unique nontree edgeRh. The direction ofC'i will be the direction of'i
in G'st.

For eachi, our algorithm finds certain approximations to the bridge€'ofwith attach-
ments onP'i, called thebunchesf P'i, together with an additional attachment calleabakfor
each bunch. The algorithm constructs a star gdapbr eachi, that (roughly speaking) consists
of P'i together with its bunches, and then foi@is, the interlacing parity graph (defined in Sec-
tion 2.4) ofJi. The algorithm then links these grapBsi with some additional edges that are
derived from the hooks of anchor bunches. This givescthstraint graph G which we
describe in Section 5. The vertices of gr&hare the union of the vertices in te,, together
with some dummy vertices. We show in Section 6 that the ggaphas the property that @i is
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planar, then any legal coloring of the verticesGof with {0,1} gives a planar embedding &

with edge §,t) on the outer face. This planar embedding is obtained by embedding Bunch
insideC'i if and only if the star vertex iGi, corresponding t® is colored 0 inG*. To show

this, we use some properties of triconnected componel@s. ¢fi Section 7 we give a method to
obtain the cyclic order of edges embedded in§lde and of edges embedded outside, for

eachi. Finally we show that a planar embeddingztan be obtained from a planar embedding

of GI by collapsing the vertices in each local tree. All steps in our algorithm can be implemented
in logarithmic time with A-optimal performance.

4. The Bunches and Their Hooks

Let G be a biconnected graph with an open ear decompositigRo,P1, - - - ,Pr-1] and let
Gi, G'st, T'st, andP'i, =0, - - ,r =1 be as described in Section 2.6. Let the vertice&iobe
numbered with theist-numbering.

Let C'i be the fundamental cycle formed @G by adding toT'st the unique nontree edge
(x,y) in the pathP'i and letl be the Ica ok andy. Note that, by thet-numbering property, is
the lowest-numbered vertex @ii andR(P'i) is the highest-numbered vertex@i. We classify
the bridges ofC'i (defined in Section 2.2) into four types as follows depending on the location of
their attachment vertices @i (see figure 5):

A nonanchor bridge of Cis a bridge ofC'i, all of whose attachments are internal verticeR'iof

An anchor bridge of G is a bridge ofC'i that has an attachment on an internal vertaéXioand
either a) an attachment o@'i —P'i or b) a nonattachment vertex with v <| or
v >R(P').

A spanning bridgef C'i is a bridge ofC'i that has an attachment on an internal verteXigfan
attachment ol (P'i) or R(P'i), has no attachment @i — P'i, and for each nonattachment
vertexv hasL (P'i) <v <R (P").

anirrelevant bridgeof C'i is a bridge ofC'i none of whose attachments is on an internal vertex of
P'i. Our algorithm will not look at irrelevant bridges.

We conclude this section with the following claim whose proof makes use of material from
[Ra93]. The results in [Ra93] are for bridgesRf, not C'i, hence they need to be adapted
appropriately to obtain the results we need here.

Claim 4.1 Every spanning bridge &@'i has attachments on bdil{P'i) andR (P'i).

ProofLet B be a bridge o€'i that has an attachment bi§P'i) as well as on an internal vertex of
P'i. By definition,B is either a spanning bridge or an anchor bridge. We will now show tBat if
is a spanning bridge théhas an attachment &t(P'i ).

Letx=L(P'i). Lete =(u,x) be an attachment edge Bfon x, and lete belong toP'j. If
P'j is parallel toP'i thenB has an attachment d&X(P'i). Therefore, in this case, B is a span-
ning bridge it has attachments on bbtff*'i) andR (P'i ).
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figure 5
lllustrating the types of bridges &fi:
B1is a nonanchor bridge &fi;
B2is a spanning bridge @'i ;
B3 andBa4 are anchor bridges @i .

We now show that iP'i andP'j are not parallel theB is an anchor bridge. Létbe the Ica
of the nontree edge Fi. By the construction of the local replacement gr&phR(P'j) is not a
descendant iff'st of the vertexz, which is the vertex immediately succeedi@n P'i (since
otherwise,L (P'j) would be a child oL (P'i)). Now consider the nontree edge(r ,R(P'j)) in
P'j. One of the following 3 cases applies:

1) R(P'j) is incident on a vertex on the tree path frbto R(P'i), excluding R(P'i); in this case
B is an anchor bridge @'i sinceR(P'j) is an attachment o@'i —P'i.

2) R(P'j) is incident on a vertea that has a path i@l tot (and hence tg) that avoids all ver-
tices inC'i; B, then, is an anchor bridge Gfi since it contains a vertex numbered smaller than
X.

3) Neither case 1 nor 2 applies. In this d@gemust contain the tree edge from the parent taf
X, and no ancestor &t (P'j), with the possible exception of the Icarofs incident on a vertex in
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C'i; B, then, is an anchor bridge ©fi since it either contains (if the Ica ofn is a proper ances-
tor of | ) or the Ica o is an attachment o@'i — P'i (if the Ica ofn is a descendant 6j.

We have shown that any bridgeof C'i with an attachment ob(P'i) and an internal ver-
tex of P'i is either an anchor bridge Gfi or has an attachment &(P'i) (or both). This estab-
lishes that a spanning bridge with an attachment @) must have an attachment &{P'i).
The analysis for the case when the spanning bridge has an attachrRéRti pis similar.[]

4.1. The Bunch Collection

A set of edges incident onP'i, which form a subset of the attachment edges of a bridge of
C'i, is called asegmentof P'i. We further classify a segment asnananchor segmentan
anchor segmenor aspanning segmentepending on whether the bridgeG@f that containss
is a honanchor bridge, an anchor bridge or a spanning bridge respectively.

A collection of segments d¢¥'i is called ecluster of P'i if for any segment in the collection,
there is a path it between any pair of edges in the segment that avoids all verti€asand in
any of the other segments in the collection.

A bunch collectionB of P'i is a cluster oP'i that contains all attachments on internal ver-
tices ofP'i and some of the attachmentslofiP'i ), and which satisfies the following:

If B is a nonanchor segment in the cluster, tBecontains all edges in a nonanchor bridge
of C'i; and if B is a spanning segment, th&ncontains all attachments of a spanning
bridge ofC'i on the internal vertices &fi together with at least one attachmentd®'i).

We call each segment in a bunch collectidouach.

In this section we present an algorithm to find a bunch collection forRéacln the next
section, we find an edge for each bunch, calledatk, which will allow us to determine if the
bunch is nonanchor, anchor or spanning. The hooks will also be used to determine a global planar
embedding foiG if G is planar. We will have more to say about hooks in the next section. We
will also deal with other types of segments and clusters in section 7.

In steps 1 - 3 of Algorithm 4.1 below we compute a cluster for Bacas follows: we first
form G'"'st, a graph obtained froi@'st by collapsing the internal vertices Bf (this computation
is similar to the one in [FRT89] and [Ra93] for the construction of the ‘ear graphs’ Bf jhén
G'st, all attachments on the internal verticePofbecome incident on a single vertax where
pi represents the vertex obtained by collapsing the internal vertide's.dh steps 2 and 3 of
Algorithm 4.1 we applyfunction auxgraphs(given in Section 2.5) té&''st and its associated
spanning tred"'st. In the auxiliary graphdi constructed fopi by function auxgraphswe find
the connected componentshi — {f }, where f represents the edge Bfi incident onR(FP'i).
We assign the edges @Gist corresponding to the vertices in each of these connected components
to a segment d?'i. The edges in each segment are clearly part of a single bridgjie sifice by
construction there is a path @i'st (and hence ii5'st) between them that avoids the vertices and
edges corresponding @i . In steps 4 to 6 of Algorithm 4.1 we add attachments to the left end-
point of P'i to those clusters that can reach such an attachment by a path a¥@idihgt



-19-

contains a single nontree edge. It is not difficult to see that the collection of segments obtained
for eachP'i at the end of step 3 is a cluster in which each nonanchor segment contains exactly the
attachment edges of a nonanchor bridg€'of and that the collection at the end of step 6 is a
bunch collection.

