
In J. Computer and Systems Sciences, vol. 49, 1994, pp. 517-561. (For figures see pp. 47-54.)

Planarity Testing in Parallel*

Vijaya Ramachandran†

University of Te xas at Austin

John Reif‡

Duke University

ABSTRACT

We present a parallel algorithm based on open ear decomposition to con-

struct an embedding of a graph onto the plane or report that the graph is nonpla-

nar. Our parallel algorithm runs on a CRCW PRAM in logarithmic time with a

number of processors bounded by that needed for finding connected components

in a graph and for performing bucket sort.

1. Introduction

1.1. The Planarity Problem

Informally, a graph is planar if it can be embedded onto the plane so that the edges do not

cross (see section 2.1 for formal definition). Euler first defined this fundamental concept in 1736

and stated the Euler formula for planar embeddings.

Planar graphs appear naturally in many applications, -- for example, in the solution of 2

dimensional PDEs and in VLSI layout. Many NP-hard graph problems such as the clique problem

and the feedback arc set problem can be solved in polynomial time in the case of planar graphs

[GJ79].

The planarity problem is the following: given a graphG , test ifG has a planar embedding

and, if so, construct an embedding ofG onto the plane. A planarity algorithm is one that solves

*A preliminary version of this paper appeared inProceedings of the 30th IEEE Annual Symposium on Foundations of

Computer Science,1989 [RR89].

†Supported by NSF Grant CCR 89-10707 and NSF FAW Grant CCR 90-23059.

‡Supported by Air Force Contract AFOSR-87-0386, DARPA/ISTO Contract N00014-88-K-0458, DARPA/ARO Con-
tract DAALO3-88-K-0195, DARPA/ISTO Grant N00014-91-J-1985, Subcontract KI-92-01-0182 of DARPA/ISTO
prime Contract N00014-92-C-0182, NSF Grant NSF-IRI-91-00681, NASA subcontract 550-63 of prime Contract
NAS5-30428, and US-Israel Binational NSF Grant 88-00282/2.

- 2 -

the planarity problem. There has been a considerable amount of research on this problem, begin-

ning with the characterization theorems for planarity of Whitney [Wh30], Kuratowski [Ku30] and

Edmonds [Ed60] which led to exponential time planarity algorithms, followed by the first polyno-

mial time planarity algorithm of Tutte [Tu63] and culminating with the linear time sequential pla-

narity algorithm of Hopcroft & Tarjan [HT74], which used depth first search and built on tech-

niques developed in a triconnectivity algorithm [HT73]. Another planarity algorithm developed

by Lempel, Even & Cederbaum [LEC67] was made to run in linear time by results in Booth &

Lueker [BL76] for manipulating PQ trees and by the algorithm of Even & Tarjan [ET76] for com-

puting anst-numbering.

1.2. Previous Parallel Algorithms for Planarity

Considerable previous work has been devoted to developing parallel planarity algorithms

with respect to the Parallel Random Access Machine (PRAM). Ja’Ja’ & Simon [JS82] first

showed that testing planarity is in NC, where NC is the class of problems with parallel algorithms

that run in polylog time with a polynomial number of processors. Miller & Reif [MR85] later

gave a parallel planarity algorithm with similar resource bounds that also gav e a planar embed-

ding of an arbitrary planar graph. Reif [Re84] gav e a randomized logarithmic time NC algorithm

for graphs of valence 3. Klein & Reif [KR88] gav e the best previously known polylog time pla-

narity algorithm in terms of processor efficiency, which required timeO (log2n) using a linear

number of processors; this algorithm is a parallelization of the sequential algorithm in [LEC67].

1.3. Our Parallel Planarity Algorithm

Our parallel planarity algorithm is a deterministic algorithm that runs in logarithmic time on

a Concurrent Read Concurrent Write (CRCW) PRAM while performing almost linear work. (See

Karp & Ramachandran [KR90] for a discussion of parallel algorithms on various PRAM models.)

More precisely, letC (n ,m) be the bound on the work done by a parallel algorithm that finds the

connected components of ann -node,m-edge graph in logarithmic time on a CRCW PRAM

when the graph is represented by adjacency lists; currently the best bound is

C (n ,m) = O ((n+m).α(n ,m)) [CV86], whereα is the inverse Ackermann’s function, which grows

very slowly with n and m. Let B (n) be the bound on the work to perform bucket sort onn

O (logn) bit numbers in logarithmic time on a CRCW PRAM; currentlyB (n) = O (n.loglogn)

[Ha87]. Finally, letA (n ,m) = max(C (n ,m),B (n)). Our planarity algorithm runs in logarithmic

time on a CRCW PRAM while performingA (n ,n) work. We will refer to such a performance

bound as ‘logarithmic time with A-optimal performance.’ This is the best bound known for test-

ing graph connectivity if the input is not specified by adjacency lists but by some other sparse rep-

resentation such as an unordered list of edges.

Our algorithm uses a variety of techniques found in previous parallel graph algorithms. We

search the graph using a parallel algorithm for open ear decomposition [MR86, MSV86, Ra93].

Open ear decomposition has proved to be a very useful technique in the efficient parallel solution

of several problems on undirected graphs (see, e.g., [FRT89, KR91, KR90, MSV86, Ra93]). To

- 3 -

further order our parallel searches, we make use of the parallel algorithm of [MSV86] for

st-numbering. We use the local replacement graph computed in the parallel triconnectivity algo-

rithm of Fussell, Ramachandran & Thurimella [FRT89]; for this material we will follow the treat-

ment in [Ra93]. We extend the interlacing parity algorithm of Ramachandran & Vishkin [RV88]

in order to obtain the planar embedding of the input graph; again, for this material, we will follow

the treatment in [Ra93]. We also make use of the optimal logarithmic time algorithms for com-

puting tree functions [TV84, CV86, KD88] and for computing least common ancestors (lca) of

pairs of vertices in a rooted tree [SV88].

Our algorithm differs from all previous planarity algorithms in its use of a general open ear

decomposition for graph searching. However, it is somewhat similar in spirit to the algorithm of

Hopcroft & Tarjan [HT74] in that it embeds paths rather than vertices; as in the case of the algo-

rithm in [HT74], our algorithm makes extensive use of techniques developed in a triconnectivity

algorithm, i.e., the parallel algorithm in Fussell, Ramachandran & Thurimella [FRT89] to find the

triconnected components of a graph. At the same time, since our algorithm usesst-numbering to

direct the embedding, it has some similarity to the Lempel, Even & Cederbaum algorithm

[LEC67]. Our algorithm makes no use of parallel PQ tree techniques to represent planar embed-

dings, but instead makes a reduction to finding a 2 coloring of an undirected graph, a special case

of which is used in Ramachandran & Vishkin [RV88] to find a planar embedding for a graph with

a known Hamiltonian cycle. Similar, though less efficient, approaches have been used by Ja’Ja’

& Simon [JS82] who gav e an NC reduction of planarity testing to 2-SAT (satisfiability with 2 lit-

erals per clause) and by Reif [Re84] who gav e a randomized NC reduction of trivalent planarity

testing to 2-SAT with the two literals in exclusive-or form; this latter problem is equivalent to 2

coloring an associated undirected graph.

All of the steps in our algorithm can be performed in linear sequential time. Hence it gives

a linear time sequential algorithm for planarity. In fact, a stronger claim can be made on our algo-

rithm: for any running time at least logarithmic, if linear work parallel algorithms are available for

the problems of finding connected components in a graph and for performing bucket sort, then

our planarity algorithm will execute within that time bound while performing linear work.

1.4. Algorithmic Notation

The algorithmic notation in this paper is from [Ta83,Ra93]. We enclose comments between

a pair of double curly brackets (‘{{’ and ‘}}’). We incorporate parallelism by use of the following

statement that augments thefor statement.

pfor iterator→ statement listrofp

The effect of this statement is to perform thepfor loop in parallel for each value of the iterator.

Throughout this paper we will letn denote the number of vertices in the input graph (and

we will assume that the number of edges isO (n)). We will sometimes usen to denote a nontree

edge in a graph with a spanning tree but that should cause no confusion since the use will be clear

from the context.

- 4 -

1.5. Organization of the Paper

The rest of the paper is organized as follows. Section 2 giv es definitions and relevant earlier

results. Section 3 gives a high-level description of our algorithm. Section 4 describes bunches,

their hooks and the bunch graphs. Section 5 defines the constraint graph. Section 6 relates 2-col-

orings of the constraint graph to planar embeddings of the input graph, and gives a placement of

each bunch on one side of its fundamental cycle. Section 7 refines this placement to obtain a com-

binatorial embedding of the graph. Finally, Section 8 gives the full algorithm.

2. Preliminaries

In this section we provide major definitions and previous results from the literature that we

will need in later sections.

2.1. Planar Embeddings

2.1.1. Planar Topological Embeddings

We define here aplanar topological embeddingof an undirected graphG=(V ,E) (see, e.g.,

White [Wh73]). In such a topological embedding, each edge is associated with a simple curve on

the plane, where the endpoints of the edge are at the two distinct endpoints of the curve, and no

two edges intersect except at an endpoint in the case when they share a vertex. Thefacesof the

embedding are the maximum connected regions obtained by deleting the embedding of G from

the plane. Euler’s formula givesn−m+f = 1+c , wherem,n ,f andc are the numbers of edges,

vertices, faces, and connected components, respectively.

2.1.2. Planar Combinatorial Embeddings

The topological definition of planar embedding given above presents difficulties for com-

puter algorithms and their proofs. Given an undirected graphG=(V ,E) with |V |=n , we will rep-

resent an embedding of graphG by a combinatorial representation that is attributed to Edmonds

[Ed60] (see also White [Wh73]); this representation has sizeO (n). Let D (G) be the directed

graph derived fromG by substituting in place of each undirected edge (u ,v), a pair of directed

edges (u ,v) and (v ,u). A combinatorial graph embedding I(G)of the graphG is an assignment

of a cyclic ordering to the set of directed edges departing each vertex inD (G). The faces of this

combinatorial embedding are the orbits of a certain permutation of the directed edges; this permu-

tation orders (w ,v) before (v ,u) if and only if the combinatorial embedding orders (v ,u) immedi-

ately before (v ,w) in the clockwise cyclic order around vertexv . The combinatorial embedding

is planar if it satisfies the Euler’s formulan−m+f =1+c , calculated from the numbers of (undi-

rected) edgesm, verticesn , facesf , and connected componentsc . Edmonds [Ed60] showed that

combinatorial embeddings onto the plane can be put in 1-1 correspondence to topological embed-

dings onto the plane. Hereafter, we will use the term planar embedding to denote a combinatorial

embedding onto the plane.

- 5 -

Given a directed simple cycleC=<v 0,v1, . . . ,vk =v0> in D (G), and an edge (vi ,x) wherevi

is in C but x is not, we will define (vi ,x) to be embeddedinside C (and otherwiseoutside C) if

in the clockwise cyclic order defined byI (G) on directed edges departing vertexvi , directed edge

(vi ,x) appears after directed edge (vi ,vi +1) and before directed edge (vi ,vi −1).

We extend the above definition to the embedding of an edge relative to a directed path.

Given a directed pathP = <v 0,v1, . . . ,vk > in G , and an edge (vi ,x) wherex is not inP andvi is

an internal vertex onP , we will define (vi ,x) to be embeddedinside P (and otherwiseoutside

P) if in the cyclic order defined byI (G) on directed edges departing vertexvi , directed edge

(vi ,x) appears after directed edge (vi ,vi +1) and before directed edge (vi ,vi −1) (see figure 1).

figure 1

Illustrating theinside andoutsideof a directed path.

2.2. Bridges of a Subgraph

Let G=(V ,E) be an undirected graph, and letQ be a subgraph ofG . We define thebridges

of Q in G as follows ([Tu66]; see e.g., [Ra93, Ev79]): LetV′ be the vertices inG−Q , and con-

sider the partition ofV′ into classes such that two vertices are in the same class if and only if

there is a path connecting them which does not use any vertex ofQ . Each such classK defines a

nontrivial bridge B=(VB ,EB) of Q , whereB is the subgraph ofG with VB =K ∪ {vertices ofQ

that are connected by an edge to a vertex inK }, and EB containing the edges ofG incident on a

vertex inK . The vertices ofQ which are connected by an edge to a vertex inK are called the

attachmentsof B on Q ; the connecting edges are called theattachment edges.An edge (u ,v) in

G−Q , with bothu andv in Q , is atrivial bridge of Q , with attachmentsu andv . The nontrivial

and trivial bridges ofQ together form thebridgesof Q .

Let G=(V ,E) be a graph and letV′ ⊆V with the subgraph ofG induced onV′ being con-

nected. The operation ofcollapsing the vertices in V′ consists of replacing all vertices inV′ by a

single new vertexv , deleting all edges inG whose two endpoints are inV′ and replacing each

edge (x ,y) with x in V′ and y in V−V′ by an edge (v ,y). In general the resulting graph is a

multigraph even if the original graphG is not a multigraph.

- 6 -

Let G=(V ,E) be an undirected graph, and letQ be a subgraph ofG . Thebridge graph of

Q , S=(VS,ES) is obtained fromG by collapsing the nonattachment vertices in each nontrivial

bridge of Q and by replacing each trivial bridgeb=(u ,v) of Q by the two edges (xb ,u) and

(xb ,v) wherexb is a new vertex introduced to represent the trivial bridgeb . Note that in general

the bridge graph is a multigraph.