Figure 6 illustrates the construction in Algorithm 4.1.

figure 6
lllustrating the construction in Algorithm 4.1.
Steps 1-4 are illustrated above. In step 5, label 1 is added to segnaemt label 2 is added &
andSz. In step 6, the union dd1 andSz is formed (since label 2 was added to both sets) result-
ing in a single bunch fd?'i : { e1,e3,e4,e5,e6}.

Algorithm 4.1: Forming the Bunch Collection

Input:

Biconnected grapts =(V ,E);

an open ear decompositi@r=[Po, - - - ,Pr-1] for G, with Po=(s,t);

the local replacement gragh of (G;D), together with the associat&lst,T'st and the paths
Pi,i=0,---,r-1.
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Output: A bunch collection for eacR'i.

integeri, j, k, m; {{These integers range in value from Ortel.}}

vertexa, b,l,p,u,v,w,wf,wf,X,VY, z; {{The vertexp will be subscripted by an inte-
ger.}}

edgee, f ,e1, ez f';

setX, X' ,Di of edges

1. inG'st collapse the internal vertices of each pRlihto form vertexpi; let vertext bepo;

call the resulting grapl''st, and the resulting spanning tree derived ffBea asT''st; call
the resulting underlying undirected graph;

{{Note that G'"'st need not be acyclic.}}
2. H :=auxgraphgG'" ,T"'st); {{function auxgraphsis given in Section 2.5.}}
letH ={Hi |i=1,---,r-1};
{{ Hi is the auxiliary graph corresponding to ventexn G" }};
3. pfor eachi -
let f be the edge i'i incident onR(P'i) and letwr be the vertex representirigin
Hi;
compute the connected componentdHof- {wf } and make each set of edges@f
corresponding to the vertices in each connected component a segient of
rofp;

{{Steps 4 through 6 consider attachmentsLdi®'i) for eachi. Step 4 forms a cluster of

these attachments for eactby forming a segment (call it group) of each set of attach-

ments orL (P'i) that can reach one another through tree edges and nontree edges that have
L (P'i) as their Ica; step 5 adds the label of each such group to any segment computed in
step 3 that can reach one of the edges in the group by a path of tree edges and one nontree
edge with Icd. (P'i). Finally, in step 6 we union all segments computed in step 3 that added

an edge from the same group in step 5.

Steps 4-6 are specified below in a manner that makes the construction clear. In lemma 4.2
we describe a slightly different implementation of these steps that allows for an efficient
parallel algorithm.}}

4, pfor eachi -
letear(L (P'i)) bej;

let f' be the edge iR'i incident onL (P'i) and letws' be the vertex representirig in
Hi;
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compute the connected componentsipf- {wi'};

let Dk,k=1,- - -,| be the sets of edges @ corresponding to the vertices in the con-
nected components bfj — {ws'}

rofp;

pfor each nontree edge=(u,v) in G'st whose fundamental cycle contains both base edges

—

{{Recall that the ternmbase edgés) was defined in Section 2.5.}}
{{In the following we compute attachments to(P'i), the left endpoint oP'i for each
Pi.}}

letl=lca(u,v);

let ei=(I ,a) ande2=(I ,b) be the two base edges of the fundamental cycle created by
(u,v), with a an ancestor ai andb an ancestor of ; leta=pk andb=pj;

a. Iif edgeezisincident oL (Pk)in Gl -

if u=a — assign the label of the sBf (computed in step 4 fdP'k) that con-
tainsez to X whereX is the segment d¥k that containg

luza — assign the label of the 98t (computed in step 4 fd?'k) that contains
e2to X', whereX' is the segment &'k that contains edge(y), wherey is the
unique child ofa which is an ancestor of

fi
fi;
b. if edgeeiisincidentorL (P'j)in Gl -
{{This is symmetric to step a.}}

assign the label of the sBf (computed in step 4 fd?'j) that contain®1 to X,
whereX is the segment ¢¥; that containg

|v#b - assign the label of the sBfj (computed in step 4 fd?'j) that con-
tainse1to X', whereX' is the segment d?'; that contains edgé(z), wherez
is the unique child db which is an ancestor of

fi
fi
rofp;

for each edge s®j whose label was added to a segment in stepunion all of the seg-
ments ofP'i that contain the label dj and add (any) one edgey to the resulting set
rof

{{Each set formed in step 6 is a bunchRf, and the collection of these sets is a bunch col-
lection forP'i. Some edges @bl can appear in the bunches of several diffeRsnbecause
of steps 5 and 6.
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We will denote a bunch @i by (B,i) whereB denotes the set of edges in the bunch; if the
indexi is clear from the context we will I& denote the bunch.}}

end.

The following observation is a simple consequence of the construction of the local replace-
ment graph.

Observation 4.1In the graphG''st constructed in step 1 of Algorithm 4.1,

a) Every outgoing edge from is a tree edge iii"'st except for the unique outgoing edge that
lies onP'i.

b) Every incoming edge ta is a nontree edge except for the unique incoming edge that lies
onP'i.
The next lemma shows that Algorithm 4.1 constructs a cluster folR&ach

Lemma 4.1The collection of segments constructed for gactiby Algorithm 4.1 is a cluster.

Proof It is straightforward to see that the edges in each segmd?®it ab computed in step 3

belong to a single bridge @'i and that these segments are disjoint. It is also straightforward to
see that the edges in eachBetconstructed in step 4 belong to a single bridgE'igfand if the

label of seDj is added to a segment in step 5, then all edgBs imelong to the same bridge of

P'i as the segment. The sets of edges that are unioned in step 6 are all clearly part of the same
bridge ofC'i. Finally if e andf are two edges in a segmefitof P'i constructed by Algorithm

4.1 there is a path betwerrandy consisting of descendant tree edges of edgisand of non-

tree edges that caus¥dto be formed in steps 2, 4, and 5, and this path avoids all verti€s in

and other segments Bfi .[]

As with segments we will refer to a bund®,i() as anonanchor bunchananchor bunctor
a spanning bunchdepending on whether the bridge @f that contains the edges B is a
nonanchor bridge, an anchor bridge or a spanning bridGé oéspectively. At this point we are
not in a position to ascertain if a given bunch is nonanchor, anchor or spanning, but we will be
able to do so after Algorithm 4.2 in the next section. However, the following two observations
give us some insight into this. Both of them can be proved using Observation 4.1, which allows us
to conclude Observation 4.2 immediately (by gtenumbering property) and Observation 4.3
also follows by considering the configuration of the attachments(Bh) of a spanning bridge
of C'i.
Observation 4.2Let (B,i ) be a nonanchor bunch 6fi as computed in Algorithm 4.1. Thé&nis
the set of all attachment edges of a nonanchor brid@é .of

Proof Among the outgoing edges fropn, any paira,b that both belong to a nonanchor bridge of
C'i must have a path connecting them that av@idsand that contains nontree edges withgdca
or larger. But such a group is precisely what is identified in step 3 of Algorithm 4.1.

The only incoming edges  that can be part of a nonanchor bridg€ofare those whose
other endpoint is a descendantpofin T"'st. But these edges are again identified to be in their
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corresponding group in step 3.[]

Observation 4.3Let (X,i) be a spanning bunch @i as computed in Algorithm 4.1. Théhhas

all attachments of a spanning bunchpobn internal vertices oP'i and at least one attachment

onL (P').

Proof The general structure of the attachments of a spanning bridGe afe as follows: Its
attachments on internal verticesRf can be partitioned into a cluster of segments, each of which

is identified in step 3 of Algorithm 4.1 (as described in the proof of Observation 4.2). The attach-
ments orL (P'i) can again be partitioned into a cluster of segments, each of which is identified in
step 4 of Algorithm 4.1. There is connection between each segment in the latter cluster and one or
more segments in the former cluster by means of nontree edges witfPIch this is identified

in step 5 of Algorithm 4.1. In step 6 segments in the cluster identified in step 3 that are connected
to one another through step 5 are unioned together.

The one remaining set of attachments is the set incideR{®n). But by Observation 4.1
all of these attachments must be nontree edges, hence they do not add any new attachment to the
spanning bridge other than themselves. Hence, a spanning ¥wuistructed by Algorithm 4.1
will contain all attachments of a spanning bridge on internal verticd®i odind at least one
attachment ol (P'i). []

Lemma 4.2Algorithm 4.1 constructs a bunch collection for e®hand can be implemented to
run in logarithmic time with A-optimal performance.