2.3. Interlacing Bridges

Let P=<0,1,2,. . . ,k > be a simple path in a graphG . A pair of bridgesinterlace on P

([Tu66]; see, e.g., [Ev79, Ra93])if one of the following two holds:

1. There exist four distinct verticesa ,b ,c ,d with a <b <c <d such thata andc are attachments

of one of the bridges onP andb andd are attachments of the other bridge onP ; or

2. There are three distinct vertices ofP that are attachments of both bridges.

If bridgesS andT interlace onP , then they cannot be placed on the same side ofP in a

planar embedding. IfS andT do not interlace, then they can be placed in a planar embedding on

the same (opposite) side ofP if and only if there exists no sequence of bridges

<S=S0,S1, . . . ,Sr =T >, with r odd (even) such thatSi interlaces withSi +1, 0≤i ≤r −1. If there is

such a sequence withr ev en thenS and T haveeven interlacing parityand if there is such a

sequence withr odd, thenS andT haveodd interlacing parity.If no such sequence exists forr

either odd or even, thenS andT havenull interlacing parity:in this caseS andT can be placed

either in the same side or in opposite sides ofP in a planar embedding (providedG is planar). It

is possible forS andT to have both odd and even parity, -- in this case, no planar embedding of

G is possible if every bridge is to be placed completely on one side ofP .

2.4. The Star Graph and Its Interlacing Parity Graph

The following definitions are from [Ra93]. Astar is a connected graph in which at most

one vertex has degree greater than 1. LetP be a simple path in a graphG=(V ,E). If each bridge

of P in G is a star (i.e., contains exactly one vertex not onP), then we callG thestar graph of P

and denote it byG (P). Each bridge ofG (P) is called astar of G(P). The unique vertex of a

star ofG (P) that is not contained inP is called itscenter. If P=<0,1,. . . ,n > then given a starS

of G (P) with attachmentsv0<v 1< . . . <vr on P , we will call v0 andvr theend attachmentsof S

and the remaining attachments theinternal attachmentsof S; the vertexv0 is theleftmost attach-

mentof S, and the vertexvr is its rightmost attachment.

Note that, in a connected graphG , the bridge graph of any simple path inG is a star graph.

We will sometimes refer to a star graphG (P) by G if the pathP is clear from the context.

We now define theinterlacing parity graph GI of a star graphG (P). Let P=<0,1,. . . ,n >.

We replace each starS on G (P) by a collection of edges as follows: Let the attachments ofS on

P bea0,a1, . . . ,ak with a0<a 1< . . . <ak . We replaceS by the edges (a0,ai),i =1, . . . ,k and the

edges (ai ,ak),i =1, . . . ,k−1 (see figure 2a). We will refer to these edges as thechords of S .

- 7 -

figure 2

Constructing the interlacing parity graph of a star graph.

Let H (P) be the graph obtained fromG (P) by replacing each star inG (P) by its chords.

We will say that chordsc andd in H (P) arerelatedif they are chords of the same starS in G (P)

and areunrelatedotherwise. We constructGI =(V′ ,E′), the interlacing parity graph of G(P) as

follows:

V′ = V1 ∪ V2, where

V1 = { ve | e is a chord inH (P)} and

V2 = { vS | S is a star inG (P)}; we will refer to a vertex inV2 as astar vertex.

E′ = {(vS,ve) | S is a star inG (P) and ve is a vertex inV1 representing a chorde of S}

∪ E1 ∪F ,

whereE1 andF are defined as follows:

DEFINITION OFE1:

For each chordc in H (P) we first define aleft chord lc and aright chord rc . The chordslc and

rc are not unique and may not exist for all chords. Letc=(u ,v), u <v and letc be a chord of star

S in G (P).

Left chord of c :Let ul be the minimum numbered vertex onP such thatc interlaces with an

unrelated chordd incident onul . If ul <u then choose an unrelated chord (ul ,vl) with maximum

vl that interlaces withc to be the left chordlc of c . If no suchul exists thenc has no left chord.

- 8 -

Right chord of c :Let vr be the maximum numbered vertex onP such thatc interlaces with an

unrelated chord incident onvr . If vr >v then choose an unrelated chord (ur ,vr) with minimumur

that interlaces withc to be the right chordrc of c . If no suchvr exists thenc has no right chord.

ThenE1= {(vc ,vlc) |c is a chord ofH (P) andlc is its left chord (if it exists)}∪ {(vc ,vrc) |c

is a chord ofH (P) andrc is its right chord (if it exists)}. (See figure 2b)

DEFINITION OF F:

For each vertexi onP let

Fi = {(vS,vT) | S is a star inG (P) with an internal attachment oni andT ranges over all other

stars inG (P) with an internal attachment oni }

ThenF = i =1∪n−1Fi .

Figure 2c gives the interlacing parity graphGI of the graphG (P) in figure 2a.

It is shown in [Ra93, RV88] that a two-coloring ofGI exists if and only if there exists a pla-

nar embedding ofG (P) with each star inG (P) being embedded entirely on one side onP . Fur-

ther, a planar embedding ofG (P) can be obtained by embedding all stars corresponding to star

vertices of one color insideP and all stars corresponding to star vertices of the other color outside

P .

2.5. Open Ear Decomposition and st-Numbering

An ear decomposition D=[P0,P1, . . . ,Pr −1] of an undirected graphG=(V ,E) is a partition

of E into an ordered collection of edge disjoint simple pathsP0, . . . ,Pr −1 such thatP0 is an edge,

P0∪P1 is a simple cycle, and each endpoint ofPi , for i > 1, is contained in somePj ,j <i , and

none of the internal vertices ofPi are contained in anyPj ,j <i . The paths inD are calledears.

A trivial ear is an ear containing a single edge. An earPi ,i > 1, is openif it is noncyclic and is

closedotherwise.D is anopen ear decompositionif all of its ears are open.

Let D =[P0, . . . ,Pr −1] be an ear decomposition for a graphG=(V ,E). For a vertexv in V ,

we denote byear(v), the index of the lowest-numbered ear that containsv ; for an edgee=(x ,y)

in E , we denote byear(e) (or ear(x ,y)), the index of the unique ear that containse. A vertexv

will belong to Pear(v).

Let G be a biconnected graph with an open ear decompositionD =[P0, . . . ,Pr −1]. Two ears

are parallel to each otherif they hav e the same endpoints; an earPi is a parallel ear if there

exists another earPj such thatPi andPj are parallel to each other.

An open ear decomposition can be obtained in logarithmic time with C-optimal perfor-

mance if the graph is specified by adjacency lists, and with A-optimal performance for other

sparse representations [MR86, MSV86, Ra93, Sc87]. The parallel open ear decomposition algo-

rithm constructs a collection of auxiliary graphs in order to ensure that all ears are open. A con-

struction similar to this is used several times in our planarity algorithm. Given a graphG with a

rooted spanning treeT , the construction creates a graphHv for each non-leaf vertexv in T . There

is a vertex inHv for each edge inT connectingv to a child, as well as for each nontree edge inG

connectingv to a descendant ofv in T . An edge joins two vertices inHv if and only if the edges

- 9 -

represented by the two vertices lie in a common fundamental cycle with lcav . We present the

construction below infunction auxgraphs.It will be used in sections 4 and 7. This construction

is illustrated in figure 3.

The construction given below (as well as several other algorithms in this paper) uses the fol-

lowing definition: LetG=(V ,E) be an undirected graph, and letT=(V ,F ,r) be a spanning tree of

G rooted at a vertexr . Let n=(x ,y) be a nontree edge inT and letlca (e)=v . The fundamental

cycle ofn with respect toT consists of the path fromv to x , followed by edgen , followed by the

path fromy to v . Let (v ,a) be the first edge on the path fromv to x and (v ,b) be the first edge

on the path fromv to y (it is possible for one of these edges to be missing). Then edges (l ,a) and

(l ,b) are thebase edge(s) of the fundamental cycle of n(when they exist) and the verticesa and

b are thebase vertice(s) of the fundamental cycle of n(when they exist). For instance, in figure

3, e is the only base edge of the fundamental cycle of nontree edged , andb andc are the two

base edges of the fundamental cycle of the only un-labeled nontree edge.

figure 3

Illustrating the construction of the auxiliary graph for vertexv .

set functionauxgraphs(graph G=(V ,E), rooted spanning treeT=(V ,D ,r)) of graphs;

vertex v , y , z, z′ , z′′ ; edgee, e′ , e′′ , f ;

pfor each vertexv that is not a leaf inT →

{{Construct a graphHv }}

createa vertex for each tree edge that connectsv to a child ofv ;

create a vertex for each nontree edge that connectsv to a descendant ofv in T ;

pfor each fundamental cycleC of T with v as the lca of the nontree edge inC →

if C has two base edgese′ , e′′ → createan edge (z′ ,z′′) in Hv wherez′ andz′′
are the vertices created to represente′ ande′′ respectively

- 10 -

{{Recall that the termbase edgeswas defined earlier in this section.}}

C has only one base edgee → createan edge inHv betweeny andz, where

y andz are the vertices created to represent edgese and f respectively,f being

the nontree edge inC

fi

rofp

rofp ;

return { Hv | v ∈V }

{{ Hv is theauxiliary graphfor vertexv .}}

end;

Let the vertices inG be numbered in preorder with respect to a depth-first search of the

rooted spanning treeT . Let low (v) be the preorder number of the minimum-numbered vertex that

lies in a fundamental cycle containingv . The following result is well-known and is used in paral-

lel algorithms for testing biconnectivity and for finding an open ear decomposition.

Observation 2.1Let C be a connected component inHv whose vertices correspond to edges

(v ,xi),i =1, . . . ,k . If low (xi)≥preorder(v) for all i , 1≤i ≤k , thenv is a cutpoint inG , and the

removal ofv from G separates all vertices in the subtrees rooted at thexi from the rest ofG .

An st-numberingof a graphG is a numbering of then vertices ofG from s=1 to t =n ,

such that every vertexv other thans and t has adjacent verticesu ,w with u <v <w . Giv en an

open ear decompositionD = [P0, . . . ,Pr −1] for a biconnected graphG=(V ,E) with P0=(s,t), it is

possible to direct each ear inD from one endpoint to the other in such a way that the edge (s,t) is

directed froms to t , the resulting directed graph is acyclic, and every vertex lies on a path froms

to t [MSV86]. Let Gst be this graph, which we will call thest -graph of(G ;D). If the open ear

decompositionD is clear from the context then we will callGst as simply thest-graph ofG . The

graphTst , the st -tree of G ,is the directed spanning tree obtained fromGst by deleting the last

edge in each ear exceptP0. We can similarly constructGts and its directed spanning treeTts by

consideringP0 to be directed fromt to s. We will refer toGts as there verse directed graph of

Gst and vice versa. These graphs can be obtained in logarithmic time with C-optimal perfor-

mance using the algorithm in [MSV86].

The following two facts are well-known [Wh30, Ev79]:

1. A graph has an open ear decomposition if and only if it is biconnected.

2. A graph has anst-numbering if and only if it is biconnected.

- 11 -

2.6. The Local Replacement Graph

We describe a transformation of a biconnected graphG with an open ear decomposition

D =[P0, . . . ,Pr −1] into a new graphGl , called thelocal replacement graphof (G ;D) [FRT89]. In

the graphGl , each earPi in D is converted into a pathP′i with Pi beingP′i with its end edges

deleted. This construction and its properties are crucial to our planarity algorithm, and the reader

is referred to [Ra93] or [FRT89] for details. The treatment here is from [Ra93].

Consider any vertexv in G . Let the degree ofv bed (d≥2). Of thed edges incident onv ,

two belong toPear(v). Each of the remainingd−2 edges incident onv is an end edge of some ear

Pj , with j >ear (v). In the local replacement graphGl we will replacev by a rooted tree withd−1

vertices, with one vertex for each ear containingv . The root of this tree will be the copy ofv for

the ear containingv . The actual form of the tree is computed fromTst andTts as in the algorithm

below. The tree representing vertexv will be called thelocal tree of vand will be denoted byTv .

Figure 4 illustrates some of the construction in Algorithm 2.1.

Algorithm 2.1: Constructing the Local Replacement Graph

Input:

A biconnected graphG=(V ,E);

an open ear decompositionD =[P0, . . . ,Pr −1] for G , with P0=(s,t);

thest-graphGst with its spanning treeTst and thets-graphGts with its spanning treeTts .

Output: The local replacement graphGl of (G ;D).

integer i ,j ; {{These integers range in value from 0 tor −1.}}

vertex a , q , u , v , w ; {{ q , u , v andw may be subscripted by an integer.}}

edgea , e, f , n ; {{ e and f will be subscripted by an integer.}}

rename each vertexv in G by vj , whereear(v)= j ;

{{We will refer to the vertexvear(v) interchangeably as eitherv or vear(v).}}

1. pfor each outgoing earPi at each vertexv in Gst with i >ear (v) →

let the edge inPi incident onv beei and let the nontree edge inPi be f i ;

detach edgeei from v and label the detached endpoint asvi ;

let a be a base edge of the fundamental cycle created byf i in Tst with ear(a)≠i ;

{{Recall that the termbase edge(s) was defined in Section 2.5.}}

if ear(a)≤ear(v) → parent(vi) := vear(v)

ear(a) > ear (v) → parent(vi) := vear(a) fi;

direct this edge fromparent(vi) to vi

- 12 -

rofp;

let the undirected version of the graph obtained in step 1 beG1, the directed version beGst1

and its associated spanning tree beTst1 and the reverse directed graph beGts1 and its associ-

ated spanning tree beTts1;

2. repeat step 1 usingGts1 andTts1 and let the resulting undirected graph beG2, the resulting

directed graph beGts2 and its associated spanning tree beTts2, and the reverse directed graph

beGst2 and its associated spanning tree beTst2;

{{In the following we process parallel ears by constructing a new graphH .}}

pfor each parallel earPi → createa vertexqi rofp ;

pfor each nontree edgen in Tst2 →

if the base edges of the fundamental cycle ofn belong to earsPi andPj , wherePi and

Pj are parallel to each other→ createan edge betweenqi andqj fi

rofp;

call the resulting graphH ;

find a spanning tree in each connected component ofH and root it at the vertex correspond-

ing to the minimum numbered ear in the connected component;

3. pfor each vertexqi in H that is not a root of a spanning tree→

let Pi be directed from endpointu to endpointw in Gst ; let qj be the parent ofqi in

the spanning tree inH ;

replace the parent ofui in Tst2 by uj and the parent ofwi in Tts2 by wj

rofp;

denote the undirected version of the graph formed in step 3 byGl , the directed graph froms

to t by G′st and its associated spanning tree byT′st and the reverse directed graph byG′ts
and its associated spanning tree byT′ts ; call Gl the local replacement graphof G ;

call the underlying undirected tree constructed in steps 1, 2 and 3 from each vertexv in G

the local tree Tv ; call vear(v) the root ofTv , and considerTv to be an out-tree rooted at

vear(v). Call the part ofTv constructed by assigning parents inTst2 theo-tree OTv of Tv and

the part ofTv constructed by assigning parents inTts2 the i-tree ITv of Tv ;

{{In Gst2, OTv is an out-tree rooted atvear(v) andITv is an in-tree rooted atvear(v) and vice-

versa inGts2.}}

denote byP′i the earPi , together with the edge connecting each endpoint ofPi to its parent

in its local tree inGl ;

{{Note that the pathP′i excluding its two end edges isPi .}}

denote the first vertex onP′i when directed as inG′st by L (P′i), the left endpoint of P′i , and

the last vertex onP′i when directed as inG′st by R(P′i), the right endpoint of P′i .

- 13 -

end.

Figure 4 gives an example of the construction of the local replacement graph. For the rest

of the paper we assume that the vertices inGl , G′st andT′st are numbered with theirst-number-

ing.

We will need the following lemma about the pathsP′i that are constructed in the local

replacement graphGl . The proof of this lemma is immediate ifGl contains no parallel ears. The

proof for the case whenGl contains parallel ears is not difficult and is left as an exercise.

Lemma 2.1 There exists a permutationπ of the indices 0 throughr −1 such that

[P′ π(0), . . . ,P′ π(r −1)] is an open ear decomposition forGl .

figure 4

Constructing the local replacement graph [Ra93]

- 14 -

2.7. Triconnected Components

In this section we give some definitions on thetriconnected componentsof a biconnected

graph (see, e.g., [Tu66, HT73, FRT89, Ra93]).

A pair of verticesa ,b in a multigraphG=(V ,E) is a separating pair if and only if there are

two nontrivial bridges, or at least three bridges, one of which is nontrivial, of {a ,b } in G . If G

has no separating pairs thenG is triconnected. The paira ,b is a nontrivial separating pair if

there are two nontrivial bridges ofa ,b in G .

Let {a ,b } be a separating pair for a biconnected multigraphG=(V ,E). For any bridgeX of

{ a ,b }, let X be the induced subgraph ofG on (V−V (X))∪ { a ,b }. Let B be a bridge ofG such

that |E (B) |≥2, |E (B) |≥2 and eitherB or B is biconnected. We can apply aTutte split s(a ,b ,i)

to G by formingG1 andG2 from G , whereG1 is B∪{(a ,b ,i)} and G2 is B∪{(a ,b ,i)}. The

graphsG1 andG2 are calledsplit graphs of G with respect to a,b . TheTutte componentsof G

are obtained by successively applying a Tutte split to split graphs until no Tutte split is possible.

Every Tutte component is one of three types: i) a triconnected simple graph; ii) a simple cycle (a

polygon);or iii) a pair of vertices with at least three edges between them (abond); the Tutte com-

ponents of a biconnected multigraphG are the uniquetriconnected componentsof G .

If a pair of vertices ofG appear in a triconnected component ofG then by Menger’s theo-

rem there must be 3 vertex-disjoint paths inG betweenx andy . Conversely if there are 3 vertex-

disjoint paths betweenx andy then there must be a triconnected component ofG that contains a

copy of bothx andy .

Let G=(V ,E) be a biconnected graph with an open ear decompositionD =[P0, . . . ,Pr −1]. A

separating paira ,b in G is apair separating Pi if a andb are contained inPi and the vertices

betweena andb on Pi are separated from the vertices on ears numbered lower thani . A candi-

date listfor Pi is a sequence of vertices onPi in increasing order of their distance from one end-

point of P′i such that each pair of vertices on the list is either adjacent onPi or a pair separating

Pi . It is known that every separating pair in a graphG with an open ear decompositionD is con-

tained in a candidate list for some ear inD [MR92, Ra93].

Let a ,b be a pair separatingPi . Let B1, . . . ,Bk be the bridges ofPi with no attachments

outside the interval [a ,b] on Pi , and letTi (a ,b)=(j =1∪k Bj)∪Pi (a ,b), wherePi (a ,b) is the portion

of Pi between and including verticesa andb . Then theear split e(a ,b ,i) consists of forming the

upper split graph G1=Ti (a ,b)∪{(a ,b ,i)} and the lower split graph G2=Ti (a ,b)∪{(a ,b ,i)}.

An ear splite(a ,b ,i) is a Tutte split if eitherG1−{(a ,b ,i)} or G2−{(a ,b ,i)} is biconnected.

Let S be a nontrivial candidate list for earPi . Two verticesu ,v in S are anadjacent sepa-

rating pair for Pi if u andv are not adjacent to each other onPi andS contains no vertex in the

interval (u ,v) on Pi . Two verticesa ,b in S are anextremal separating pair for Pi if | S |≥3 and

S contains no vertex in the interval outside [a ,b]. An ear split on an adjacent or extremal sepa-

rating pair is a Tutte split, and the Tutte components ofG are obtained by performing an ear split

on each adjacent and extremal separating pair [MR92, Ra93].

- 15 -

With each ear splite(a ,b ,i) corresponding to an adjacent or extremal pair separatingPi , we

can associate a unique Tutte component ofG as follows [FRT89, Ra93]. Lete(a ,b ,i) be such a

split. Then by definitionTi (a ,b)∪{(a ,b ,i)} is the upper split graph associated with the ear split

e(a ,b ,i). The triconnected component of the ear split e(a ,b ,i), denoted byTC(a ,b ,i), is

Ti (a ,b)∪{(a ,b ,i)} with the following modifications: Call a pairc ,d separating an earPj in

Ti (a ,b) a maximal pair for Ti (a ,b) if there is noe,f in Ti (a ,b) such thate,f separates some ear

Pk in Ti (a ,b) andc andd are inTk (e,f). In Ti (a ,b)∪{(a ,b ,i)} replaceTj (c ,d) together with

all two-attachment bridges with attachments atc andd by the edge (c ,d ,j), for each maximal

pair c ,d of Ti (a ,b), to obtainTC(a ,b ,i). We denote byTC(0,0,0), the unique triconnected com-

ponent that contains edgeP0.

3. Overview of the Planarity Algorithm

Let T be a spanning tree of a biconnected graphG which is being tested for planarity. Our

parallel algorithm uses the following strategy. For each fundamental cycle, we verify, in parallel,

if each of its bridges can be placed either inside or outside the cycle in such a way that no two

bridges on the same side interlace. If this property does not hold for some fundamental cycle,

thenG is clearly nonplanar. If this property does hold for every fundamental cycle, then we can

try to combine these individual embeddings into a global embedding forG , or report thatG is

not planar.

The above approach is highly inefficient since an edge may appear in bridges for several dif-

ferent fundamental cycles, and hence, the size of the total computation could be very large. The

approach in this paper is to work with the ears in an open ear decomposition in the local replace-

ment graphGl of the input graph. Each ear is part of a fundamental cycle of the spanning tree

T′st , and contains the unique nontree edge in that cycle. For each bridge of a fundamental cycle

C , we compute only the attachments of the bridge that lie on the vertices of the ear that contains

the nontree edge inC .

We now giv e an overview of our algorithm. Our planarity algorithm finds an open ear

decompositionD = [P0, . . . ,Pr −1] in the input graphG and derives from it the local replacement

graphGl together with its associated pathsP′i , i =0, . . . ,r −1 and itsst-numbering directed graph

G′st and spanning treeT′st . For each pathP′i , let C′i be the fundamental cycle formed with

respect toT′st by the unique nontree edge inP′i . The direction ofC′i will be the direction ofP′i
in G′st .

For eachi , our algorithm finds certain approximations to the bridges ofC′i with attach-

ments onP′i , called thebunchesof P′i , together with an additional attachment called ahookfor

each bunch. The algorithm constructs a star graphJi for eachi , that (roughly speaking) consists

of P′i together with its bunches, and then formsGi ,I , the interlacing parity graph (defined in Sec-

tion 2.4) ofJi . The algorithm then links these graphsGi ,I with some additional edges that are

derived from the hooks of anchor bunches. This gives theconstraint graph G* which we

describe in Section 5. The vertices of graphG* are the union of the vertices in theGi ,I , together

with some dummy vertices. We show in Section 6 that the graphG* has the property that ifGl is

- 16 -

planar, then any leg al coloring of the vertices ofG* with {0,1} gives a planar embedding ofGl

with edge (s,t) on the outer face. This planar embedding is obtained by embedding bunchB

insideC′i if and only if the star vertex inGi ,I corresponding toB is colored 0 inG* . To show

this, we use some properties of triconnected components ofGl . In Section 7 we give a method to

obtain the cyclic order of edges embedded insideC′i , and of edges embedded outsideC′i , for

eachi . Finally we show that a planar embedding ofG can be obtained from a planar embedding

of Gl by collapsing the vertices in each local tree. All steps in our algorithm can be implemented

in logarithmic time with A-optimal performance.

4. The Bunches and Their Hooks

Let G be a biconnected graph with an open ear decompositionD =[P0,P1, . . . ,Pr −1] and let

Gl , G′st , T′st , andP′i , i =0, . . . ,r −1 be as described in Section 2.6. Let the vertices ofGl be

numbered with theirst-numbering.

Let C′i be the fundamental cycle formed inGl by adding toT′st the unique nontree edge

(x ,y) in the pathP′i and letl be the lca ofx andy . Note that, by thest-numbering property,l is

the lowest-numbered vertex inC′i andR(P′i) is the highest-numbered vertex inC′i . We classify

the bridges ofC′i (defined in Section 2.2) into four types as follows depending on the location of

their attachment vertices onC′i (see figure 5):

A nonanchor bridge of C′i is a bridge ofC′i , all of whose attachments are internal vertices ofP′i .

An anchor bridge of C′i is a bridge ofC′i that has an attachment on an internal vertex ofP′i and

either a) an attachment onC′i − P′i or b) a nonattachment vertexv with v < l or

v > R(P′i).

A spanning bridgeof C′i is a bridge ofC′i that has an attachment on an internal vertex ofP′i , an

attachment onL (P′i) or R(P′i), has no attachment onC′i − P′i , and for each nonattachment

vertexv hasL (P′i) < v < R (P′i).

an irrelevant bridgeof C′i is a bridge ofC′i none of whose attachments is on an internal vertex of

P′i . Our algorithm will not look at irrelevant bridges.

We conclude this section with the following claim whose proof makes use of material from

[Ra93]. The results in [Ra93] are for bridges ofP′i , not C′i , hence they need to be adapted

appropriately to obtain the results we need here.

Claim 4.1Every spanning bridge ofC′i has attachments on bothL (P′i) andR(P′i).

Proof Let B be a bridge ofC′i that has an attachment onL (P′i) as well as on an internal vertex of

P′i . By definition,B is either a spanning bridge or an anchor bridge. We will now show that ifB

is a spanning bridge thenB has an attachment onR(P′i).

Let x=L (P′i). Let e = (u ,x) be an attachment edge ofB on x , and lete belong toP′ j . If

P′ j is parallel toP′i thenB has an attachment onR(P′i). Therefore, in this case, ifB is a span-

ning bridge it has attachments on bothL (P′i) andR(P′i).

- 17 -

figure 5

Illustrating the types of bridges ofC′i :
B1 is a nonanchor bridge ofC′i ;
B2 is a spanning bridge ofC′i ;

B3 andB4 are anchor bridges ofC′i .

We now show that ifP′i andP′ j are not parallel thenB is an anchor bridge. Letl be the lca

of the nontree edge inP′i . By the construction of the local replacement graphGl , R(P′ j) is not a

descendant inT′st of the vertexz, which is the vertex immediately succeedingx on P′i (since

otherwise,L (P′ j) would be a child ofL (P′i)). Now consider the nontree edgen=(r ,R(P′ j)) in
P′ j . One of the following 3 cases applies:

1) R(P′ j) is incident on a vertex on the tree path froml to R(P′i), excluding R(P′i); in this case

B is an anchor bridge ofC′i sinceR(P′ j) is an attachment onC′i −P′i .

2) R(P′ j) is incident on a vertexa that has a path inGl to t (and hence tos) that avoids all ver-

tices inC′i ; B , then, is an anchor bridge ofC′i since it contains a vertex numbered smaller than

x .

3) Neither case 1 nor 2 applies. In this caseC′ j must contain the tree edge from the parent ofx to

x , and no ancestor ofR(P′ j), with the possible exception of the lca ofn is incident on a vertex in

- 18 -

C′i ; B , then, is an anchor bridge ofC′i since it either containss (if the lca ofn is a proper ances-

tor of l) or the lca ofn is an attachment onC′i − P′i (if the lca ofn is a descendant ofl).

We hav e shown that any bridgeB of C′i with an attachment onL (P′i) and an internal ver-

tex of P′i is either an anchor bridge ofC′i or has an attachment onR(P′i) (or both). This estab-

lishes that a spanning bridge with an attachment onL (P′i) must have an attachment onR(P′i).
The analysis for the case when the spanning bridge has an attachment onR(P′i) is similar.[]

4.1. The Bunch Collection

A set of edgesS incident onP′i , which form a subset of the attachment edges of a bridge of

C′i , is called asegmentof P′i . We further classify a segment as anonanchor segment, an

anchor segmentor aspanning segment, depending on whether the bridge ofC′i that containsS

is a nonanchor bridge, an anchor bridge or a spanning bridge respectively.