Proof Lemma 4.1 and Observations 4.2 and 4.3 show that Algorithm 4.1 constructs a bunch col-
lection for eaclP'i. To obtain the performance bound we first show the total size of all of the seg-
ments computed by the algorithmQgn). Edges are added to the segments in step 3 and in step
6 of the algorithm. Each edge Gi is added to at most two segments in step 3 (once for each
endpoint) so the total number @(n). In step 6, at most two edges are added to segments for
each nontree edge, hence the total number is &yain

We now analyze the performance of the algorithm. The major computation before step 4 is
in finding connected components which can be performed in logarithmic time with A-optimal
performance, and in finding Icas of pairs of vertices in a rooted tree which can be performed opti-
mally in logarithmic time using the algorithm of [SV88].

Step 4 as specified in the algorithm is inefficient since we would need to compute connected
components in several different copiesHyf with one node removed. Instead we compute the
blocktree T for each connected component in the colleciiosomputed in step 2. (THaock-
tree of a connected grapB is a tree with a vertex for each block and each cutpoi6t,iand an
edge between each cutpoint and the blocks that contain it.) Then each connected component in
Hj—{ws '} corresponds to an interval, starting and ending withof an Euler tour ofl" . Hence
with some simple preprocessing each vertex can determine its connected compHnefivin}
and consequently, the label of its Betas needed in step 5. This can be performed in logarithmic
time with A-optimal performance.
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For the casai#a in step 5a and the caseb in step 4b we need the second edge on the
path from the Ica of a nontree edge to one of its endpoints; this can be computed optimally in log-
arithmic time by a simple extension of the Ica algorithm of [SV88].

Step 6 requires several unions to be performed in parallel. For this, we create g, fri¥de (
for eachDj whose label is added to segmeénin step 5. We then sort these triples using the
algorithm in [Ha87]. We form an auxiliary graph with a vertex for each clxstermed in step 3
for eachP'i and we connect up all such vertices with identical second entry in the triple. Each
connected component in the resulting graph together with an edge iDgachresponding to
the second entries in their triples gives a set to be computed in step 6. This can be computed in
logarithmic time with A-optimal performance.[]

At this point we have a bunch collection for edhin which each bunch either has all
attachments on internal vertices Bf or has an attachment an(P'i). In the former case the
bunch is either a nonanchor or an anchor bunch (by Observation 4.3), and in the latter case the
bunch is either a spanning or an anchor bunch. Our planarity algorithm will find one additional
attachment for each anchor bunch. This is needed so that we can combine the embedding we
obtain for the bunches &fi with the embeddings for oth&;j in a consistent manner @ is
planar). The next section gives an efficient algorithm for finding this additional attachment edge,
which we call &hook of the bunch.

4.2. The Hooks of Bunches

In this section we identify an additional edge for each bunch computed in Algorithm 4.1
called itshook. The hook of a bunch d?'i is an attachment edge of the bridgeCaf that con-
tains the bunch. The hook of a nonanchor bunch or a spanning bunch is an edge incident on a
vertex inP'i, and will not be used in later computation. The key computation here is for the hook
of each anchor bunch. The hook of an anchor bunch is an attachn@nt-deli of the bridge of
C'i that contains the edges in the anchor bunch, -- with the possible exception that the hook may
be the incoming tree edge ltqP'i) if L (P'i) is the Ica of the nontree edgeRh. In either case
the hook of an anchor bunch is an edge not contained in the bunch. We will use the hooks of
anchor bunches in the next section to relate the embedding for the buné&iemdhe embed-
dings for the bunches of the oth), and hence obtain a consistent planar embedding for the
entire graplG.

We first need some definitions. Recall that the vertice$'sofare numbered with their
st-numbering. For each edge(parent(v), v) in T'st, we define the following:

out(e) is the set of nontree edges that are either incoming to or outgoing from a descerdant of
low (e) = nmaitie)lca(n); note thatlow(e) is the lowest numbered vertex in any fundamental
cycle that contains.

Let S ={n |nOout(e) andlca(n)#low(e)}. Then we defindow?2(e) to be ming, min Ica(n));

note thatow 2(e) is the second smallest vertex that is the Ica of an edgat{e) if such a vertex
smaller tharv exists.
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For a nontree edge=(x,y) in G, we defineout(n) ={n}, low(n) =lca(n) in T'st andlow2(n)
to be maxx.,y).

Let X be a set of edges & . Then, we defineut(X), low (X) andlow2(X) as follows:
out(X) = {Ckout(e); and

low (X) = &1ir low (e).

Letl 1(X) = eox andimi@)ziow(x)(low(e)), andl 2(X) = atir low2(e).

Then,low2(X) = min(l 1(X), | 2(X)).

Note thatow 2(X) is the second smallest vertex that is the Ica of an edget({iX) if such a ver-
tex exists.

In Algorithm 4.2 presented below, we complde/(B) andlow2(B) for each bunchB of
eachP'i, and we use this computation to find an additional attachme@ti poalled thehook,
for each bunch. The value Ww2(B) is used to ensure that the hookBfis not incident on
R(P'i) if B is an anchor bunch. This enables us to verify Bias an anchor bunch and not a
spanning bunch, and it also enables us to relate the embeddngidi respect taC'i with the
embedding of its hook with respect to some other ear, as described in Section 5.

As in Algorithm 4.1, we specify Algorithm 4.2 in a manner easy to understand and prove
correct. Step 10 of the algorithm, as specified, is not efficiently implementable, but in Lemma 4.7
we give an alternate implementation for the step that makes it efficient.

Figure 7 illustrates the construction in Algorithm 4.2.

Algorithm 4.2: Finding Hooks of the Bunches
Input:

The local replacement gra@h of (G;D);

the bunches of eadi;

Output: A hook for each bunch.

integeri, j; {{ i andj range from O to -1.}}
edgef , h; vertexu, v, w, X;

setD, X of edgessetU of vertices

bunch (B,i);

edge functionhook &etX of edges inGl, integeri);
vertex!|,p,q,u, v, X,V, z;

edged, e, f, m, n;
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figure 7
lllustrating the construction in Algorithm 4.2.

| :=lIca(d) in T'st, whered is the nontree edge 6fi;
if low(X) <l - return (parent(l),l) fi;
{{In steps 2-4 we identify an edge out(X) which we will use in steps 5-8 to return a
hook forX.}
n := an edge iut(X) with Ica(n) = low (X);
if low(X)=l and L(Pi)>low2(X) - n:= an edge in out(X) with
Ica(n) =low2(X)

| low(X) =1 and L (P'i) <low2(X) and there is an edgm in out(X) not incident
onR(P'i) withlca(m) =1 - n:=m
fi

letn=(x,y) and lete=(u,v) be an edge X that lies in the fundamental cycle of
with u contained irP'i ; let x be a descendant vf(and hence is not a descendant of

v); let f be a base edge (defined in Section 2.5) of the fundamental cycheitf f
not lying on the path froma to z, wherez is the vertex o?'i adjacent taR(P'i);
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6. if f is not contained i€'i — return f
7. ly >R(P'i) - return (parent(l),l)
8. ly <R(Pi) -
p :=lca(y,R(P'i));
a. ifp=y - returnn
[pzy -
let g be the unique child qf in T'st that is an ancestor gf,
return (p,q)
fi
fi

end hook;

{{Main program}}

pfor each bunchR,i)in G -

9. if all attachments d8 are on internal vertices &i — h :=hook(B,i)
10 |B has an attachment ar(P'i) -

X :={0Dj, whereJ is the set of labels that were assignedtin step 6 of
Algorithm 4.1;

h :=hook(B[]X,i)
fi
rofp

end.

Lemma 4.3Let X be a set of edges not containedCin but with each edge iX incident
on a vertex irP'i. Functionhook(X i) returns an edgé in a bridge ofC'i that contains an
edge inX.