A collection of segments ofP′i is called acluster of P′i if for any segment in the collection,

there is a path inGl between any pair of edges in the segment that avoids all vertices inC′i and in

any of the other segments in the collection.

A bunch collectionB of P′i is a cluster ofP′i that contains all attachments on internal ver-

tices ofP′i and some of the attachments onL (P′i), and which satisfies the following:

If B is a nonanchor segment in the cluster, thenB contains all edges in a nonanchor bridge

of C′i ; and if B is a spanning segment, thenB contains all attachments of a spanning

bridge ofC′i on the internal vertices ofP′i together with at least one attachment onL (P′i).

We call each segment in a bunch collection abunch.

In this section we present an algorithm to find a bunch collection for eachP′i . In the next

section, we find an edge for each bunch, called itshook, which will allow us to determine if the

bunch is nonanchor, anchor or spanning. The hooks will also be used to determine a global planar

embedding forG if G is planar. We will have more to say about hooks in the next section. We

will also deal with other types of segments and clusters in section 7.

In steps 1 - 3 of Algorithm 4.1 below we compute a cluster for eachP′i as follows: we first

form G′′st , a graph obtained fromG′st by collapsing the internal vertices ofP′i (this computation

is similar to the one in [FRT89] and [Ra93] for the construction of the ‘ear graphs’ of theP′i). In
G′′st , all attachments on the internal vertices ofP′i become incident on a single vertexpi , where

pi represents the vertex obtained by collapsing the internal vertices ofP′i . In steps 2 and 3 of

Algorithm 4.1 we applyf unction auxgraphs(given in Section 2.5) toG′′st and its associated

spanning treeT′′st . In the auxiliary graphHi constructed forpi by f unction auxgraphs, we find

the connected components inHi − { f }, where f represents the edge ofP′i incident onR(P′i).
We assign the edges inG′st corresponding to the vertices in each of these connected components

to a segment ofP′i . The edges in each segment are clearly part of a single bridge ofC′i since by

construction there is a path inG′′st (and hence inG′st) between them that avoids the vertices and

edges corresponding toC′i . In steps 4 to 6 of Algorithm 4.1 we add attachments to the left end-

point of P′i to those clusters that can reach such an attachment by a path avoidingC′i that

- 19 -

contains a single nontree edge. It is not difficult to see that the collection of segments obtained

for eachP′i at the end of step 3 is a cluster in which each nonanchor segment contains exactly the

attachment edges of a nonanchor bridge ofC′i , and that the collection at the end of step 6 is a

bunch collection.

Figure 6 illustrates the construction in Algorithm 4.1.

figure 6

Illustrating the construction in Algorithm 4.1.

Steps 1-4 are illustrated above. In step 5, label 1 is added to segmentS1 and label 2 is added toS1

andS2. In step 6, the union ofS1 andS2 is formed (since label 2 was added to both sets) result-

ing in a single bunch forP′i : { e1,e3,e4,e5,e6}.

Algorithm 4.1: Forming the Bunch Collection

Input:

Biconnected graphG=(V ,E);

an open ear decompositionD =[P0, . . . ,Pr −1] for G , with P0=(s,t);

the local replacement graphGl of (G ;D), together with the associatedG′st ,T′st and the paths

P′i , i =0, . . . ,r −1.

- 20 -

Output: A bunch collection for eachP′i .

integer i , j , k , m; {{These integers range in value from 0 tor −1.}}

vertex a , b , l , p , u , v , w , wf , wf ′ , x , y , z; {{The vertex p will be subscripted by an inte-

ger.}}

edgee, f , e1, e2, f ′ ;

setX , X′ ,Di of edges;

1. inG′st collapse the internal vertices of each pathP′i to form vertexpi ; let vertext bep0;

call the resulting graphG′′st , and the resulting spanning tree derived fromT′st asT′′st ; call

the resulting underlying undirected graphG′′ ;

{{Note that G′′st need not be acyclic.}}

2. H := auxgraphs(G′′ ,T′′st); {{function auxgraphsis given in Section 2.5.}}

let H = { Hi | i =1, . . . ,r −1};

{{ Hi is the auxiliary graph corresponding to vertexpi in G′′ }};

3. pfor eachi →

let f be the edge inP′i incident onR(P′i) and letwf be the vertex representingf in

Hi ;

compute the connected components ofHi − { wf } and make each set of edges ofGl

corresponding to the vertices in each connected component a segment ofP′i

rofp ;

{{Steps 4 through 6 consider attachments onL (P′i) for eachi . Step 4 forms a cluster of

these attachments for eachi by forming a segment (call it agroup) of each set of attach-

ments onL (P′i) that can reach one another through tree edges and nontree edges that have

L (P′i) as their lca; step 5 adds the label of each such group to any segment computed in

step 3 that can reach one of the edges in the group by a path of tree edges and one nontree

edge with lcaL (P′i). Finally, in step 6 we union all segments computed in step 3 that added

an edge from the same group in step 5.

Steps 4-6 are specified below in a manner that makes the construction clear. In lemma 4.2

we describe a slightly different implementation of these steps that allows for an efficient

parallel algorithm.}}

4. pfor eachi →

let ear(L (P′i)) be j ;

let f ′ be the edge inP′i incident onL (P′i) and letwf ′ be the vertex representingf ′ in

Hj ;

- 21 -

compute the connected components ofHj − { wf ′ };

let Dk ,k=1, . . . ,l be the sets of edges inGl corresponding to the vertices in the con-

nected components ofHj − { wf ′ }

rofp ;

5. pfor each nontree edgee=(u ,v) in G′′st whose fundamental cycle contains both base edges

→

{{Recall that the termbase edge(s) was defined in Section 2.5.}}

{{In the following we compute attachments toL (P′i), the left endpoint ofP′i for each

P′i .}}

let l =lca (u ,v);

let e1=(l ,a) ande2=(l ,b) be the two base edges of the fundamental cycle created by

(u ,v), with a an ancestor ofu andb an ancestor ofv ; let a=pk andb=pj ;

a. if edgee2 is incident onL (P′k) in Gl →

if u=a → assign the label of the setDj (computed in step 4 forP′k) that con-

tainse2 to X whereX is the segment ofP′k that containse

u≠a → assign the label of the setDj (computed in step 4 forP′k) that contains

e2 to X′ , whereX′ is the segment ofP′k that contains edge (a ,y), wherey is the

unique child ofa which is an ancestor ofu

fi

fi;

b. if edgee1 is incident onL (P′ j) in Gl →

{{This is symmetric to step a.}}

assign the label of the setDj (computed in step 4 forP′ j) that containse1 to X ,

whereX is the segment ofP′ j that containse

v≠ b → assign the label of the setDj (computed in step 4 forP′ j) that con-

tainse1 to X′ , whereX′ is the segment ofP′ j that contains edge (b ,z), wherez

is the unique child ofb which is an ancestor ofv

fi

fi

rofp;

6 for each edge setDj whose label was added to a segment in step 5→ union all of the seg-

ments ofP′i that contain the label ofDj and add (any) one edge inDj to the resulting set

rof

{{Each set formed in step 6 is a bunch ofP′i , and the collection of these sets is a bunch col-

lection forP′i . Some edges ofGl can appear in the bunches of several differentP′i because

of steps 5 and 6.

- 22 -

We will denote a bunch ofP′i by (B ,i) whereB denotes the set of edges in the bunch; if the

index i is clear from the context we will letB denote the bunch.}}

end.

The following observation is a simple consequence of the construction of the local replace-

ment graph.

Observation 4.1In the graphG′′st constructed in step 1 of Algorithm 4.1,

a) Every outgoing edge frompi is a tree edge inT′′st except for the unique outgoing edge that

lies onP′i .

b) Every incoming edge topi is a nontree edge except for the unique incoming edge that lies

onP′i .

The next lemma shows that Algorithm 4.1 constructs a cluster for eachP′i .

Lemma 4.1The collection of segments constructed for eachP′i by Algorithm 4.1 is a cluster.

Proof It is straightforward to see that the edges in each segment ofP′i as computed in step 3

belong to a single bridge ofC′i and that these segments are disjoint. It is also straightforward to

see that the edges in each setDj constructed in step 4 belong to a single bridge ofP′i , and if the

label of setDj is added to a segment in step 5, then all edges inDj belong to the same bridge of

P′i as the segment. The sets of edges that are unioned in step 6 are all clearly part of the same

bridge ofC′i . Finally if e and f are two edges in a segmentX of P′i constructed by Algorithm

4.1 there is a path betweenx andy consisting of descendant tree edges of edges inX and of non-

tree edges that causedX to be formed in steps 2, 4, and 5, and this path avoids all vertices inC′i
and other segments ofP′i .[]

As with segments we will refer to a bunch (B ,i) as anonanchor bunch,ananchor bunchor

a spanning bunch,depending on whether the bridge ofC′i that contains the edges inB is a

nonanchor bridge, an anchor bridge or a spanning bridge ofC′i respectively. At this point we are

not in a position to ascertain if a given bunch is nonanchor, anchor or spanning, but we will be

able to do so after Algorithm 4.2 in the next section. However, the following two observations

give us some insight into this. Both of them can be proved using Observation 4.1, which allows us

to conclude Observation 4.2 immediately (by thest-numbering property) and Observation 4.3

also follows by considering the configuration of the attachments onL (P′i) of a spanning bridge

of C′i .

Observation 4.2Let (B ,i) be a nonanchor bunch ofC′i as computed in Algorithm 4.1. ThenB is

the set of all attachment edges of a nonanchor bridge ofC′i .

Proof Among the outgoing edges frompi , any paira ,b that both belong to a nonanchor bridge of

C′i must have a path connecting them that avoidsC′i and that contains nontree edges with lcapi

or larger. But such a group is precisely what is identified in step 3 of Algorithm 4.1.

The only incoming edges topi that can be part of a nonanchor bridge ofC′i are those whose

other endpoint is a descendant ofpi in T′′st . But these edges are again identified to be in their

- 23 -

corresponding group in step 3.[]

Observation 4.3Let (X ,i) be a spanning bunch ofC′i as computed in Algorithm 4.1. ThenX has

all attachments of a spanning bunch ofpi on internal vertices ofP′i and at least one attachment

onL (P′i).

Proof The general structure of the attachments of a spanning bridge ofC′i are as follows: Its

attachments on internal vertices ofP′i can be partitioned into a cluster of segments, each of which

is identified in step 3 of Algorithm 4.1 (as described in the proof of Observation 4.2). The attach-

ments onL (P′i) can again be partitioned into a cluster of segments, each of which is identified in

step 4 of Algorithm 4.1. There is connection between each segment in the latter cluster and one or

more segments in the former cluster by means of nontree edges with lcaL (P′i); this is identified

in step 5 of Algorithm 4.1. In step 6 segments in the cluster identified in step 3 that are connected

to one another through step 5 are unioned together.

The one remaining set of attachments is the set incident onR(P′i). But by Observation 4.1

all of these attachments must be nontree edges, hence they do not add any new attachment to the

spanning bridge other than themselves. Hence, a spanning bunchX constructed by Algorithm 4.1

will contain all attachments of a spanning bridge on internal vertices ofP′i and at least one

attachment onL (P′i). []

Lemma 4.2Algorithm 4.1 constructs a bunch collection for eachP′i and can be implemented to

run in logarithmic time with A-optimal performance.

Proof Lemma 4.1 and Observations 4.2 and 4.3 show that Algorithm 4.1 constructs a bunch col-

lection for eachP′i . To obtain the performance bound we first show the total size of all of the seg-

ments computed by the algorithm isO (n). Edges are added to the segments in step 3 and in step

6 of the algorithm. Each edge ofGl is added to at most two segments in step 3 (once for each

endpoint) so the total number isO (n). In step 6, at most two edges are added to segments for

each nontree edge, hence the total number is againO (n).

We now analyze the performance of the algorithm. The major computation before step 4 is

in finding connected components which can be performed in logarithmic time with A-optimal

performance, and in finding lcas of pairs of vertices in a rooted tree which can be performed opti-

mally in logarithmic time using the algorithm of [SV88].

Step 4 as specified in the algorithm is inefficient since we would need to compute connected

components in several different copies ofHj with one node removed. Instead we compute the

blocktree T′ for each connected component in the collectionH computed in step 2. (Theblock-

treeof a connected graphG is a tree with a vertex for each block and each cutpoint inG , and an

edge between each cutpoint and the blocks that contain it.) Then each connected component in

Hj −{ wf ′ } corresponds to an interval, starting and ending withwf ′ of an Euler tour ofT′ . Hence

with some simple preprocessing each vertex can determine its connected component inHj −{ wf ′ }

and consequently, the label of its setDk as needed in step 5. This can be performed in logarithmic

time with A-optimal performance.

- 24 -

For the caseu≠a in step 5a and the casev≠b in step 4b we need the second edge on the

path from the lca of a nontree edge to one of its endpoints; this can be computed optimally in log-

arithmic time by a simple extension of the lca algorithm of [SV88].

Step 6 requires several unions to be performed in parallel. For this, we create a triple (i ,j ,X)

for eachDj whose label is added to segmentX in step 5. We then sort these triples using the

algorithm in [Ha87]. We form an auxiliary graph with a vertex for each clusterX formed in step 3

for eachP′i and we connect up all such vertices with identical second entry in the triple. Each

connected component in the resulting graph together with an edge in eachDj corresponding to

the second entries in their triples gives a set to be computed in step 6. This can be computed in

logarithmic time with A-optimal performance.[]

At this point we have a bunch collection for eachP′i in which each bunch either has all

attachments on internal vertices ofP′i or has an attachment onL (P′i). In the former case the

bunch is either a nonanchor or an anchor bunch (by Observation 4.3), and in the latter case the

bunch is either a spanning or an anchor bunch. Our planarity algorithm will find one additional

attachment for each anchor bunch. This is needed so that we can combine the embedding we

obtain for the bunches ofP′i with the embeddings for otherP′ j in a consistent manner (ifGl is

planar). The next section gives an efficient algorithm for finding this additional attachment edge,

which we call ahook of the bunch.

4.2. The Hooks of Bunches

In this section we identify an additional edge for each bunch computed in Algorithm 4.1

called itshook. The hook of a bunch ofP′i is an attachment edge of the bridge ofC′i that con-

tains the bunch. The hook of a nonanchor bunch or a spanning bunch is an edge incident on a

vertex inP′i , and will not be used in later computation. The key computation here is for the hook

of each anchor bunch. The hook of an anchor bunch is an attachment onC′i − P′i of the bridge of

C′i that contains the edges in the anchor bunch, -- with the possible exception that the hook may

be the incoming tree edge toL (P′i) if L (P′i) is the lca of the nontree edge inP′i . In either case

the hook of an anchor bunch is an edge not contained in the bunch. We will use the hooks of

anchor bunches in the next section to relate the embedding for the bunches ofP′i to the embed-

dings for the bunches of the otherP′ j , and hence obtain a consistent planar embedding for the

entire graphG .

We first need some definitions. Recall that the vertices ofT′st are numbered with their

st-numbering. For each edgee=(parent(v), v) in T′st , we define the following:

out(e) is the set of nontree edges that are either incoming to or outgoing from a descendant ofv .

low (e) = n ∈out(e)min lca (n); note thatlow (e) is the lowest numbered vertex in any fundamental

cycle that containse.

Let S = { n |n ∈out(e) and lca (n)≠low (e)}. Then we definelow2(e) to be min(v , n ∈Smin lca (n));

note thatlow2(e) is the second smallest vertex that is the lca of an edge inout(e) if such a vertex

smaller thanv exists.

- 25 -

For a nontree edgen=(x ,y) in Gl , we defineout(n) = { n }, low (n) = lca (n) in T′st andlow2(n)

to be max(x ,y).

Let X be a set of edges inGl . Then, we defineout(X), low (X) andlow2(X) as follows:

out(X) = e ∈X∪out(e); and

low (X) = e ∈Xmin low (e).

Let l 1(X) = e ∈X andlow (e)≠low (X)min (low (e)), andl 2(X) = e ∈Xmin low2(e).

Then,low2(X) = min(l 1(X), l 2(X)).

Note thatlow2(X) is the second smallest vertex that is the lca of an edge inout(X) if such a ver-

tex exists.

In Algorithm 4.2 presented below, we computelow (B) and low2(B) for each bunchB of

eachP′i , and we use this computation to find an additional attachment onC′i , called thehook,

for each bunch. The value oflow2(B) is used to ensure that the hook ofB is not incident on

R(P′i) if B is an anchor bunch. This enables us to verify thatB is an anchor bunch and not a

spanning bunch, and it also enables us to relate the embedding ofB with respect toC′i with the

embedding of its hook with respect to some other ear, as described in Section 5.

As in Algorithm 4.1, we specify Algorithm 4.2 in a manner easy to understand and prove

correct. Step 10 of the algorithm, as specified, is not efficiently implementable, but in Lemma 4.7

we give an alternate implementation for the step that makes it efficient.

Figure 7 illustrates the construction in Algorithm 4.2.

Algorithm 4.2: Finding Hooks of the Bunches

Input:

The local replacement graphGl of (G ;D);

the bunches of eachP′i ;

Output: A hook for each bunch.

integer i , j ; {{ i and j range from 0 tor −1.}}

edgef , h ; vertex u , v , w , x ;

setD , X of edges; setU of vertices;

bunch (B ,i);

edge functionhook (setX of edges inGl , integer i);

vertex l , p , q , u , v , x , y , z;

edged , e, f , m, n ;

- 26 -

figure 7

Illustrating the construction in Algorithm 4.2.

l := lca (d) in T′st , whered is the nontree edge ofP′i ;

1. if low (X) < l → return (parent(l),l) fi;

{{In steps 2-4 we identify an edge inout(X) which we will use in steps 5-8 to return a

hook forX .}

2. n := an edge inout(X) with lca (n) = low (X);

3. if low (X) =l and L (P′i) > low 2(X) → n := an edge in out(X) with

lca (n) = low2(X)

4. low (X) = l and L (P′i) ≤ low2(X) and there is an edgem in out(X) not incident

onR(P′i) with lca (m) = l → n := m

fi

5. let n=(x ,y) and lete=(u ,v) be an edge inX that lies in the fundamental cycle ofn

with u contained inP′i ; let x be a descendant ofv (and hencey is not a descendant of

v); let f be a base edge (defined in Section 2.5) of the fundamental cycle ofn with f

not lying on the path froms to z, wherez is the vertex onP′i adjacent toR(P′i);

- 27 -

6. if f is not contained inC′i → return f

7. y > R(P′i) → return (parent(l),l)

8. y ≤ R(P′i) →

p := lca (y ,R(P′i));

a. if p=y → return n

b. p≠y →

let q be the unique child ofp in T′st that is an ancestor ofy ;

return (p ,q)

fi

fi

endhook;

{{Main program}}

pfor each bunch (B ,i) in Gl →

9. if all attachments ofB are on internal vertices ofP′i → h := hook(B ,i)

10 B has an attachment onL (P′i) →

X := j ∈J∪Dj , whereJ is the set of labels that were assigned toX in step 6 of

Algorithm 4.1;

h := hook(B∪X ,i)

fi

rofp

end.

Lemma 4.3Let X be a set of edges not contained inC′i but with each edge inX incident

on a vertex inP′i . Functionhook(X ,i) returns an edgef in a bridge ofC′i that contains an

edge inX .

Proof If edge f is returned in step 1 of functionhook let e be an edge inX with

low (e) = low (X) and letn be an edge inout(e) with lca (n) = low (X). Sincelca (n) < l ,

lca (n) must be an ancestor ofparent(l). Then the (reverse) path inGl consisting of the

path fromparent(l) to lca (n) followed by the path fromlca (n) to n followed by the path

from n to e in T′st shows thatf is an attachment edge of the bridge ofC′i that containse.

If f is not returned in step 1, consider the nontree edgen=(x ,y) in step 5 of function

hook. The edgen is in out(X) and lca (n) ≥ l . Hence the edgef as computed in step 5 is

incident on a vertex inC′i . If this edgef is returned in step 6 then the path fromf to n ,

followed by the path fromn to e in T′st shows thatf is in the same bridge ofC′i as edgee,

which is inX .

- 28 -

If edge f is not returned in steps 1 or 6 thenf is the base edge ofC′i that lies on the

path froms to R(P′i). If edge (parent(l),l) is returned in step 7 then the path from edgee

to n in T′st , followed by the path fromy to t that contains vertices in increasing order of

their st-numbering, followed by the path froms to parent(l) is a path betweene and edge

(parent(l),l) that avoids all vertices inC′i . Further, sincel is the lca of the nontree edge in

C′i the edge (parent(l),l) is incident on a vertex inC′i .

If edgen is returned in step a, thenn is an attachment on a vertex inC′i on the path

from l to R(P′i). Finally if edge (p ,q) is returned in step b, thenp is a vertex onC′i on the

path froml to R(P′i) and hence edge (p ,q) is incident on a vertex inC′i . In this case the

path from edgee to x in T′st , followed by edge (x ,y), followed by the tree path fromy to

edge (p ,q) avoids all vertices inC′i .[]

Corollary 1 to Lemma 4.3Let (B ,i) be a bunch ofP′i and leth be its hook as calculated

in Algorithm 4.2. Thenh is an attachment edge of the bridge ofC′i that contains the edges

in B .

Corollary 2 to Lemma 4.3Let (B ,i) be a nonanchor bunch with hookh . Thenh is inci-

dent on an internal vertex ofP′i .

The following two lemmas deal with the hooks of anchor and spanning bunches.

Lemma 4.4Let (B ,i) be an anchor bunch ofP′i with hookh . Then eitherh is incident on a

vertex inC′i − P′i or h = (parent(l),l), wherel is the lca of the nontree edge ofP′i .

Proof We first note that if the edgen used in step 5 is chosen in step 3 or step 4, thenn is

not incident onR(P′i) and neither is the hook returned in step 6, 7, a or b.

The proof is divided into two cases depending on whether or notB has an edge inci-

dent onL (P′i).

CASE 1:B contains no edge incident onL (P′i). SinceB is part of an anchor bridge ofC′i
there must be a pathp from an edge inB to either an attachment edge onC′i − P′i or a ver-

tex v with v <l or v >R(P′i), with pathp avoiding all vertices inC′i . Further we can find

such a pathp with exactly one nontree edgen . The edgen is in out(B) and

lca (n) < L (P′i); further,n is not incident onR(P′i). Hence functionhook(B ,i) will return

either an edge incident onC′i − P′i or the edge (parent(l),l).

CASE 2:B contains an edge incident onL (P′i). In this case the pathp of CASE 1 may

contain several nontree edges with lcaL (P′i) before reaching an attachment edge on

C′i − P′i or a vertexv not having a value betweenl andR(P′i). But all of the base edges

of the fundamental cycles of these nontree edges will be in someDj ,j ∈J as computed in

step 10. Hence all of these nontree edges are included inout(X) and hence the argument of

CASE 1 applies withB replaced byB∪X .[]

Lemma 4.5Let (B ,i) be a spanning bunch ofP′i with hookh . Thenh is incident onL (P′i)
or R(P′i).

- 29 -

Proof By Observation 4.3B contains an edgee incident onL (P′i). Let e be contained in

P′ j . By the construction of the local replacement graph,R(P′ j) is not incident on a descen-

dant of an internal vertex ofP′i . HenceB would be part of an anchor bridge ofC′i unless

R(P′ j) = R(P′i). Henceout(B) contains a nontree edge incident onR(P′i). The lca of this

edge equalslow (B) since if low (B) is smaller thenB would be an anchor bridge. Hence

either an edge incident onR(P′i) is returned in step a on function callhook(B∪X ,i) or an

edge incident onL (P′i) is returned in step 6 on function callhook(B∪X ,i). (this could

happen ifl = L (P′i)).[]

The following lemma gives bounds on the parallel complexity of Algorithm 4.2.

Lemma 4.7Algorithm 4.2 can be implemented to run in logarithmic time with A-optimal

performance.

Proof The low andlow2 values for all edges can be computed optimally in logarithmic time

using the Euler tour technique [TV85]. We can also compute with the same bounds a collec-

tion Z (e) of two or three edges inout(e) with lca equal tolow (e) and such that for any ver-

tex v in Gl one of these edges is not incident onv (if such a collection of edges exists in

out(e)). This computation allows us to find in constant time, an edge inout(e), not inci-

dent onR(P′i), and with lca equal tolow (e), as needed in step 4 of function hook. Once

these values are known for setX , all steps of any single call to functionhook(X ,i) can be

computed in constant time with one processor. Finally the total size of all of the sets in the

function call in step 9 of the main program is linear in the size ofGl and hence this step can

be performed optimally in logarithmic time using the preprocessing described above.

As in the analysis of the performance of Algorithm 4.1, step 10 in Algorithm 4.2 will

not be efficient if implemented as described in the main program. Instead we will implement

step 10 by preprocessing as in the proof of Lemma 4.2 by constructing the blocktrees for the

connected components in the collectionH (computed in step 2 of Algorithm 4.1). We will

computelow , low2 andZ values within these blocks. In our parallel implementation of

Algorithm 4.2 we will pass only thelow , low2 andZ values to functionhook rather than

the entire set of edges in the component. This results in a parallel algorithm that runs in log-

arithmic time with A-optimal performance.[]

4.3. The Bunch Graphs

Let Qi be the pathP′i together with an edge fromL (P′i) to a new vertexU (P′i). In

the following we define for each pathP′i in Gl , a star graph,Ji (Qi), called thebunch graph

of P′i . We create a starSB for each bunchB of P′i by creating a new vertexvB and adding

attachment edges as follows: we replace each edge (x ,y) in B with y not onP′i by the edge

(x ,vB). If B is an anchor bunch we include an attachment edge (U (P′i),vB) to represent the

hook. If B is a spanning bunch we include an attachment edge (R(P′i),vB). The center of

starSB is vB and each edge inSB corresponds to an attachment edge ofB on a vertex inC′i .

The bunch graph Ji (Qi) is the star graph consisting of the pathQi , together with the

starSB for each bunchB of P′i .

- 30 -

In the next section we will use the interlacing parity graph (defined in Section 2.4) of

eachJi (Qi). We will denote this interlacing parity graph byGi ,I . Recall that the graphGi ,I

contains vertices for certain chords derived from the stars inJi (Qi) as well as a vertex for

each star ofJi (Qi). We will refer to the latter vertices asbunch verticesand we will denote

the bunch vertex corresponding to (B ,i) by uB ,i .

5. The Constraint Graph

In this section we define theconstraint graph G* of Gl . G* consists of two parts. One

part consists of the union over alli of the interlacing parity graph,Gi ,I , of the bunch graph

Ji (Qi). Recall that ifGi ,I is not 2-colorable then the bunches ofP′i (and hence the bridges

of C′i) cannot be embedded in a planar manner with respect toC′i and henceGl is not pla-

nar. If eachGi ,I is 2-colorable then the bunches of eachP′i can be placed in a planar man-

ner with respect toC′i . Howev er this does not necessarily imply thatGl is planar since we

need to incorporate some additional constraints. These additional constraints arise from two

sources:

a) The bunches ofP′i are subsets of the bridges ofC′i and hence several different

bunches may belong to the same bridge ofC′i . The 2-coloring ofGi ,I should be con-

strained so that all of these bunches get the same color and hence all edges in the cor-

responding bridge get embedded on the same side ofC′i .

b) Even ifGi ,I were constructed from the bridges ofC′i rather than the bunches ofP′i ,
we still need to incorporate additional constraints that relate the inside and outside of

different fundamental cycles with overlapping edges.