Proof If edge f is returned in step 1 of functiohook let e be an edge X with
low(e) =low(X) and letn be an edge iout(e) with Ica(n) =low(X). Sincelca(n)<I,
Ica(n) must be an ancestor parent(l). Then the (reverse) path @& consisting of the
path fromparent(l) to Ica(n) followed by the path frontca(n) to n followed by the path
fromn to e in T'st shows thaf is an attachment edge of the bridgeCofthat containg.

If f is not returned in step 1, consider the nontree edge,y) in step 5 of function
hook. The edgen is inout(X) andlca(n) =I1. Hence the edgé as computed in step 5 is
incident on a vertex il€'i. If this edgef is returned in step 6 then the path frénto n,
followed by the path from to e in T'st shows thaf is in the same bridge &'i as edge,
which is inX.
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If edgef is not returned in steps 1 or 6 thens the base edge @i that lies on the
path froms to R(P'i). If edge parent(l),l) is returned in step 7 then the path from edge
to n in T'st, followed by the path frony to t that contains vertices in increasing order of
their st-numbering, followed by the path fromto parent(l) is a path betweea and edge
(parent(l),l) that avoids all vertices i6'i . Further, sincé is the Ica of the nontree edge in
C'i the edgegarent(l),l) is incident on a vertex i€'i .

If edgen is returned in step a, thenis an attachment on a vertex@ on the path
from| to R(P'i). Finally if edge p,q) is returned in step b, thenis a vertex orC'i on the
path froml to R(P'i) and hence edge(q) is incident on a vertex i€'i. In this case the
path from edge to x in T'st, followed by edgexX,y), followed by the tree path from to
edge p,q) avoids all vertices il€'i .[]

Corollary 1 to Lemma 4.3Let (B,i) be a bunch oP'i and leth be its hook as calculated
in Algorithm 4.2. Therh is an attachment edge of the bridgeCafthat contains the edges
inB.

Corollary 2 to Lemma 4.3Let (B,i) be a nonanchor bunch with hobk Thenh is inci-
dent on an internal vertex &fi.

The following two lemmas deal with the hooks of anchor and spanning bunches.

Lemma 4.4Let (B,i) be an anchor bunch &fi with hookh. Then eitheh is incident on a
vertex inC'i —P'i orh = (parent(l),l), wherel is the Ica of the nontree edgeRi.

Proof We first note that if the edge used in step 5 is chosen in step 3 or step 4, rhisn
not incident orR(P'i) and neither is the hook returned in step 6, 7, a or b.

The proof is divided into two cases depending on whether oB ris an edge inci-
dent onL (P'i).
CASE 1:B contains no edge incident &r{P'i). SinceB is part of an anchor bridge @i
there must be a paphfrom an edge ifB to either an attachment edge®©n - P'i or a ver-
tex v with v<I| or v>R(P'i), with pathp avoiding all vertices irC'i. Further we can find
such a pathp with exactly one nontree edge. The edgen is in out(B) and
Ica(n) <L (P'i); further,n is not incident orR(P'i). Hence functiorhook(B ,i ) will return
either an edge incident @&l — P'i or the edgeparent(l),l).

CASE 2:B contains an edge incident ar{P'i). In this case the pafth of CASE 1 may
contain several nontree edges with IcéP'i) before reaching an attachment edge on
C'i —P'i or a vertexv not having a value betwe¢randR(P'i). But all of the base edges
of the fundamental cycles of these nontree edges will be in Bpmél as computed in
step 10. Hence all of these nontree edges are incluaad(®) and hence the argument of
CASE 1 applies witlB replaced byB [ ]X.[]

Lemma 4.5Let (B,i) be a spanning bunch &fi with hookh. Thenh is incident orL (P'i)
orR(P'i).
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Proof By Observation 4.8 contains an edge incident onL (P'i). Lete be contained in
P'j. By the construction of the local replacement grap{F’'j) is not incident on a descen-
dant of an internal vertex &fi. HenceB would be part of an anchor bridge@f unless
R(P'j) =R(P'i). Henceout(B) contains a nontree edge incident®(P'i). The Ica of this
edge equaltow (B) since iflow(B) is smaller therB would be an anchor bridge. Hence
either an edge incident @(P'i) is returned in step a on function catiok(B [ ]X,i) or an
edge incident oo (P'i) is returned in step 6 on function calbok(B [ ]X,i). (this could
happen ifi =L (P'i)).[]

The following lemma gives bounds on the parallel complexity of Algorithm 4.2.

Lemma 4.7 Algorithm 4.2 can be implemented to run in logarithmic time with A-optimal
performance.

Proof Thelow andlow 2 values for all edges can be computed optimally in logarithmic time
using the Euler tour technique [TV85]. We can also compute with the same bounds a collec-
tion Z (e) of two or three edges iout(e) with Ica equal tdow (e) and such that for any ver-

texv in GI one of these edges is not incidentwl(if such a collection of edges exists in
out(e)). This computation allows us to find in constant time, an edgaitife), not inci-

dent onR(P'i), and with Ica equal ttow(e), as needed in step 4 of function hook. Once
these values are known for $ét all steps of any single call to functitiook(X,i) can be
computed in constant time with one processor. Finally the total size of all of the sets in the
function call in step 9 of the main program is linear in the siz& @ind hence this step can

be performed optimally in logarithmic time using the preprocessing described above.

As in the analysis of the performance of Algorithm 4.1, step 10 in Algorithm 4.2 will
not be efficient if implemented as described in the main program. Instead we will implement
step 10 by preprocessing as in the proof of Lemma 4.2 by constructing the blocktrees for the
connected components in the collecttérn(computed in step 2 of Algorithm 4.1). We will
computelow, low2 andZ values within these blocks. In our parallel implementation of
Algorithm 4.2 we will pass only thiew, low2 andZ values to functiorhook rather than
the entire set of edges in the component. This results in a parallel algorithm that runs in log-
arithmic time with A-optimal performance.[]

4.3. The Bunch Graphs

Let Qi be the pathP'i together with an edge froin(P'i) to a new vertexd (P'i). In
the following we define for each pa#i in Gi, a star graphli (Qi), called thébunch graph
of Pi. We create a ste for each bunclB of P'i by creating a new vertexs and adding
attachment edges as follows: we replace each edggif B with y not onP'i by the edge
(x,vB). If B is an anchor bunch we include an attachment ddg@'i(),v8) to represent the
hook. IfB is a spanning bunch we include an attachment dd@i(,ve). The center of
starSs isvB and each edge 8 corresponds to an attachment edgB @h a vertex irC'i.

The bunch graph JQi) is the star graph consisting of the p&th together with the
starSs for each bunciB of P'i.



-30 -

In the next section we will use the interlacing parity graph (defined in Section 2.4) of
eachJi (Qi). We will denote this interlacing parity graph 8y, . Recall that the grap@i
contains vertices for certain chords derived from the stals(@) as well as a vertex for
each star ofi (Qi). We will refer to the latter vertices hsinch verticeand we will denote
the bunch vertex corresponding ®,) by us.i.

5. The Constraint Graph

In this section we define tlwnstraint graph G of Gi. G+ consists of two parts. One
part consists of the union over albf the interlacing parity grapli,i, of the bunch graph
Ji(Qi). Recall that ifGi 1 is not 2-colorable then the bunchesaf (and hence the bridges
of C'i) cannot be embedded in a planar manner with resp€&t snd hencé&i is not pla-
nar. If eachGi, is 2-colorable then the bunches of e®hcan be placed in a planar man-
ner with respect t€'i. However this does not necessarily imply t@atis planar since we
need to incorporate some additional constraints. These additional constraints arise from two
sources:

a) The bunches oP'i are subsets of the bridges ©fi and hence several different
bunches may belong to the same bridg€'of The 2-coloring ofGi,1 should be con-
strained so that all of these bunches get the same color and hence all edges in the cor-
responding bridge get embedded on the same side.of

b) Even ifGi, were constructed from the bridges@f rather than the bunches Bf ,
we still need to incorporate additional constraints that relate the inside and outside of
different fundamental cycles with overlapping edges.

In order to incorporate the missing constraints into the union of the interlacing parity
graphs, in the following algorithm we introduce certain edges linkingthe using some
additionaldummyvertices. These link edges are determined by the hooks of anchor bunches
that we computed in Algorithm 4.2. In Section 6 we relate 2-colorings+*oto planar
embeddings o5l and we show that any 2-coloring Gf gives a consistent planar embed-
ding for a planar grapBi .