In order to incorporate the missing constraints into the union of the interlacing parity

graphs, in the following algorithm we introduce certain edges linking theGi ,I , using some

additionaldummyvertices. These link edges are determined by the hooks of anchor bunches

that we computed in Algorithm 4.2. In Section 6 we relate 2-colorings ofG* to planar

embeddings ofGl and we show that any 2-coloring ofG* gives a consistent planar embed-

ding for a planar graphGl .

The procedure for introducing the link edges is fairly straightforward. For each anchor

bunch, either a single link edge or a path consisting of two link edges is added in the con-

straint graph. LetB be an anchor bunch ofP′i and let its hook (x ,y) be incident on vertexy

in C′i . Let ear(y) be j (note thatj ≠i). The algorithm given below locates the bunchB′ of

P′ j that contains edge (x ,y). Depending on the configuration ofP′i , P′ j and (x ,y), it is the

case either thatB andB′ must be embedded on the same side ofC′i andC′ j respectively, or

on opposite sides ofC′i andC′ j . In the former case we place a path of two link edges con-

nectinguB ,i and uB′ ,j (by introducing a dummy vertex) thereby forcinguB ,i and uB′ ,j to

have the same color in any 2-coloring ofG* . In the latter case we place a single link edge

connectinguB ,i and uB′ ,j , thereby forcinguB ,i and uB′ ,j to have different colors in any

2-coloring ofG* .

- 31 -

Algorithm 5.1: Forming the Links of the Constraint Graph

Input:

A biconnected graphG with an open ear decompositionD =[P0, . . . ,Pr −1];

the local replacement graphGl of (G ;D) together withG′st andT′st ;

the bunches of eachP′i in Gl ;

a hook for each anchor bunch;

the interlacing parity graphGi ,I for each bunch graphJi (Qi).

Output: The constraint graphG* of Gl .

integer i , j , k , m; {{The range of the integers is from 0 tor −1.}}

vertex l , p , q , w , x , y , z; edgee, f , h , n ;

bunch (A ,j), (B ,i);

procedureodd(bunch (B ,i), (A ,j));

vertex uB ,i , uA ,j ;

createan edge between the bunch vertexuB ,i in Gi ,I and the bunch vertexuA ,j

in Gj ,I

{{We will refer to this edge as thelink path between the vertices uB ,i and

uA ,j .}}

endodd;

procedureeven(bunch (B ,i), (A ,j));

vertex v , uB ,i , uA ,j ;

createa vertexv ; {{We will refer to v as adummyvertex.}}

createan edge between the vertexv and the bunch vertexuB ,i in Gi ,I ;

createan edge between the vertexv and the bunch vertexuA ,j in Gj ,I

{{We shall refer to the path of length 2 formed by the two newly-created edges

as thelink path between the vertices uB ,i and uA ,j .}}

endeven;

{{Main program}}

pfor each anchor bunchB of eachP′i →

let n=(p ,q) be the unique nontree edge inP′i with q=R(P′i);

let lca (n)=l ;

let h be the base edge ofC′i that lies on the path froml to q and lete be the

other base edge ofC′i ;

- 32 -

let hook(B) be f =(x ,y);

1. if f = (parent(l),l) →

let ear(h)= j ;

A := the set of edges in the bunch ofP′ j that contains edgee;

{{Note that e must be contained in a bunch ofP′ j ev en if L (P′ j) = l

because of the presence of nontree edgen whose fundamental cycle con-

tainse andh as its base edges.}}

even((B ,i), (A ,j))

2. f is an edge incident on a proper ancestory of L (P′i) andy > l →

let w be the unique child ofy on the tree path froml to L (P′i); let (y ,w)

be an edge inP′ j ;

A := the set of edges in the bunch ofP′ j that contains edgef ;

even((B ,i), (A ,j))

3. f is incident on a vertexy in the path froml to q →

let z be parent(y) in T′st and letw be the unique child ofy on the tree

path froml to q ;

let (y ,z) be contained inP′ j , let (y ,w) be contained inP′k , let (x ,y) be

contained inP′m ;

a. if m ≠ j →

A := the set of edges in the bunch ofP′ j that contains edgef ;

odd((B ,i), (A ,j))

b. m = j →

A := the set of edges in the bunch ofP′ j that contains edge (y ,w);

even((B ,i), (A ,j))

fi

fi

rofp

end.

Lemma 5.1Algorithm 5.1 can be implemented to run optimally in logarithmic time.

ProofStraightforward.[]

We now relate the link paths created in Algorithm 5.1 to a planar embedding ofGl .

The link paths introduced in Algorithm 5.1 are either of length 1 or length 2. The length of a

link path is determined by the relative placements of the two bunches it connects with

respect to their fundamental cycles in a planar embedding ofGl as described in the follow-

ing lemma.

- 33 -

Lemma 5.2Let (A ,j) and (B ,i) be a pair of bunches inGl whose corresponding verticesu

andv in G* are connected by a link pathp in G* .

If Gl is planar andĜl is a planar embedding ofGl with edge (s,t) on the outer face then

a) If p = <u ,v > then inĜl the edges in bunchA are embedded insideC′ j if and only if

the edges in bunchB are embedded outsideC′i .

b) If p = <u ,d ,v > whered is a dummy vertex created by procedureeven, then inĜl the

edges in bunchA are embedded insideC′ j if and only if the edges in bunchB are

embedded insideC′i .

Proof The pathp must have been introduced in step 1, 2, a or b of Algorithm 5.1. These

four cases are shown in figure 8. We verify the lemma only for step a (the other steps are

similar or easier to verify).

Let p be introduced in step a of Algorithm 5.1. Letn′ be the nontree edge inC′ j . Let

p′ be the path inT′st from s to x and leta be the last vertex onp′ that is a descendant of

L (P′i).

The edgen′ cannot be incident on a descendantb of L (P′i) since j <i . The edgen′
cannot be incident on an ancestor ofL (P′i) either sinceG′st is acyclic. Letα=(y ,r) be the

edge following edge (z,y) on P′ j . Let X be the bridge ofC′i that contains edge (x ,y) and

let Y be the bridge ofC′i that contains edgeα. The bridgesX andY interlace onC′i . This

is becauseX has attachments ona andy andY has attachment onlca (n′) which is a proper

ancestor ofy and an attachment on a vertex numbered larger thana or y by thest-number-

ing property.

In C′i the path betweenl andq is directed fromq to l . In C′ j the path betweenl and

r is directed froml to r . Without loss of generality assume thatX is embedded outsideC′i
(as shown in the figure). ThenY is embedded insideC′i . Hence edge (x ,y) is embedded

outside the path froml to r , i.e., inside the path fromr to l . Thus the bridge ofC′ j that

contains edge (x ,y) is embedded insideC′ j if (x ,y) is embedded outsideC′i .[]

6. Planar Embeddings via 2-Colorings

In this section we correlate 2-colorings of the constraint graphG* with planar embed-

dings ofGl . A 2-coloring ofG* assigns to each vertex a value (orcolor) in {0,1} such that

no two adjacent vertices are assigned the same color. This can be done A-optimally in loga-

rithmic time by a simple algorithm (see , e.g., [Ra93]).

Observation 6.1Let Gl be planar. In any planar embedding ofGl the edges in a bunch

(B ,i) are either all embedded insideP′i or all embedded outsideP′i .

Proof The edges inB are a subset of a bridge of the cycleC′i . Hence all edges inB must

be embedded on one side ofC′i , and thus on one side ofP′i .[]

We now relate 2-colorings of the constraint graphG* to planar embeddings ofGl .

- 34 -

figure 8

Illustrating the four cases in the proof of Lemma 5.2

Lemma 6.1Let Gl be planar and letĜl be a planar embedding ofGl with edge (s,t) on the

outer face. Then any 2-coloring ofG* that assigns a bunch vertexuB ,i the color 0 if and

only if the corresponding bunch (B ,i) was embedded insideP′i in Ĝl can be extended into a

valid 2-coloring ofG* .

Proof By the results in [Ra93] we know that the two coloring can be extended to a valid two

coloring for the graphi =1∪r −1Gi ,I . So we only need to verify that the coloring can be extended

to the dummy vertices and that the link edges do not destroy the validity of the two-color-

ing. The result follows from Lemma 5.2 since the link edges only connect bunch vertices

and dummy vertices and they force a pair of bunch vertices to be given the same color if and

only if the corresponding bunches have to be embedded on the same side of their fundamen-

tal cycles.[]

- 35 -

In order to relate two-colorings to planar embeddings it is easier to work with a tricon-

nected graph. One way of doing this is to decomposeG into its triconnected components

and work separately on each triconnected component. The proofs become simpler in this

case and these can be found in the preliminary version of this paper [RR89]. In the follow-

ing we present the proofs for the case whenG is only biconnected. We show that the algo-

rithm that works for the triconnected case works also for the biconnected case, so there is no

need to preprocessG to find its triconnected components.

We now associate a triconnected component ofGl with each bunchB of P′i (see Sec-

tion 2.7 for definitions relating to triconnected components). Recall that by Lemma 2.1 it is

possible to rearrange theP′i so that the resulting sequence of paths forms an open ear

decomposition forGl . We assume that theP′i have been reordered so that [P′ 0, . . . ,P′r −1]

forms an open ear decomposition forGl . If Gl contains no paira ,b separatingP′i such that

the interval [a ,b] on P′i contains all attachment vertices ofB then letv be an attachment of

B and letX be the triconnected component ofGl that contains the copy ofv that remains

when all upper split graphs corresponding to ear splits on adjacent and extremal separating

pairs onP′ j ,j ≥i have been removed. IfGl contains a paira ,b separatingP′i such that the

interval [a ,b] on P′i contains all attachment vertices ofB then letx ,y be such an adjacent

separating pair whose upper split graph does not contain any other adjacent pair of this form

and letX = TC(x ,y ,i). ThenX is the triconnected component of(B ,i), or equivalently,

(B ,i) belongs to triconnected component TC(x ,y ,i).

The following lemma follows from the results of [MR92, Ra93] relating separating

pairs onP′i to the interlacings of stars in the bridge graph ofP′i .

Lemma 6.2

a) LetX be a connected component ofGi ,I that contains no bunch vertex corresponding

to an anchor bunch and letY be the triconnected component of a bunch whose bunch

vertex is inX . ThenY is the triconnected component of a bunch (B ,i) if and only if

the bunch vertexuB ,i is in X .

b) All bunches corresponding to bunch vertices in connected components ofGi ,I that

contain an anchor bunch belong to a single triconnected component ofGl , and this tri-

connected component is not part of the upper split graph of any ear split correspond-

ing to a pair separatingP′i .

We now relate the connectivity of the constraint graphG* to the triconnected compo-

nents ofGl .

Lemma 6.3A pair of bunch verticesuA ,j anduB ,k lie in the same connected component of

G* if and only if bunches (A ,j) and (B ,k) belong to the same triconnected component of

Gl .

Proof For eachi , let Di be the subgraph ofG* induced onj ≤i∪Gj ,I ∪ {dummy vertices

linking bunch verticesuX ,k , uY,l , k <l ≤i }. We prove by induction on i that a pair of

- 36 -

bunches (A ,j) and (B ,k), j ,k≤i , belong to the same triconnected component ofGl if and

only if verticesuA ,j anduB ,k lie in the same connected component in the subgraphDi .

BASE: D 1 = G1,I . By part a) of Lemma 6.2, the bunch vertices inD 1 satisfy the statement

of the lemma, sinceP′ 1 has no anchor bunches.

INDUCTION STEP: Assume that the result is true untili −1 and considerDi . Di is Di −1

together withGi ,I and the link paths connecting vertices inGi ,I to vertices inDi −1. By con-

struction the vertex corresponding to each anchor bunch incident onP′i is connected toDi −1

by a link path. Let (A ,i) be an anchor bunch ofP′i and letuA ,i be connected touB ,j , j <i

by a link path inG* . We will show that (A ,i) and (B ,j) are in the same triconnected com-

ponent by showing that there are three vertex-disjoint paths between a vertexx in the tricon-

nected component of bunch (A ,i) and vertexy in the triconnected component of bunch

(B ,j).

If the link path was introduced in step 1 of Algorithm 5.1 then letx be an attachment

of bunchA on P′i and lety be l ; and if the link path was introduced in step 2 or in step a,

then letx be an attachment of bunchA on P′i and lety be the attachment vertex of edgef

on P′ j . We note that in each of the above cases, bothx andy are vertices on the fundamen-

tal cycle C′i . This gives two vertex-disjoint paths betweenx and y on C′i . Further by

Corollary 1 to Lemma 4.3,x andy are attachments onC′i of the bridgeX of C′i that con-

tains the edges inA . This provides the third vertex-disjoint path betweenx andy .

Finally, if the link path was introduced in step b we considerC′ j and use an argument

similar to the above to showthat there exist suitable verticesx ,y on C′ j with three vertex

disjoint paths between them.

It is now straightforward to use the above result, together with the induction hypothe-

sis to establish the claim fori , thus proving the lemma.[]

We now state and prove the main result of this section.

Theorem 6.1Let Gl be biconnected and planar and letΧ be a 2-coloring ofG* . Then there

exists a planar embedding ofGl with the edge (s,t) on the outside face that embeds a bunch

(B ,i) insideP′i if and only if the bunch vertexuB ,i in G* is colored 0.

ProofThe proof is by induction on the number of triconnected components inGl .