The procedure for introducing the link edges is fairly straightforward. For each anchor
bunch, either a single link edge or a path consisting of two link edges is added in the con-
straint graph. LeB be an anchor bunch &fi and let its hookx,y) be incident on vertey
in C'i. Letear(y) bej (note thatj #i ). The algorithm given below locates the burhof
P'j that contains edgex(y). Depending on the configuration Bf , P'j and &.y), it is the
case either thd andB' must be embedded on the same sid€'ioAndC'j respectively, or
on opposite sides @'i andC'j. In the former case we place a path of two link edges con-
nectingue,i andue,j (by introducing a dummy vertex) thereby forciog,i andus ,j to
have the same color in any 2-coloring®f. In the latter case we place a single link edge
connectingue,i and us ,j, thereby forcingus, andur, to have different colors in any
2-coloring ofG+.
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Algorithm 5.1: Forming the Links of the Constraint Graph

Input:

A biconnected grap® with an open ear decompositibn=[Po, - - - ,Pr-1];
the local replacement gragh of (G ;D) together withG'st andT'st;

the bunches of ead¥i in Gi;

a hook for each anchor bunch;

the interlacing parity grapBi, for each bunch graph(Qi).

Output: The constraint grap@+ of Gi.

integeri, j, k, m; {{The range of the integers is from Ote-1.}}
vertex!|,p,q,w, X,Vy, z; edgee, f, h, n;
bunch(A,j), B,i);

procedure odd(bunch (B,i), (A,j));
vertex us,i, UA,j;
create an edge between the bunch veriex in Gi,i and the bunch vertexa,j
in Gj,
{{We will refer to this edge as thdéink path between the vertices,u and
UA,j .}}

end odd;

procedure even(bunch (B i), (A,j));
vertexv, Ui, UA j;
createa vertexv; {{We will refer to v as adummyvertex.}}
createan edge between the vertexand the bunch vertas,i in Gi,i;
createan edge between the vertexand the bunch vertax,j in Gj

{{We shall refer to the path of length 2 formed by the two newly-created edges
as thdink path between the vertices,uand w,j.}}

endeven

{{Main program}}

pfor each anchor bundb of eachP'i -
letn=(p,q) be the unique nontree edgeHn with g=R(P'i);
letlca(n)=l;

let h be the base edge 6fi that lies on the path fromto q and lete be the
other base edge @fi;
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let hook(B) bef =(x,y);
1. if f =(parent(l),l) -
letear(h)=j;
A := the set of edges in the bunchRdf that contains edge;

{{Note that e must be contained in a bunch Bfj even if L(P'j) =1
because of the presence of nontree edgérose fundamental cycle con-
tainse andh as its base edges.}}

even((B.,i), (A.j))
2. |f is an edge incident on a proper ancegtof L (P'i) andy >1 -
let w be the unique child of on the tree path frohto L (P'i); let (y,w)
be an edge iR'j;
A :=the set of edges in the bunchRf that contains edgk;
ever((B,i), (A.j))
3. |f isincident on a vertex in the path from toq —

let z be parent(y) in T'st and letw be the unique child of on the tree
path froml toq;

let (y,z) be contained irP'j, let (y,w) be contained irP'k, let (x,y) be
contained irP'm;

a ifm#zj -
A :=the set of edges in the bunchRf that contains edgk;
odd((B.i), (A.}))

b. |m=j -
A := the set of edges in the bunchRf that contains edge (w);
even((B.i), (A.}))

fi
fi
rofp

end.

Lemma 5.1Algorithm 5.1 can be implemented to run optimally in logarithmic time.
Proof Straightforward.[]

We now relate the link paths created in Algorithm 5.1 to a planar embedd{g of
The link paths introduced in Algorithm 5.1 are either of length 1 or length 2. The length of a
link path is determined by the relative placements of the two bunches it connects with
respect to their fundamental cycles in a planar embeddif®y af described in the follow-
ing lemma.



-33-

Lemma 5.2Let (A,j) and B,i) be a pair of bunches i@ whose corresponding verticas
andv in G+ are connected by a link pgthin G+ .

If GI is planar and is a planar embedding G with edge §,t) on the outer face then

a) Ifp=<u,v>then inGI the edges in bunch are embedded inside; if and only if
the edges in bundd are embedded outsidzi .

b) |Ifp =<u.,d,v>whered is a dummy vertex created by procedeven, then inG the
edges in bunclA are embedded insid€’j if and only if the edges in bundd are
embedded insid€'i .

Proof The pathp must have been introduced in step 1, 2, a or b of Algorithm 5.1. These
four cases are shown in figure 8. We verify the lemma only for step a (the other steps are
similar or easier to verify).

Let p be introduced in step a of Algorithm 5.1. lretbe the nontree edge @ij. Let
p' be the path ifm'st from s to x and leta be the last vertex o that is a descendant of
L (P'i).

The edgen’ cannot be incident on a descendardf L (P'i) sincej<i . The edge
cannot be incident on an ancestolL@P'i) either sinceG'st is acyclic. Leta=(y,r) be the
edge following edgez(y) on P'j. Let X be the bridge o€'i that contains edge«(y) and
letY be the bridge o€'i that contains edge. The bridges< andY interlace onC'i. This
is becaus&X has attachments @anandy andY has attachment doa(n') which is a proper
ancestor off and an attachment on a vertex numbered largerahary by thest-number-
ing property.

In C'i the path betweehandq is directed fronqg tol. In C'j the path betweehand
r is directed from to r. Without loss of generality assume tbats embedded outside’i
(as shown in the figure). Thehis embedded insid€'i. Hence edgex(y) is embedded
outside the path frorh tor, i.e., inside the path from to |. Thus the bridge o€'j that
contains edgex(y) is embedded insid€’; if (x,y) is embedded outsid€i.[]

6. Planar Embeddings via 2-Colorings

In this section we correlate 2-colorings of the constraint g@&pwith planar embed-
dings ofGI. A 2-coloring ofG* assigns to each vertex a value ¢otor) in {0,1} such that
no two adjacent vertices are assigned the same color. This can be done A-optimally in loga-
rithmic time by a simple algorithm (see , e.g., [Ra93]).

Observation 6.1Let GiI be planar. In any planar embedding@f the edges in a bunch
(B i) are either all embedded insiBe or all embedded outsid#i .

Proof The edges iB are a subset of a bridge of the cy€le. Hence all edges iB must
be embedded on one side@f, and thus on one side Bfi .[]

We now relate 2-colorings of the constraint gr&phto planar embeddings & .
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figure 8
lllustrating the four cases in the proof of Lemma 5.2

Lemma 6.1Let GI be planar and le®l be a planar embedding Gf with edge §,t) on the
outer face. Then any 2-coloring &« that assigns a bunch vertax, the color O if and
only if the corresponding buncB (i) was embedded insid®i in Gi can be extended into a
valid 2-coloring ofG~ .

Proof By the results in [Ra93] we know that the two coloring can be extended to a valid two
coloring for the grapk=}Gi 1. So we only need to verify that the coloring can be extended

to the dummy vertices and that the link edges do not destroy the validity of the two-color-
ing. The result follows from Lemma 5.2 since the link edges only connect bunch vertices
and dummy vertices and they force a pair of bunch vertices to be given the same color if and
only if the corresponding bunches have to be embedded on the same side of their fundamen-
tal cycles.[]
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In order to relate two-colorings to planar embeddings it is easier to work with a tricon-
nected graph. One way of doing this is to decom@®sgato its triconnected components
and work separately on each triconnected component. The proofs become simpler in this
case and these can be found in the preliminary version of this paper [RR89]. In the follow-
ing we present the proofs for the case wiers only biconnected. We show that the algo-
rithm that works for the triconnected case works also for the biconnected case, so there is no
need to preprocess to find its triconnected components.

We now associate a triconnected componef@ ofvith each bunciB of P'i (see Sec-
tion 2.7 for definitions relating to triconnected components). Recall that by Lemma 2.1 it is
possible to rearrange tH&i so that the resulting sequence of paths forms an open ear
decomposition foGi. We assume that tHéi have been reordered so thBtd, - - - ,P'r-1]
forms an open ear decomposition @r. If G contains no paia,b separating®i such that
the interval &,b] on P'i contains all attachment vertices®fthen letv be an attachment of
B and letX be the triconnected component@f that contains the copy of that remains
when all upper split graphs corresponding to ear splits on adjacent and extremal separating
pairs onP'j,j =i have been removed. @i contains a paia,b separating®i such that the
interval [a,b] on P'i contains all attachment vertices®fthen letx,y be such an adjacent
separating pair whose upper split graph does not contain any other adjacent pair of this form
and letX =TC(x,y,i). ThenX is thetriconnected component @B, ), or equivalently,
(B i) belongs to triconnected component (kG ,i ).

The following lemma follows from the results of [MR92, Ra93] relating separating
pairs onP'i to the interlacings of stars in the bridge grapP'of

Lemma 6.2

a) LetX be a connected component@fi that contains no bunch vertex corresponding
to an anchor bunch and Mtbe the triconnected component of a bunch whose bunch
vertex is inX. ThenY is the triconnected component of a bunBhi | if and only if
the bunch vertexs,i is in X.

b) All bunches corresponding to bunch vertices in connected compone@Gts dlhat
contain an anchor bunch belong to a single triconnected compor@ntasfd this tri-
connected component is not part of the upper split graph of any ear split correspond-
ing to a pair separatirigi.

We now relate the connectivity of the constraint gr@phto the triconnected compo-
nents ofGi .

Lemma 6.3A pair of bunch verticesa,j andus k lie in the same connected component of
G+ if and only if bunchesA,j) and @ ,k) belong to the same triconnected component of
Gi.

Proof For eachi, let Di be the subgraph d&+ induced onj<|Gj. [ ] {dummy vertices
linking bunch verticesux k, uv, k<l<i}. We prove byinduction oni that a pair of
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bunches 4,j) and B k), j ,k<i, belong to the same triconnected componerioif and
only if verticesua,j andus k lie in the same connected component in the subddaph

BASE: D1=Gu1,. By part a) of Lemma 6.2, the bunch verticeDinsatisfy the statement
of the lemma, sincE’ 1 has no anchor bunches.

INDUCTION STEP: Assume that the result is true uintil and considebi. Di is Di-1
together withGi,1 and the link paths connecting verticesGin to vertices inDi-1. By con-
struction the vertex corresponding to each anchor bunch incidéiit mnconnected t®i-1
by a link path. LetA i) be an anchor bunch &fi and letua,i be connected tas,j, j<i
by a link path inG=. We will show that A,i) and 8,j) are in the same triconnected com-
ponent by showing that there are three vertex-disjoint paths between axviertée tricon-
nected component of bunclA,() and vertexy in the triconnected component of bunch
(B.j).

If the link path was introduced in step 1 of Algorithm 5.1 thexIbe an attachment
of bunchA onP'i and lety bel; and if the link path was introduced in step 2 or in step a,
then letx be an attachment of bunéghon P'i and lety be the attachment vertex of edfje
onP’j. We note that in each of theale cases, botlk andy are vertices on the fundamen-
tal cycle C'i. This gives two vertex-disjoint paths betweerandy on C'i. Further by
Corollary 1 to Lemma 4.% andy are attachments a@¥i of the bridgeX of C'i that con-
tains the edges iA. This provides the third vertex-disjoint path betwzeamdy .

Finally, if the link path was introduced in step b we consi@gerand use an argument
similar to the abve to showthat there exist suitable verticeyy on C'j with three vertex
disjoint paths between them.

It is now straightforward to use the@te result, together with the induction hypothe-
sis to establish the claim foy thus proving the lemma.]]

We now state and pvethe main result of this section.

Theorem 6.1Let GI be biconnected and planar andXebe a 2-coloring o6+ . Then there
exists a planar embedding @f with the edgeq,t) on the outside face that embeds a bunch
(B,i) insideP'i if and only if the bunch vertexs,i in G+ is colored 0.

Proof The proof is by induction on the number of triconnected componefs in

BASE: G is triconnected. Then by Lemma &3 is connected. Hendg* has exactly two
different 2-colorings, and each can be obtained from the other by interchanging zeros and
ones. By Lemma 6.1 these two colorings must correspond to the two possible embeddings
of GI with (s,t) on the outer face.

INDUCTION STEP: Assume the lemma is true for ugte triconnected components and

let GI havek triconnected components. Assume without loss of generality that the indices
of theP'i have been permuted so tlat[P'o, - - - ,P'r-1] forms an open ear decomposition

for GI (such a rearrangement was shown to exist in Lemma 2.1)x,ydbe a nontrivial
adjacent pair separating sorRe and letG1 and G2 be the upper and lower split graphs
obtained by the ear splik fy,i). The open ear decompositi@h induces an open ear
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decompositiorD1 in G1 andD2 in G2, with the newly-introduced edge i/ ,i) serving as
the initial ear inD2 [MR92, Ra93]. Each triconnected componenGois contained entirely
within one ofG1 or G2, hence the connected component§&efcan be partitioned between
G1 andG2. Further, each of51 and G2 contains at mosk—1 triconnected components,
hence the induction hypothesis applies to both of them.

Let G1 andG2 be planar embeddings &1 and G2 respectively, that are induced by
the 2-coloringX. We only need to verify that these two embeddings can be combined into a
planar embedding fo&. In GI the embeddings fo&1 and Gz interact only orP'i. How-
ever none of the bunches®f in G2 interlace with any of the bunches®f in G1 [MR92,
Ra93]. Also, since andy serve the place of andt in Gz, G2 hasx andy on the outer
face. Henc&1 can be combined wit6 2 atx andy to form a planar embedding f@.[]

7. The Combinatorial Embedding

By Theorem 6.1, ifGl is planar, then we can determine for edh the set of
bunches that are embedded indRieand the set that is embedded out$ie In this sec-
tion we show how to determine the relative ordering of the edges incident on a véttex in
that are assigned to one sidePaf. In Section 7.1 we describe this procedure for the local
replacement grapBi . In Section 7.2 we map this ordering back to the input g&ph

7.1. The Combinatorial Embedding of the Local Replacement Graph

In order to obtain a combinatorial embedding=ofwe need to obtain for each vertex
v in G, the cyclic ordering of the edges incidentwm a planar embedding @i. In Sec-
tion 6 we obtained some coarse information on this cyclic ordering, i.e., for each internal
vertexv in P'i we partitioned the set of edges incidentvofother than the two edges i
that are incident o) into two classes, those that are embedded irf8idand those that
are embedded outsidRs . In this section we obtain the cyclic ordering for each of these two
sets. Since the procedure is identical for each of these two sets we describe only the proce-
dure for the edges embedded indRie

Recall from Section 4 thatsegmenbf P'i is a subset of attachments of a bridge of
C'i. We will say that two segments Bfi aredisjoint if they form a cluster (i.e., there is a
path between any pair of edges in each segment that avoids all verti€esaimd in the
other segment). We will use the following observation and its corollary.

Observation 7.1If two disjoint segments d?'i interlace then they must be placed on oppo-
site sides o€Ci in any planar embedding & .

Corollary to Observation 7.1 If two disjoint segments oP'i that are derived from the
same bridge of'i interlace therGi is honplanar.

In the following we will assume, as before, that the verticeS1pG'st, andT'st are
numbered with theist-numbering. Given an edgs=(u,v) with u<v, the vertexv will be
called thehigh endpoint of eand the vertexi will be called thdow endpoint of e.
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Observation 7.2Let n=(x,y) be a nontree edge @'st with respect to the treEst. Let x
be the high endpoint af. Thenx is the largest-numbered vertex in the fundamental cycle
ofn.

Letv be an internal vertex iR'i and letF be the set of edges incident wrihat are
embedded insidE'i. LetF =Fi[ JF2whereF1is the set of edges  that lie in the tree
T'st andF 2 is the set of remaining edgeshn We first obtain the cyclic ordering of edges in
F1 (for all verticesv) and then find the cyclic ordering of edge$mn The following lemma
shows that all edges 1 must appear before any edgeRn in a cyclic ordering corre-
sponding to a planar embedding@®f. Hence we can concatenate the cyclic orderingiof
andF2to obtain the cyclic ordering &f.