BASE: Gl is triconnected. Then by Lemma 6.3G* is connected. HenceG* has exactly two

different 2-colorings, and each can be obtained from the other by interchanging zeros and

ones. By Lemma 6.1 these two colorings must correspond to the two possible embeddings

of Gl with (s,t) on the outer face.

INDUCTION STEP: Assume the lemma is true for up tok−1 triconnected components and

let Gl havek triconnected components. Assume without loss of generality that the indices

of theP′i have been permuted so thatD =[P′ 0, . . . ,P′r −1] forms an open ear decomposition

for Gl (such a rearrangement was shown to exist in Lemma 2.1). Letx ,y be a nontrivial

adjacent pair separating someP′i and letG1 and G2 be the upper and lower split graphs

obtained by the ear split (x ,y ,i). The open ear decompositionD induces an open ear

- 37 -

decompositionD 1 in G1 andD 2 in G2, with the newly-introduced edge (x ,y ,i) serving as

the initial ear inD 2 [MR92, Ra93]. Each triconnected component ofG is contained entirely

within one ofG1 or G2, hence the connected components ofG* can be partitioned between

G1 and G2. Further, each ofG1 and G2 contains at mostk−1 triconnected components,

hence the induction hypothesis applies to both of them.

Let Ĝ1 andĜ2 be planar embeddings ofG1 andG2 respectively, that are induced by

the 2-coloringX . We only need to verify that these two embeddings can be combined into a

planar embedding forG . In Gl the embeddings forG1 andG2 interact only onP′i . How-

ev er none of the bunches ofP′i in G2 interlace with any of the bunches ofP′i in G1 [MR92,

Ra93]. Also, sincex andy serve the place ofs and t in G2, Ĝ2 hasx andy on the outer

face. HenceĜ1 can be combined withĜ2 atx andy to form a planar embedding forGl .[]

7. The Combinatorial Embedding

By Theorem 6.1, ifGl is planar, then we can determine for eachP′i , the set of

bunches that are embedded insideP′i and the set that is embedded outsideP′i . In this sec-

tion we show how to determine the relative ordering of the edges incident on a vertex inP′i
that are assigned to one side ofP′i . In Section 7.1 we describe this procedure for the local

replacement graphGl . In Section 7.2 we map this ordering back to the input graphG .

7.1. The Combinatorial Embedding of the Local Replacement Graph

In order to obtain a combinatorial embedding ofGl we need to obtain for each vertex

v in Gl , the cyclic ordering of the edges incident onv in a planar embedding ofGl . In Sec-

tion 6 we obtained some coarse information on this cyclic ordering, i.e., for each internal

vertexv in P′i we partitioned the set of edges incident onv (other than the two edges inP′i
that are incident onv) into two classes, those that are embedded insideP′i and those that

are embedded outsideP′i . In this section we obtain the cyclic ordering for each of these two

sets. Since the procedure is identical for each of these two sets we describe only the proce-

dure for the edges embedded insideP′i .

Recall from Section 4 that asegmentof P′i is a subset of attachments of a bridge of

C′i . We will say that two segments ofP′i aredisjoint if they form a cluster (i.e., there is a

path between any pair of edges in each segment that avoids all vertices inC′i and in the

other segment). We will use the following observation and its corollary.

Observation 7.1If two disjoint segments ofP′i interlace then they must be placed on oppo-

site sides ofCi in any planar embedding ofGl .

Corollary to Observation 7.1 If two disjoint segments ofP′i that are derived from the

same bridge ofC′i interlace thenGl is nonplanar.

In the following we will assume, as before, that the vertices ofGl , G′st , andT′st are

numbered with theirst-numbering. Given an edgee=(u ,v) with u <v , the vertexv will be

called thehigh endpoint of eand the vertexu will be called thelow endpoint of e .

- 38 -

Observation 7.2Let n=(x ,y) be a nontree edge inG′st with respect to the treeT′st . Let x

be the high endpoint ofn . Thenx is the largest-numbered vertex in the fundamental cycle

of n .

Let v be an internal vertex inP′i and letF be the set of edges incident onv that are

embedded insideP′i . Let F = F 1∪F 2 whereF 1 is the set of edges inF that lie in the tree

T′st andF 2 is the set of remaining edges inF . We first obtain the cyclic ordering of edges in

F 1 (for all verticesv) and then find the cyclic ordering of edges inF 2. The following lemma

shows that all edges inF 1 must appear before any edge inF 2 in a cyclic ordering corre-

sponding to a planar embedding ofGl . Hence we can concatenate the cyclic ordering ofF 1

andF 2 to obtain the cyclic ordering ofF .

Lemma 7.1Let v be an internal vertex ofP′i in the local replacement graphGl . Let e and

e′ be edges incident onv that are embedded insideP′i in a planar embedding ofGl with e

an edge inT′st ande′ a nontree edge. Letf be the unique incoming edge tov andg the

unique outgoing edge fromv in G′st that are contained inP′i . Then edgee appears before

edgee′ in the cyclic ordering of edges incident onv , starting with edgeg .

Proof Let e be contained inP′ j and letn=(u ,w) be the nontree edge inP′ j . Let w be the

high endpoint ofn . By Observation 7.2 the vertexw is the largest-numbered vertex in the

fundamental cycleC′ j . Hence there is a pathp from w to t that avoids all other vertices on

C′ j including vertexv .

Let C be the cycle inGl consisting of the path inT′st from s to v , followed by the

pathq in C′ j from v to w that contains edgee, followed by the pathp , followed by edge

(t ,s). Let this cycle have the direction of edgef (which is the same as that of edgee). Edge

g is embedded outsideC sincee is embedded insideC′i .

Let g=(v ,y). There is a path fromy to t that contains vertices in increasing order of

their st-numbering. Hence the bridgeB of C containing edgeg must have an attachment

on a vertexx≠v that lies on pathq or pathp . Now consider the bridgeB′ of C that con-

tains edgee′ . Let m be the base edge of the fundamental cycle ofe′ not lying onC . The

edgem is an attachment edge ofB′ and the attachment vertex, which islca (e′), does not lie

on either pathp or pathq sincelca (e′) is a proper ancestor ofv . If B′ is embedded outside

C then it must appear beforeg in the cyclic ordering starting withf . This is not possible

since this would causee′ to be embedded outsideC′i . Hencee′ is embedded insideC

which means thate appears beforee′ in the cyclic ordering of edges incident onv , starting

with edgeg .[]

We now describe how to obtain the cyclic ordering of the tree edges that are attach-

ment edges on an internal vertexv in P′i . We will compute this ordering in two phases. The

first phase makes use of the following lemma.

Lemma 7.2Let v be an internal vertex on the pathP′i . Let Hv be the graph obtained for

vertexv using the function callauxgraphs(Gl ,T′st) (from section 2.5). LetXl , l =0 to k be

the connected components ofF =Hv −{ z}, where z is the vertex inHv representing the

- 39 -

unique outgoing edge fromv that is contained inP′i . Let Sl be the simple graph obtained

from Xl , for eachl , by deleting multiple edges. Then, ifGl is planar, then eachSl is a sim-

ple noncyclic path.

Proof Let z′ be a vertex inSl whose corresponding edge inGl is e′ . Let (z′ ,z′′) be an edge

in Sl with e′′ being the edge inGl corresponding toz′′ and letn be a nontree edge inGl

that caused edge (z′ ,z′′) to be placed inHv . Let e′ be contained inP′ j and let (u ,w) be the

nontree edge inP′ j with w >u ; by Observation 7.2w is the largest-numbered vertex onC′ j .
By the construction ofGl the fundamental cycleC′ j does not not containe′′ .

Now consider the bridgeB of C′ j that contains the attachment edgee′′ . The funda-

mental cycle ofn will contribute an attachment edge forB on C′ j on a vertexx wherex≠v

andx≠w . Further, ife′′ is onP′k then the fundamental cycleC′k will contribute an attach-

ment edge forB either on vertexw on C′ j or on a proper ancestor ofv on C′ j . This results

in a segmentS that is part ofB and has 3 or more attachments onC′ j .

We hav e shown above that each edge (z′ ,z′′) in Hv results in a segment ofP′ j that

contains at least 3 attachments. The segments corresponding to differentz′′ are disjoint.

Any two segments with 3 attachments interlace on a cycle, and hence must be placed on

opposite sides of the cycle in a planar embedding by Observation 7.1. Hencez′ can have at

most two neighbors inHv −{ z}. Hence each connected component ofF must be a simple

path. Finally, all of the edges in a connected component ofv must be placed on the same

side (either inside or outside) ofC′i . Hence no connected component ofF is a simple

cycle.[]

Lemma 7.3 Let X be a connected component of the graphF =Hv −{ z}, as defined in the

statement of Lemma 7.2 and letX be the path<x 0, . . . ,xk > . Let the edge inGl correspond-

ing to xl be el . Then in any planar embedding ofGl the cyclic ordering of the edges inci-

dent onv will contain theel as consecutive edges in order frome0 to ek or fromek to e0.

Proof Let v be an internal vertex ofP′i and letel be contained inP′ j . Then by the construc-

tion of the local replacement graph, the nontree edge inP′ j is not incident on a descendant

of an internal vertex ofP′q , for anyP′q that contains one of theer . Hence the edgese0 to

el −1 appear in one bridge ofC′ j and the edgesel +1 to ek appear in another bridge. This

holds for eachel , l =0 to k . Hence in any planar embedding ofGl the edgese0 to ek appear

in that order in the cyclic order of edges outgoing fromv .

We now show that theel must occur as consecutive edges in the cyclic order. Lete be

an outgoing edge from vertexv other than theel , and lete be contained inP′m . Since

R(P′m) is not incident on a descendant of an internal vertex ofP′q , for anyP′q that contains

one of theel , all of theel are in a single bridge ofC′m . Hence they must all appear on one

side ofC′m , i.e., the edgee cannot appear between theel in the cyclic ordering.[]

We will call each set of edges inGl corresponding to vertices in a connected compo-

nent ofF (as defined in the statement of Lemma 7.2) atuft of vertex v .Let T=[e0, . . . ,ek]

be a tuft of vertexv , where the edges inT are constrained to occur either in the sequence

- 40 -

<e0, . . . ,ek > or in the sequence<ek , . . . ,e0> . In order to determine which of the two

sequences is the correct one, we look ate0. Let e0 belong toP′k , and letB be the bunch of

P′k that contains the label of the set containinge1 (as computed in steps 4-6 of Algorithm

4.1). Then the edgese1, . . . ,ek are placed beforee0 in the clockwise order of edges outgo-

ing from v if and only if bunch vertexuB ,i is colored 1 inG* (i.e., B is placed outsideP′k
in the embedding). The bunchB can be determined in constant time by one processor,

since by Lemma 7.2, the vertexwe1 will be the unique neighbor ofwe0 in the blocktree con-

structed as in the proof of Lemma 4.2. This is summarized in the following observation.

Observation 7.3Given a tuftT=[e0, . . . ,ek] we can determine if the ordering of edges inT

is <e0, . . . ,ek > or <ek , . . . ,e0> in constant time with one processor.

In phase 2 of the algorithm to find the cyclic ordering of tree edges outgoing fromv

we determine the ordering of the tufts that are embedded insideP′i . To do this, we deter-

mine, for each tuftS of v , an edgen in out(S) with lca (n) < v and we embed the tufts in

decreasing order of the high endpoint of this edge. The following lemma shows that if the

high endpoints of the edges chosen for different tufts are all distinct this will give us the cor-

rect ordering of the tufts.

Lemma 7.4Let e′ , e′′ be two tree edges outgoing fromv that are embedded insideC′i . Let

n′ ∈out(e′) andn′′ ∈out(e′′) with lca (n′) < v and lca (n′′) < v and letu′ andu′′ be the

high endpoints ofn′ andn′′ respectively. Ifu′ > u′′ thene′ is embedded beforee′′ in the

cyclic ordering starting withg , the unique outgoing edge fromv that lies onP′i .

Proof Let C′′ be the fundamental cycle ofn′′ . The edgeg is embedded outsideC′′ sincee′′
is embedded insideC′i . Sincelca (n′′) < v , the vertext is in the same bridge ofC′′ as edge

g and hencet is embedded outsideC′′ . By Observation 7.2u′′ is the highest-numbered

vertex inC′′ and hence by thest-numbering property any vertexx with x >u′′ must be in

the same bridge ofC′′ as vertext . Hence vertexu′ and edgee′ are embedded outside the

cycle C′′ in the planar embedding, i.e., edgee′ is embedded beforee′′ in the cyclic order-

ing starting at edgeg .[]

In order to handle the case when the chosen edges for different tufts have the same

high endpoint we choose two different nontree edges for each tuft. These edges are chosen

by a strategy somewhat similar to the one used to find hooks for the bunches. We first pre-

sent some definitions. These definitions are similar to the definitions oflow andlow2 giv en

in Section 4.2, except that we now distinguish between outgoing nontree edges and incom-

ing nontree edges.

Let the vertices ofT′st be numbered inst-numbering. For each edgee=(parent(v), v)

in T′st , a.out(e) is the set of nontree edges that are outgoing from a descendant ofv and

b.out(e) is the set of nontree edges that are incoming to a descendant ofv ; note that

a.out(e) and b.out(e) are disjoint and out(e) as defined in Section 4.2 is

a.out(e)∪b.out(e). We define a.low(e) to be n ∈a.out(e)min lca (n) and b.low(e) to be

n ∈b.out(e)min lca (n).

- 41 -

Let a.S(e) = { n |n ∈a.out(e) and lca (n)≠a.low(e)}. Then we definea.low2(e) to be

min(v , n ∈a.S(e)min lca (n)).

Let X be a set of edges inT′st . Then, we define

a.out(X) = e ∈X∪a.out(e);

b.out(X) = e ∈X∪b.out(e);

a.low(X) = e ∈Xmin a.low(e);

b.low(X) = e ∈Xmin b.low(e); and

Let a.l1(X) = e ∈X anda.low(e)≠a.low(X)min (a.low(e)), anda.l2(X) = e ∈Xmin a.low2(e).