Lemma 7.1Letv be an internal vertex d?'i in the local replacement gragh. Lete and
€ be edges incident onthat are embedded insié in a planar embedding @i with e
an edge inl'st and€ a nontree edge. Ldt be the unique incoming edge toandg the
unique outgoing edge fromin G'st that are contained iR'i. Then edge appears before
edge€ in the cyclic ordering of edges incidentwnstarting with edgg.

Proof Let e be contained i?'j and leth=(u,w) be the nontree edge ®ij. Letw be the
high endpoint oh. By Observation 7.2 the vertex is the largest-numbered vertex in the
fundamental cycl€'j. Hence there is a pathfrom w to t that avoids all other vertices on
C'j including vertexv.

Let C be the cycle inGI consisting of the path i'st from s to v, followed by the
pathq in C'j fromv to w that contains edge, followed by the patlp, followed by edge
(t,s). Let this cycle have the direction of edigéwhich is the same as that of edge Edge
g is embedded outside sincee is embedded insid€'i .

Let g=(v,y). There is a path from to t that contains vertices in increasing order of
their st-numbering. Hence the bridd® of C containing edgg must have an attachment
on a vertexxzv that lies on patly or pathp. Now consider the bridgB' of C that con-
tains edge? . Let m be the base edge of the fundamental cyclg ofot lying onC. The
edgem is an attachment edge Bf and the attachment vertex, whictlida (€' ), does not lie
on either patlp or pathqg sincelca(€) is a proper ancestor of. If B’ is embedded outside
C then it must appear befogein the cyclic ordering starting with. This is not possible
since this would causé to be embedded outsid&i. Hence€ is embedded insid€
which means thad appears befor€ in the cyclic ordering of edges incident wnstarting
with edgeg.[]

We now describe how to obtain the cyclic ordering of the tree edges that are attach-
ment edges on an internal vertein P'i. We will compute this ordering in two phases. The
first phase makes use of the following lemma.

Lemma 7.2Letv be an internal vertex on the pah. Let Hv be the graph obtained for
vertexv using the function cathuxgraphgGi,T'st) (from section 2.5). LeXi, |=0tok be
the connected components BEHv—{z}, where z is the vertex inHv representing the
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unique outgoing edge from that is contained i®'i. LetS be the simple graph obtained
from Xi, for eachl, by deleting multiple edges. ThenGf is planar, then each is a sim-
ple noncyclic path.

ProofLet Z be a vertex irB whose corresponding edge@n is€ . Let (Z,Z') be an edge
in S with €' being the edge GBI corresponding t@’ and letn be a nontree edge @
that caused edge (Z') to be placed iHv. Lete be contained i®'j and let (,w) be the
nontree edge iR'j with w>u; by Observation 7.% is the largest-numbered vertex Gf.
By the construction 0Bl the fundamental cycl€'j does not not contaig’ .

Now consider the bridgB of C'j that contains the attachment ed®je The funda-
mental cycle oh will contribute an attachment edge ®ron C'j on a vertexx wherex#v
andxzw. Further, ife’ is onP'k then the fundamental cyc{&k will contribute an attach-
ment edge foB either on vertexv on C'j or on a proper ancestor wfon C'j. This results
in a segmen® that is part oB and has 3 or more attachments@®n

We have shown abouwbhat each edgeZ(Z') in Hv results in a segment & that
contains at least 3 attachments. The segments corresponding to differzmat disjoint.
Any two segments with 3 attachments interlace on a cycle, and hence must be placed on
opposite sides of the cycle in a planar embedding by Observation 7.1. Heacehave at
most two neighbors iv—{z}. Hence each connected componentomust be a simple
path. Finally, all of the edges in a connected componentratist be placed on the same
side (either inside or outside) &i. Hence no connected componentFofis a simple
cycle.[]

Lemma 7.3Let X be a connected component of the gr&ptHv—{z}, as defined in the
statement of Lemma 7.2 and }tbe the patkxo, - - - Xk>. Let the edge Gl correspond-
ing tox bee. Then in any planar embedding @f the cyclic ordering of the edges inci-
dent onv will contain thea as consecutive edges in order freoto ek or fromex to eo.

ProofLetv be an internal vertex ¢¥'i and letel be contained i®'j. Then by the construc-
tion of the local replacement graph, the nontree ed@ irs not incident on a descendant
of an internal vertex oP'q, for anyP'q that contains one of the. Hence the edgem to

e -1 appear in one bridge @&'j and the edges +1 to ex appear in another bridge. This
holds for eacta , | =0 tok. Hence in any planar embedding@f the edge®o to ex appear
in that order in the cyclic order of edges outgoing fram

We now show that the must occur as consecutive edges in the cyclic ordee bet
an outgoing edge from vertex other than thex, and lete be contained iP’m. Since
R(P'm) is not incident on a descendant of an internal vertéX«qffor anyP'q that contains
one of thea, all of thee are in a single bridge &'m. Hence they must all appear on one
side ofC'm, i.e., the edge cannot appear between thdn the cyclic ordering.[]

We will call each set of edges @ corresponding to vertices in a connected compo-
nent ofF (as defined in the statement of Lemma 7.8)faof vertex v.Let T=[eo, - - - ,&]
be a tuft of vertex/, where the edges ih are constrained to occur either in the sequence
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<eo, - ' *,&x> or in the sequenceek, - - - ,e0>. In order to determine which of the two
sequences is the correct one, we lookoat.et eo belong toP'k, and letB be the bunch of

P'k that contains the label of the set contairtngdas computed in steps 4-6 of Algorithm
4.1). Thenthe edges, - - - ,&x are placed beforeo in the clockwise order of edges outgo-
ing fromv if and only if bunch vertexs,i is colored 1 inG+ (i.e.,B is placed outsid@'k

in the embedding). The bund® can be determined in constant time by one processor,
since by Lemma 7.2, the vertex: will be the unique neighbor afe. in the blocktree con-
structed as in the proof of Lemma 4.2. This is summarized in the following observation.

Observation 7.3Given a tuftT =[eo, - - - ,&x] we can determine if the ordering of edgedin
is<eo, - - -,ex> or<ek, - - -,e0> in constant time with one processor.

In phase 2 of the algorithm to find the cyclic ordering of tree edges outgoing/from
we determine the ordering of the tufts that are embedded iRsid€o do this, we deter-
mine, for each tufg of v, an edgen in out(S) with Ica(n) <v and we embed the tufts in
decreasing order of the high endpoint of this edge. The following lemma shows that if the
high endpoints of the edges chosen for different tufts are all distinct this will give us the cor-
rect ordering of the tufts.

Lemma 7.4Let €, €' be two tree edges outgoing franthat are embedded insi@s . Let
n' Cout(€¢') andn” Cout(e') with Ica(n') <v andlca(n”)<v and letu andu” be the
high endpoints of andn'’ respectively. Ifu' >u" then€ is embedded befor' in the
cyclic ordering starting witly, the unique outgoing edge fronthat lies orP'i .

ProofLet C" be the fundamental cycle of . The edgey is embedded outsid&’ sincee’

is embedded insid€'i . Sincelca(n") <v, the vertex is in the same bridge &" as edge
g and hencd is embedded outside" . By Observation 7.21" is the highest-numbered
vertex inC" and hence by thst-numbering property any vertexwith x>u"" must be in
the same bridge d@" as vertext. Hence vertexd and edge? are embedded outside the
cycleC" in the planar embedding, i.e., edgeis embedded beforé’ in the cyclic order-
ing starting at edge.]]

In order to handle the case when the chosen edges for different tufts have the same
high endpoint we choose two different nontree edges for each tuft. These edges are chosen
by a strategy somewhat similar to the one used to find hooks for the bunches. We first pre-
sent some definitions. These definitions are similar to the definitidas gindlow 2 given
in Section 4.2, except that we now distinguish between outgoing nontree edges and incom-
ing nontree edges.