Thena.low2(X) = min(a.l1(X), a.l2(X)).

In the following algorithm we find for each tuftS of v , two verticesbig (S) and

nextbig(S) which are high endpoints of edges inout(S). We use these to compute the

cyclic ordering of the tufts of each vertex, and hence the cyclic ordering of tree edges

around each vertex.

Algorithm 7.1: Finding the Cyclic Ordering for the Tree Edges

Input GraphsGl , treeT′st , and the tufts for each vertex.

Output For each vertexv , the cyclic ordering of its tufts that are embedded inside the fun-

damental cycle of the pathP′i that containsv as an internal vertex (verticess and t are

assumed to be internal vertices ofP′ 0).

vertex u , u′ , v ; edgen , n′ ;

tuft S;

1. pfor each tuftS of each vertexv →

big (S) := the high endpointu of an edgen in a.out(S) with lca (n) = a.low(S);

nextbig(S) := v ;

if there is an edgen′ in a.out(S) with lca (n) = a.low(S) and with high endpoint

u′ ≠u → nextbig(S) := u′

a.low2(S) < v → nextbig(S) := the high endpoint of an edge ina.out(S) with

lca (n′) = a.low2(S)

b.low(S) < v → nextbig(S) := the high endpoint of an edgen′ in b.out(S)

with lca (n′) = b.low(S)

fi;

pair (S) := (big (S), nextbig(S))

rofp

2. pfor each vertexv →

- 42 -

sort the tufts ofv embedded inside the path containingv as an internal vertex in

lexicographically nonincreasing value of their pairs;

determine the ordering of edges within each tuft using Lemma 7.3 and Observa-

tion 7.3

rofp

end.

Lemma 7.5 If Gl is planar then Algorithm 7.1 finds a cyclic ordering of the tufts corre-

sponding to a planar embedding ofGl .

Proof If the pairs sorted in step 2 of Algorithm 7.1 are distinct then by Lemma 7.4 this

cyclic ordering corresponds to a planar embedding ofGl . Otherwise, letS1 andS2 be two

tufts withpair (S1) = pair (S2). Let pair (S1) = (a ,b). If b≠v then by Lemma 7.4S1 must be

embedded beforeS2 sincea >b ; alsoS1 must be embedded afterS2 sinceb <a . Hence no

planar embedding is possible ifS1 and S2 are to be embedded on the same side ofP′i
(whereP′i is the path that containsv as an internal vertex). Ifb=v then by the computation

in the for loop of step 1, every nontree edge inout(S1) andout(S2) is incident ona or has

lca greater thanv . In this case the pair (a ,v) is a separating pair forGl andS1 andS2 can

appear in either order in a planar embedding ofGl .[]

Lemma 7.6Algorithm 7.1 can be implemented to run in logarithmic time with A-optimal

performance.

Proof The only nontrivial computations in Algorithm 7.1 are the computation of tree func-

tions that can be computed using the Euler tour technique, lca computation, bucket sort, and

finding connected components. Hence the algorithm runs in logarithmic time with A-opti-

mal performance.[]

Algorithm 7.1 gives the cyclic ordering of tree edges outgoing at each vertex. We

number these tree edges in cyclic order as 0,−1,−2, . . . ; let this be thecyclic tree numberof

the edge. To find the cyclic ordering of the incoming nontree edges at each vertex, we

assign each tree edge (x ,y) that is outgoing fromx , for each vertexx , the ordered pair

(x ,c), wherec is the cyclic tree number of the edge. For each nontree edge incoming to a

vertexv , we consider the base edge of the fundamental cycle of each such nontree edge that

lies on the path from the lca to the low endpoint, and we embed nontree edges incoming to

v in reverse order of the ordered pairs of these base edges. It is easy to see that this gives a

cyclic ordering for the nontree edges corresponding to a planar embedding ofGl consistent

with the ordering obtained for the tree edges.

7.2. The Combinatorial Embedding of the Input Graph

In this section we show that we can work withGl in order to obtain a planar embed-

ding ofG .

- 43 -

Lemma 7.7G is planar if and only ifGl is planar.

Proof If Gl is planar then clearlyG is planar. For the reverse, letCi be the fundamental

cycle inG of the nontree edge in earPi with respect to treeTst and letC′i be its image in

Gl . Let B1, . . . ,Bk be the bridges ofCi in G and letB′ 1, . . . ,B′k′ be the bridges ofC′i in

Gl . By the results in Section 4.1.3 in [Ra93] there is a 1-1 correspondence between theBj

and theB′ j such that an edgee in G − Ci is in Bj if and only if e is in the bridge corre-

sponding to it inGl − C′i . (The results in Section 4.1.3 of [Ra93] are for bridges ofPi ;

however it is straightforward to extend them to bridges ofCi .)

Let G be planar and letĜ be a planar embedding ofG . Let Ĉi be the embedding of

Ci . Replace each vertexv on Ci by its image inTv , together with its parent and children (if

any) in Tv . The embeddingĜ can be extended to a planar embedding in this new graph.

This can be established by virtue of the correspondence between the bridges ofCi in G and

those ofC′i in Gl and by using the properties of the local replacement graph; we omit the

details. We now find a fundamental cycle insideCi (similarly outsideCi) that intersectsCi

and repeat this construction. Since planarity is preserved, we can continue to repeat this

construction until we have exhausted all fundamental cycles at which point we obtain a pla-

nar embedding ofGl .[]

8. The Complete Algorithm and Its Complexity

We now present the complete algorithm for obtaining a planar embedding of a bicon-

nected graph vertices if one exists.

Algorithm 8.1: Planarity Algorithm

Input: A biconnected graphG=(V ,E).

Output: A combinatorial embedding ofG if G is planar.

vertex s, t , v ;

integer i ; {{The range of this integer is from 0 tor −1.}}

if |E | > 3. |V | → reportG is nonplanar andhalt fi;

1. fix an edge (s,t) in the graph; find an open ear decompositionD =[P0, . . . ,Pr −1] start-

ing with (s,t); construct the directedst-numbering graphG′st , its spanning treeT′st ,

and the associated pathsP′ 0,P′ 1, . . . ,P′r −1;

2. find the bunches of eachP′i together with the hooks for the anchor bunches;

3. construct the constraint graphG* by forming the interlacing parity graph for each

bunch graph and adding in the link edges;

if G* is not 2-colorable→ reportG is nonplanar andhalt fi;

4. find a 2-coloring ofG* ;

pfor eachP′i →

- 44 -

5. assign all bunches whose corresponding vertices onG* were given color 0 in

G* insideP′i and the remaining bunches outsideP′i

6. find the cyclic ordering of the edges assigned to each side ofP′i and conse-

quently the ordering of edges around each vertex

rofp ;

7. compute the number of faces in this combinatorial embedding and verify Euler’s for-

mula to determine if G is planar;

8. if Gl is planar→ collapse all vertices inTv into a single vertexv for eachv to obtain

a combinatorial embedding ofG

Gl is nonplanar→ reportG is nonplanar

fi

end.

Step 1 is described in Section 2, step 2 in Section 4, step 3 in Section 5 and step 6 in

Section 7. Steps 4 and 5 have easy optimal logarithmic time parallel algorithms and steps 7

and 8 can be computed with similar bounds using the Euler tour technique [TV84, CV86,

KD88]. This gives us the main theorem of the paper.

Theorem 8.1The planarity problem can be solved on a CRCW PRAM in logarithmic time

with A-optimal performance. The algorithm will perform linear work if linear work, loga-

rithmic time algorithms are available for the connected components and bucket sort prob-

lems.

REFERENCES

[BL76] K. Booth, G. Lueker, "Testing for the consecutive ones property, interval graphs,

and graph planarity using PQ-tree algorithms,"J. Comp. Syst. Sci.,vol. 13, 1976, pp.

335-379.

[CV86] R. Cole, U. Vishkin, "Approximate parallel scheduling. Part II: Applications to

optimal parallel graph algorithms in logarithmic time,’’Inform. and Computation,vol. 91,

1991, pp. 1-47.

[Ed60] J. Edmonds, "A combinatorial representation for polyhedral surfaces,"Not. Am.

Math. Soc.,vol. 7, 1960, p. 646.

[Ev79] S. Even,.Graph Algorithms,Computer Science Press, Potomac, MD, 1979.

[ET76] S. Even, R. Tarjan, "Computing an st-numbering,"Theoretical Computer Science,

vol. 2, 1976, pp. 339-344.

[FRT89] D. Fussell, V. Ramachandran, R. Thurimella, "Finding triconnected components by

local replacements,"SIAM J. Computing,1993, pp. 587-616.

- 45 -

[GJ79] M. R. Garey, D. S. Johnson,Computers and Intractability: A Guide to the Theory of

NP-Completeness,Freeman, San Fransisco, CA, 1979.

[Ga86] H. Gazit, "An optimal randomized parallel algorithm for finding connected compo-

nents in a graph,"SIAM J. Computing,vol. 20, 1991, pp. 1046-1067.

[Ha87] T. Hagerup, "Tow ards optimal parallel bucket sorting,"Inform. and Comput.,vol.

75, 1987, pp. 39-51.

[HT73] J. E. Hopcroft, R. E. Tarjan, "Dividing a graph into triconnected components,"

SIAM J. Computing,vol. 2, 1973, pp. 135-158.

[HT74] J. E. Hopcroft, R. E. Tarjan, "Efficient planarity testing,"J. ACM,vol. 21, 1974, pp.

549-568.

[JS82] J. Ja’Ja’, J. Simon, "Parallel algorithms in graph theory: planarity testing,"SIAM J.

Computing,vol. 11, 1982, pp. 314-328.

[KR91] A. Kanevsky, V. Ramachandran, "Improved algorithms for graph four-connectivity,"

Jour. Computer and Syst. Sci.,vol. 42, 1991, pp. 288-306.

[KR90] R. M. Karp, V. Ramachandran, "Parallel algorithms for shared-memory machines,"

Handbook of Theoretical Computer Science,North-Holland, 1990, pp. 869-941.

[KR88] P. Klein, J.H. Reif, "An efficient parallel algorithm for planarity,"J. Comp. Syst.

Sci.,vol. 37, 1988, pp. 190-246.

[KD] S. R. Kosaraju, A. L. Delcher, "Optimal parallel evaluation of tree-structured compu-

tations by raking,"Proc. 3rd Aeg ean Workshop on Computing,Springer-Verlag LNCS 319,

1988, pp. 101-110.

[Ku30] Kuratowski, "Sur le problem des courbes gauches en topologie,"Fund. Math.,vol.

15, 1930, pp. 271-283.

[LEC67] A. Lempel, S. Even, I. Cederbaum, "An algorithm for planarity testing of graphs,"

Theory of Graphs: International Symposium,Gordon and Breach, New York, NY, 1967, pp.

215-232.

[Lo85] L. Lovasz, "Computing ears and branchings in parallel,"Proc. 26th Ann. IEEE

Symp. on Foundations of Computer Science,1985, pp. 464-467.

[MSV86] Y. Maon, B. Schieber, U. Vishkin, "Parallel ear decomposition search (EDS) and

st-numbering in graphs,"Theoretical Computer Science,vol. 47, 1986, pp. 277-296.

[MR86] G. L. Miller, V. Ramachandran, "Efficient parallel ear decomposition with applica-

tions," manuscript, MSRI, Berkeley, CA, January 1986.

[MR92] G. L. Miller, V. Ramachandran, "A new graph triconnectivity algorithm and its par-

allelization,"Combinatorica,vol. 12, 1992, pp. 53-76.

[MR85] G. L. Miller, J. H. Reif, "Parallel tree contraction, Part II: Further applications,’’

SIAM J. Computing,vol. 20, 1991, pp. 1128-1147.

- 46 -

[RV88] V. Ramachandran, U. Vishkin, "Efficient parallel triconnectivity in logarithmic

time," Proc. 3rd Aeg ean Workshop on Computing,Springer-Verlag LNCS 319, 1988, pp.

33-42.

[Ra93] V. Ramachandran, "Parallel open ear decomposition with applications to graph

biconnectivity and triconnectivity," invited chapter inSynthesis of Parallel Algorithms,J. H.

Reif, ed., Morgan-Kaufmann, 1993, pp. 275-340.

[RR89] V. Ramachandran, J. H. Reif, "An optimal parallel algorithm for graph planarity,"

Proc. 30th Ann. IEEE Symp. on Foundations of Comp. Sci.,1989, pp. 282-287.

[Re84] J. H. Reif, "Symmetric Complementation,"J. ACM,vol. 31, 1984, pp. 401-421.

[Sc87] B. Schieber,Design and Analysis of Some Parallel Algorithms,Ph. D. thesis, Tel

Aviv Univ., Israel, 1987.

[SV88] B. Schieber, U. Vishkin, "On finding lowest common ancestors: simplification and

parallelization,"SIAM J. Computing,vol. 17, 1988, pp. 1253-1262.

[Ta83] R. E. Tarjan,Data Structures and Network Algorithms,SIAM Press, Philadelphia,

PA, 1983.

[TV84] R. E. Tarjan, U. Vishkin, "An efficient parallel biconnectivity algorithm,"SIAM J.

Computing,vol. 14, 1984, pp. 862-874.

[Tu63] W. T. Tutte, "How to draw a graph,"Proc. London Math. Soc.,vol. 3, 1963, pp.

743-768.

[Tu66] W. T. Tutte,Connectivity in Graphs,University of Toronto Press, 1966.

[Wh73] A. T. White,Graphs, Groups, and Surfaces,North-Holland, Amsterdam, 1973.

[Wh30] H. Whitney, "Non-separable and planar graphs,"Tr ans. Amer. Math. Soc.,vol. 34,

1930, pp. 339-362.