Let the vertices of'st be numbered ist-numbering. For each edge(parent(v), v)
in T'st, a.out(e) is the set of nontree edges that are outgoing from a descendarnof
b.out(e) is the set of nontree edges that are incoming to a descendantnote that
a.out(e) and b.out(e) are disjoint and out(e) as defined in Section 4.2 is
a.out(e)[ Jb.out(e). We definea.low(e) to be nomime)lca(n) and b.low(e) to be
n OAit(e)lca (n).
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Let a.S(e) ={n |nOa.out(e) and Ica(n)#a.low(e)}. Then we definea.low2(e) to be
min(v, n makge) Ica(n)).

Let X be a set of edges ist. Then, we define

a.out(X) = {Oka.out(e);

b.out(X) = 4okb.out(e),

a.low(X) = eir a.low(e);

b.low(X) = mir b.low(e); and

Leta.l1(X) = eOx anda.@i)=a.low(x)(@.low(e)), anda.l2(X) = ik a.low2(e).
Thena.low2(X) = min(a.l 1(X), a.l2(X)).

In the following algorithm we find for each tug of v, two verticesbig(S) and
nextbig(S) which are high endpoints of edgesadnt(S). We use these to compute the
cyclic ordering of the tufts of each vertex, and hence the cyclic ordering of tree edges
around each vertex.

Algorithm 7.1: Finding the Cyclic Ordering for the Tree Edges
Input GraphsGi, treeT'st, and the tufts for each vertex.

Output For each vertex, the cyclic ordering of its tufts that are embedded inside the fun-
damental cycle of the pat¥i that containss as an internal vertex (verticasandt are
assumed to be internal verticegRo).

vertexu, u',v; edgen, n';

tuft S;

1. pfor each tuftS of each vertex -
big (S) := the high endpoint of an edgen in a.out(S) with Ica(n) = a.low(S);
nextbig(S) :=v;

if there is an edge in a.out(S) with Ica(n) = a.low(S) and with high endpoint
U #u - nextbig(S) =u

|a.low2(S) <v - nextbig(S) :=the high endpoint of an edge aout(S) with
Ica(n') = a.low2(S)

| b.low(S) <v - nextbig(S) := the high endpoint of an edgé in b.out(S)
with Ica(n') = b.low(S)

fi;
pair (S) := (big (S), nextbig(S))
rofp

2. pfor each vertex -
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sort the tufts off embedded inside the path containings an internal vertex in
lexicographically nonincreasing value of their pairs;

determine the ordering of edges within each tuft using Lemma 7.3 and Observa-
tion 7.3

rofp

end.

Lemma 7.5If Gi is planar then Algorithm 7.1 finds a cyclic ordering of the tufts corre-
sponding to a planar embedding®f.

Proof If the pairs sorted in step 2 of Algorithm 7.1 are distinct then by Lemma 7.4 this
cyclic ordering corresponds to a planar embeddingi of Otherwise, leS1 andS2 be two

tufts with pair (S1) = pair (S2). Letpair (S1) = (a,b). If b#v then by Lemma 7.8&1 must be
embedded befor82 sincea>b ; alsoS1 must be embedded aft€e sinceb <a. Hence no
planar embedding is possible $i and S2 are to be embedded on the same sid@'iof
(whereP'i is the path that containsas an internal vertex). F=v then by the computation

in the for loop of step 1, every nontree edgeuin(S1) andout(S2) is incident ona or has

Ica greater tham. In this case the paia(v) is a separating pair fdél andS1 and Sz can
appear in either order in a planar embeddinGioff

Lemma 7.6 Algorithm 7.1 can be implemented to run in logarithmic time with A-optimal
performance.

Proof The only nontrivial computations in Algorithm 7.1 are the computation of tree func-
tions that can be computed using the Euler tour technigue, lca computation, bucket sort, and
finding connected components. Hence the algorithm runs in logarithmic time with A-opti-
mal performance.]]

Algorithm 7.1 gives the cyclic ordering of tree edges outgoing at each vertex. We
number these tree edges in cyclic order a$,82, - - -; let this be theyclic tree numbeof
the edge. To find the cyclic ordering of the incoming nontree edges at each vertex, we
assign each tree edge,Y) that is outgoing fronx, for each vertex, the ordered pair
(x,c), wherec is the cyclic tree number of the edge. For each nontree edge incoming to a
vertexv, we consider the base edge of the fundamental cycle of each such nontree edge that
lies on the path from the Ica to the low endpoint, and we embed nontree edges incoming to
v in reverse order of the ordered pairs of these base edges. It is easy to see that this gives a
cyclic ordering for the nontree edges corresponding to a planar embed@ngaisistent
with the ordering obtained for the tree edges.

7.2. The Combinatorial Embedding of the Input Graph

In this section we show that we can work wihin order to obtain a planar embed-
ding of G.
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Lemma 7.7G is planar if and only iGi is planar.

Proof If G is planar then clearl$s is planar. For the reverse, I€t be the fundamental
cycle inG of the nontree edge in eBr with respect to tre@st and letC'i be its image in

Gi. LetBz1, - - -,Bk be the bridges ofi in G and letB'1, - - - ,B'k be the bridges of'i in

Gi. By the results in Section 4.1.3 in [Ra93] there is a 1-1 correspondence betwBen the
and theB'j such that an edge in G —Ci is in Bj if and only ife is in the bridge corre-
sponding to it inGl — C'i. (The results in Section 4.1.3 of [Ra93] are for bridge®iof
however it is straightforward to extend them to bridgeSiof

Let G be planar and le& be a planar embedding 6. Let Ci be the embedding of
Ci. Replace each vertaxon Ci by its image inlv, together with its parent and children (if
any) inTv. The embedding§ can be extended to a planar embedding in this new graph.
This can be established by virtue of the correspondence between the bri@gés Gf and
those ofC'i in GI and by using the properties of the local replacement graph; we omit the
details. We now find a fundamental cycle insi@ie(similarly outsideCi) that intersect€i
and repeat this construction. Since planarity is preserved, we can continue to repeat this
construction until we have exhausted all fundamental cycles at which point we obtain a pla-
nar embedding dBl .[]

8. The Complete Algorithm and Its Complexity

We now present the complete algorithm for obtaining a planar embedding of a bicon-
nected graph vertices if one exists.

Algorithm 8.1: Planarity Algorithm

Input: A biconnected grap®=(V ,E).

Output: A combinatorial embedding @ if G is planar.
vertex s, t, v;

integeri ; {{The range of this integer is from 0 tc-1.}}

if |[E|>3|V]| - reportG is nonplanar andalt fi;

1. fix an edgeq,t) in the graph; find an open ear decomposifior{Po, - - - ,Pr-1] start-
ing with (s,t); construct the directest-numbering grapl&'st, its spanning tred’st,
and the associated pat®,P'1, - - - \P'r-1;

2. find the bunches of eaéh together with the hooks for the anchor bunches;

3. construct the constraint gra@r by forming the interlacing parity graph for each
bunch graph and adding in the link edges;

if G* is not 2-colorable- reportG is nonplanar antalt fi;
4. find a 2-coloring of5+;

pfor eachP'i -
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5. assign all bunches whose corresponding verticeG+omvere given color 0 in
G+ insideP'i and the remaining bunches outsikie

6. find the cyclic ordering of the edges assigned to each si&& @ind conse-
quently the ordering of edges around each vertex

rofp;
7. compute the number of faces in this combinatorial embedding and verify Euler’s for-
mula to determine if G is planar;
8. if G is planar— collapse all vertices ifiv into a single vertex for eachv to obtain
a combinatorial embedding &
|GI is nonplanar- reportG is nonplanar
fi

end.

Step 1 is described in Section 2, step 2 in Section 4, step 3 in Section 5 and step 6 in
Section 7. Steps 4 and 5 have easy optimal logarithmic time parallel algorithms and steps 7
and 8 can be computed with similar bounds using the Euler tour technique [TV84, CV86,
KD88]. This gives us the main theorem of the paper.

Theorem 8.1The planarity problem can be solved on a CRCW PRAM in logarithmic time
with A-optimal performance. The algorithm will perform linear work if linear work, loga-
rithmic time algorithms are available for the connected components and bucket sort prob-
lems.
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